首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Next-generation sequencing(NGS) technology has revolutionized and significantly impacted metagenomic research.However,the NGS data usually contains sequencing artifacts such as low-quality reads and contaminating reads,which will significantly compromise downstream analysis.Many quality control(QC) tools have been proposed,however,few of them have been verified to be suitable or efficient for metagenomic data,which are composed of multiple genomes and are more complex than other kinds of NGS data.Here we present a metagenomic data QC method named Meta-QC-Chain.Meta-QC-Chain combines multiple QC functions:technical tests describe input data status and identify potential errors,quality trimming filters poor sequencing-quality bases and reads,and contamination screening identifies higher eukaryotic species,which are considered as contamination for metagenomic data.Most computing processes are optimized based on parallel programming.Testing on an 8-GB real dataset showed that Meta-QC-Chain trimmed low sequencing-quality reads and contaminating reads,and the whole quality control procedure was completed within 20 min.Therefore,Meta-QC-Chain provides a comprehensive,useful and high-performance QC tool for metagenomic data.Meta-QC-Chain is publicly available for free at:http://computationalbioenergy.org/meta-qc-chain.html.  相似文献   

2.
3.
4.
5.
6.
Numerous studies have shown that repetitive regions in genomes play indispensable roles in the evolution, inheritance and variation of living organisms. However, most existing methods cannot achieve satisfactory performance on identifying repeats in terms of both accuracy and size, since NGS reads are too short to identify long repeats whereas SMS (Single Molecule Sequencing) long reads are with high error rates. In this study, we present a novel identification framework, LongRepMarker, based on the global de novo assembly and k-mer based multiple sequence alignment for precisely marking long repeats in genomes. The major characteristics of LongRepMarker are as follows: (i) by introducing barcode linked reads and SMS long reads to assist the assembly of all short paired-end reads, it can identify the repeats to a greater extent; (ii) by finding the overlap sequences between assemblies or chomosomes, it locates the repeats faster and more accurately; (iii) by using the multi-alignment unique k-mers rather than the high frequency k-mers to identify repeats in overlap sequences, it can obtain the repeats more comprehensively and stably; (iv) by applying the parallel alignment model based on the multi-alignment unique k-mers, the efficiency of data processing can be greatly optimized and (v) by taking the corresponding identification strategies, structural variations that occur between repeats can be identified. Comprehensive experimental results show that LongRepMarker can achieve more satisfactory results than the existing de novo detection methods (https://github.com/BioinformaticsCSU/LongRepMarker).  相似文献   

7.
Traditional Sanger sequencing as well as Next-Generation Sequencing have been used for the identification of disease causing mutations in human molecular research. The majority of currently available tools are developed for research and explorative purposes and often do not provide a complete, efficient, one-stop solution. As the focus of currently developed tools is mainly on NGS data analysis, no integrative solution for the analysis of Sanger data is provided and consequently a one-stop solution to analyze reads from both sequencing platforms is not available. We have therefore developed a new pipeline called MutAid to analyze and interpret raw sequencing data produced by Sanger or several NGS sequencing platforms. It performs format conversion, base calling, quality trimming, filtering, read mapping, variant calling, variant annotation and analysis of Sanger and NGS data under a single platform. It is capable of analyzing reads from multiple patients in a single run to create a list of potential disease causing base substitutions as well as insertions and deletions. MutAid has been developed for expert and non-expert users and supports four sequencing platforms including Sanger, Illumina, 454 and Ion Torrent. Furthermore, for NGS data analysis, five read mappers including BWA, TMAP, Bowtie, Bowtie2 and GSNAP and four variant callers including GATK-HaplotypeCaller, SAMTOOLS, Freebayes and VarScan2 pipelines are supported. MutAid is freely available at https://sourceforge.net/projects/mutaid.  相似文献   

8.
Pipelines for the analysis of Next-Generation Sequencing (NGS) data are generally composed of a set of different publicly available software, configured together in order to map short reads of a genome and call variants. The fidelity of pipelines is variable. We have developed ArtificialFastqGenerator, which takes a reference genome sequence as input and outputs artificial paired-end FASTQ files containing Phred quality scores. Since these artificial FASTQs are derived from the reference genome, it provides a gold-standard for read-alignment and variant-calling, thereby enabling the performance of any NGS pipeline to be evaluated. The user can customise DNA template/read length, the modelling of coverage based on GC content, whether to use real Phred base quality scores taken from existing FASTQ files, and whether to simulate sequencing errors. Detailed coverage and error summary statistics are outputted. Here we describe ArtificialFastqGenerator and illustrate its implementation in evaluating a typical bespoke NGS analysis pipeline under different experimental conditions. ArtificialFastqGenerator was released in January 2012. Source code, example files and binaries are freely available under the terms of the GNU General Public License v3.0. from https://sourceforge.net/projects/artfastqgen/.  相似文献   

9.
The growth of next-generation sequencing (NGS) datasets poses a challenge to the alignment of reads to reference genomes in terms of alignment quality and execution speed. Some available aligners have been shown to obtain high quality mappings at the expense of long execution times. Finding fast yet accurate software solutions is of high importance to research, since availability and size of NGS datasets continue to increase. In this work we present an efficient parallelization approach for NGS short-read alignment on multi-core clusters. Our approach takes advantage of a distributed shared memory programming model based on the new UPC++ language. Experimental results using the CUSHAW3 aligner show that our implementation based on dynamic scheduling obtains good scalability on multi-core clusters. Through our evaluation, we are able to complete the single-end and paired-end alignments of 246 million reads of length 150 base-pairs in 11.54 and 16.64 minutes, respectively, using 32 nodes with four AMD Opteron 6272 16-core CPUs per node. In contrast, the multi-threaded original tool needs 2.77 and 5.54 hours to perform the same alignments on the 64 cores of one node. The source code of our parallel implementation is publicly available at the CUSHAW3 homepage (http://cushaw3.sourceforge.net).  相似文献   

10.

Background

Third generation sequencing methods, like SMRT (Single Molecule, Real-Time) sequencing developed by Pacific Biosciences, offer much longer read length in comparison to Next Generation Sequencing (NGS) methods. Hence, they are well suited for de novo- or re-sequencing projects. Sequences generated for these purposes will not only contain reads originating from the nuclear genome, but also a significant amount of reads originating from the organelles of the target organism. These reads are usually discarded but they can also be used for an assembly of organellar replicons. The long read length supports resolution of repetitive regions and repeats within the organelles genome which might be problematic when just using short read data. Additionally, SMRT sequencing is less influenced by GC rich areas and by long stretches of the same base.

Results

We describe a workflow for a de novo assembly of the sugar beet (Beta vulgaris ssp. vulgaris) chloroplast genome sequence only based on data originating from a SMRT sequencing dataset targeted on its nuclear genome. We show that the data obtained from such an experiment are sufficient to create a high quality assembly with a higher reliability than assemblies derived from e.g. Illumina reads only. The chloroplast genome is especially challenging for de novo assembling as it contains two large inverted repeat (IR) regions. We also describe some limitations that still apply even though long reads are used for the assembly.

Conclusions

SMRT sequencing reads extracted from a dataset created for nuclear genome (re)sequencing can be used to obtain a high quality de novo assembly of the chloroplast of the sequenced organism. Even with a relatively small overall coverage for the nuclear genome it is possible to collect more than enough reads to generate a high quality assembly that outperforms short read based assemblies. However, even with long reads it is not always possible to clarify the order of elements of a chloroplast genome sequence reliantly which we could demonstrate with Fosmid End Sequences (FES) generated with Sanger technology. Nevertheless, this limitation also applies to short read sequencing data but is reached in this case at a much earlier stage during finishing.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0726-6) contains supplementary material, which is available to authorized users.  相似文献   

11.
The presence of duplicates introduced by PCR amplification is a major issue in paired short reads from next-generation sequencing platforms. These duplicates might have a serious impact on research applications, such as scaffolding in whole-genome sequencing and discovering large-scale genome variations, and are usually removed. We present FastUniq as a fast de novo tool for removal of duplicates in paired short reads. FastUniq identifies duplicates by comparing sequences between read pairs and does not require complete genome sequences as prerequisites. FastUniq is capable of simultaneously handling reads with different lengths and results in highly efficient running time, which increases linearly at an average speed of 87 million reads per 10 minutes. FastUniq is freely available at http://sourceforge.net/projects/fastuniq/.  相似文献   

12.
Next-Generation-Sequencing is advantageous because of its much higher data throughput and much lower cost compared with the traditional Sanger method. However, NGS reads are shorter than Sanger reads, making de novo genome assembly very challenging. Because genome assembly is essential for all downstream biological studies, great efforts have been made to enhance the completeness of genome assembly, which requires the presence of long reads or long distance information. To improve de novo genome assembly, we develop a computational program, ARF-PE, to increase the length of Illumina reads. ARF-PE takes as input Illumina paired-end (PE) reads and recovers the original DNA fragments from which two ends the paired reads are obtained. On the PE data of four bacteria, ARF-PE recovered >87% of the DNA fragments and achieved >98% of perfect DNA fragment recovery. Using Velvet, SOAPdenovo, Newbler, and CABOG, we evaluated the benefits of recovered DNA fragments to genome assembly. For all four bacteria, the recovered DNA fragments increased the assembly contiguity. For example, the N50 lengths of the P. brasiliensis contigs assembled by SOAPdenovo and Newbler increased from 80,524 bp to 166,573 bp and from 80,655 bp to 193,388 bp, respectively. ARF-PE also increased assembly accuracy in many cases. On the PE data of two fungi and a human chromosome, ARF-PE doubled and tripled the N50 length. However, the assembly accuracies dropped, but still remained >91%. In general, ARF-PE can increase both assembly contiguity and accuracy for bacterial genomes. For complex eukaryotic genomes, ARF-PE is promising because it raises assembly contiguity. But future error correction is needed for ARF-PE to also increase the assembly accuracy. ARF-PE is freely available at http://140.116.235.124/~tliu/arf-pe/.  相似文献   

13.
14.
15.
16.

Background

Next generation sequencing (NGS) offers a rapid and comprehensive method of screening for mutations associated with retinitis pigmentosa and related disorders. However, certain sequence alterations such as large insertions or deletions may remain undetected using standard NGS pipelines. One such mutation is a recently-identified Alu insertion into the Male Germ Cell-Associated Kinase (MAK) gene, which is missed by standard NGS-based variant callers. Here, we developed an in silico method of searching NGS raw sequence reads to detect this mutation, without the need to recalculate sequence alignments or to screen every sample by PCR.

Methods

The Linux program grep was used to search for a 23 bp “probe” sequence containing the known junction sequence of the insert. A corresponding search was performed with the wildtype sequence. The matching reads were counted and further compared to the known sequences of the full wildtype and mutant genomic loci. (See https://github.com/MEEIBioinformaticsCenter/grepsearch.)

Results

In a test sample set consisting of eleven previously published homozygous mutants, detection of the MAK-Alu insertion was validated with 100% sensitivity and specificity. As a discovery cohort, raw NGS reads from 1,847 samples (including custom and whole exome selective capture) were searched in ~1 hour on a local computer cluster, yielding an additional five samples with MAK-Alu insertions and solving two previously unsolved pedigrees. Of these, one patient was homozygous for the insertion, one compound heterozygous with a missense change on the other allele (c. 46G>A; p.Gly16Arg), and three were heterozygous carriers.

Conclusions

Using the MAK-Alu grep program proved to be a rapid and effective method of finding a known, disease-causing Alu insertion in a large cohort of patients with NGS data. This simple approach avoids wet-lab assays or computationally expensive algorithms, and could also be used for other known disease-causing insertions and deletions.  相似文献   

17.
We present Quip, a lossless compression algorithm for next-generation sequencing data in the FASTQ and SAM/BAM formats. In addition to implementing reference-based compression, we have developed, to our knowledge, the first assembly-based compressor, using a novel de novo assembly algorithm. A probabilistic data structure is used to dramatically reduce the memory required by traditional de Bruijn graph assemblers, allowing millions of reads to be assembled very efficiently. Read sequences are then stored as positions within the assembled contigs. This is combined with statistical compression of read identifiers, quality scores, alignment information and sequences, effectively collapsing very large data sets to <15% of their original size with no loss of information. Availability: Quip is freely available under the 3-clause BSD license from http://cs.washington.edu/homes/dcjones/quip.  相似文献   

18.

Background

The exponential growth of next generation sequencing (NGS) data has posed big challenges to data storage, management and archive. Data compression is one of the effective solutions, where reference-based compression strategies can typically achieve superior compression ratios compared to the ones not relying on any reference.

Results

This paper presents a lossless light-weight reference-based compression algorithm namely LW-FQZip to compress FASTQ data. The three components of any given input, i.e., metadata, short reads and quality score strings, are first parsed into three data streams in which the redundancy information are identified and eliminated independently. Particularly, well-designed incremental and run-length-limited encoding schemes are utilized to compress the metadata and quality score streams, respectively. To handle the short reads, LW-FQZip uses a novel light-weight mapping model to fast map them against external reference sequence(s) and produce concise alignment results for storage. The three processed data streams are then packed together with some general purpose compression algorithms like LZMA. LW-FQZip was evaluated on eight real-world NGS data sets and achieved compression ratios in the range of 0.111-0.201. This is comparable or superior to other state-of-the-art lossless NGS data compression algorithms.

Conclusions

LW-FQZip is a program that enables efficient lossless FASTQ data compression. It contributes to the state of art applications for NGS data storage and transmission. LW-FQZip is freely available online at: http://csse.szu.edu.cn/staff/zhuzx/LWFQZip.  相似文献   

19.
20.
Next generation sequencing (NGS) of PCR amplicons is a standard approach to detect genetic variations in personalized medicine such as cancer diagnostics. Computer programs used in the NGS community often miss insertions and deletions (indels) that constitute a large part of known human mutations. We have developed HeurAA, an open source, heuristic amplicon aligner program. We tested the program on simulated datasets as well as experimental data from multiplex sequencing of 40 amplicons in 12 oncogenes collected on a 454 Genome Sequencer from lung cancer cell lines. We found that HeurAA can accurately detect all indels, and is more than an order of magnitude faster than previous programs. HeurAA can compare reads and reference sequences up to several thousand base pairs in length, and it can evaluate data from complex mixtures containing reads of different gene-segments from different samples. HeurAA is written in C and Perl for Linux operating systems, the code and the documentation are available for research applications at http://sourceforge.net/projects/heuraa/  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号