首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
LL-37 is a peptide secreted by human epithelial cells that can lyse bacteria, suppress signaling by Toll-like receptor 4 (TLR4), and enhance signaling to double-stranded RNA (dsRNA) by TLR3. How LL-37 interacts with dsRNA to affect signal transduction by TLR3 is not completely understood. We determined that LL-37 binds dsRNA and traffics to endosomes and releases the dsRNA in a pH-dependent manner. Using dynamic light scattering spectroscopy and cell-based FRET experiments, LL-37 was found to form higher order complexes independent of dsRNA binding. Upon acidification LL-37 will dissociate from a larger complex. In cells, LL-37 has a half-live of ∼1 h. LL-37 half-life was increased by inhibiting endosome acidification or inhibiting cathepsins, which include proteases whose activity are activated by endosome acidification. Residues in LL-37 that contact poly(I:C) and facilitate oligomerization in vitro were mapped. Peptide LL-29, which contains the oligomerization region of LL-37, inhibited LL-37 enhancement of TLR3 signal transduction. LL-29 prevented LL-37·poly(I:C) co-localization to endosomes containing TLR3. These results shed light on the requirements for LL-37 enhancement of TLR3 signaling.  相似文献   

2.
Type I interferons (IFN-alpha/beta) play an essential role in both innate and adaptive antiviral immune responses. IFN- beta is produced by fibroblasts and myeloid dendritic cells (DCs) upon viral infection or in response to doublestranded RNA (dsRNA). Several intracellular molecules having a dsRNA-binding motif such as dsRNA-dependent protein kinase recognize dsRNA in a sequence-independent manner and induce antiviral innate responses. Toll-like receptor (TLR) 3, a member of TLR family proteins, recognizes extracellular dsRNA and activates NF- kappaB and the IFN-beta promoter leading to the induction of IFN-beta production. Here we analyzed the dsRNA structure capable of inducing TLR3-mediated IFN-beta production using various synthetic RNA duplexes. In contrast to the recognition of dsRNA by intracellular molecules, TLR3 preferentially recognizes polyriboinocinic:polyribocytidylic acid (poly(I:C)) rather than synthetic virus-derived dsRNAs. 2'-O-methyl or 2'-fluoro modification of cytidylic acid abolished the IFN-beta-inducing ability of the poly(I:C) duplex, and these modified dsRNAs inhibited poly(I:C)-induced TLR3-mediated IFN-beta production by fibroblasts and DCs. In addition, poly(dI:dC), a non-IFN inducer, also blocked poly(I:C)-induced IFN-beta induction. Since TLR3 is localized in the intracellular compartment of DCs where signaling occurs, modified dsRNAs may compete with poly(I:C) for binding to the cell-surface receptor that transfers dsRNA into TLR3-enriched vesicles. Thus, TLR3 recognizes a unique dsRNA structure that largely differs from those recognized by other dsRNA-binding proteins.  相似文献   

3.
Microglia recognize double-stranded RNA via TLR3   总被引:4,自引:0,他引:4  
Microglia are CNS resident innate immune cells of myeloid origin that become activated and produce innate proinflammatory molecules upon encountering bacteria or viruses. TLRs are a phylogenetically conserved diverse family of sensors for pathogen-associated molecular patterns that drive innate immune responses. We have recently shown that mice deficient in TLR3 (TLR3(-/-) mice) are resistant to lethal encephalitis and have reduced microglial activation after infection with West Nile virus, a retrovirus that produces dsRNA. We wished to determine whether microglia recognize dsRNA through the TLR3 pathway. In vitro, murine wild-type primary cultured microglia responded to synthetic dsRNA polyinosinic-polycytidylic acid (poly(I:C)) by increasing TLR3 and IFN-beta mRNA and by morphologic activation. Furthermore, wild-type microglia dose dependently secreted TNF-alpha and IL-6 after poly(I:C) challenge, whereas TLR3(-/-) microglia produced diminished cytokines. Activation of MAPK occurred in a time-dependent fashion following poly(I:C) treatment of wild-type microglia, but happened with delayed kinetics in TLR3(-/-) microglia. As an in vivo model of encephalitis, wild-type or TLR3(-/-) mice were injected intracerebroventricularly with poly(I:C) or LPS, and microglial activation was assessed by cell surface marker or phospho-MAPK immunofluorescence. After intracerebroventricular injection of poly(I:C), microgliosis was clearly evident in wild-type mice but was nearly absent in TLR3(-/-) animals. When taken together, our results demonstrate that microglia recognize dsRNA through TLR3 and associated signaling molecules and suggest that these cells are key sensors of dsRNA-producing viruses that may invade the CNS.  相似文献   

4.
Recognition of viral dsRNA by Toll-like receptor 3 (TLR3) leads to induction of interferons (IFNs) and proinflammatory cytokines, and innate antiviral response. Here we identified the RNA-binding protein Mex3B as a positive regulator of TLR3-mediated signaling by expression cloning screens. Cells from Mex3b−/− mice exhibited reduced production of IFN-β in response to the dsRNA analog poly(I:C) but not infection with RNA viruses. Mex3b−/− mice injected with poly(I:C) was more resistant to poly(I:C)-induced death. Mex3B was associated with TLR3 in the endosomes. It bound to dsRNA and increased the dsRNA-binding activity of TLR3. Mex3B also promoted the proteolytic processing of TLR3, which is critical for its activation. Mutants of Mex3B lacking its RNA-binding activity inhibited TLR3-mediated IFN-β induction. These findings suggest that Mex3B acts as a coreceptor of TLR3 in innate antiviral response.  相似文献   

5.
Toll-like Receptor 3 (TLR3) detects double-stranded (ds) RNAs to activate innate immune responses. While poly(I:C) is an excellent agonist for TLR3 in several cell lines and in human peripheral blood mononuclear cells, viral dsRNAs tend to be poor agonists, leading to the hypothesis that additional factor(s) are likely required to allow TLR3 to respond to viral dsRNAs. TLR3 signaling was examined in a lung epithelial cell line by quantifying cytokine production and in human embryonic kidney cells by quantifying luciferase reporter levels. Recombinant 1b hepatitis C virus polymerase was found to enhance TLR3 signaling in the lung epithelial BEAS-2B cells when added to the media along with either poly(I:C) or viral dsRNAs. The polymerase from the genotype 2a JFH-1 HCV was a poor enhancer of TLR3 signaling until it was mutated to favor a conformation that could bind better to a partially duplexed RNA. The 1b polymerase also co-localizes with TLR3 in endosomes. RNA-binding capsid proteins (CPs) from two positive-strand RNA viruses and the hepadenavirus hepatitis B virus (HBV) were also potent enhancers of TLR3 signaling by poly(I:C) or viral dsRNAs. A truncated version of the HBV CP that lacked an arginine-rich RNA-binding domain was unable to enhance TLR3 signaling. These results demonstrate that several viral RNA-binding proteins can enhance the dsRNA-dependent innate immune response initiated by TLR3.  相似文献   

6.
TNF, an important mediator of inflammatory and innate immune responses, can be regulated by binding to soluble TNF receptors. The 55-kDa type 1 TNFR (TNFR1), the key receptor for TNF signaling, is released to the extracellular space by two mechanisms, the inducible cleavage and shedding of 34-kDa soluble TNFR1 (sTNFR1) ectodomains and the constitutive release of full-length 55-kDa TNFR1 within exosome-like vesicles. The aim of this study was to identify and characterize TLR signaling pathways that mediate TNFR1 release to the extracellular space. To our knowledge, we demonstrate for the first time that polyinosinic-polycytidylic acid [poly (I:C)], a synthetic dsRNA analogue that signals via TLR3, induces sTNFR1 shedding from human airway epithelial (NCI-H292) cells, whereas ligands for other microbial pattern recognition receptors, including TLR4, TLR7, and nucleotide-binding oligomerization domain containing 2, do not. Furthermore, poly (I:C) selectively induces the cleavage of 34-kDa sTNFR1 ectodomains but does not enhance the release of full-length 55-kDa TNFR1 within exosome-like vesicles. RNA interference experiments demonstrated that poly (I:C)-induced sTNFR1 shedding is mediated via activation of TLR3-TRIF-RIP1 signaling, with subsequent activation of two downstream pathways. One pathway involves the dual oxidase 2-mediated generation of reactive oxygen species, and the other pathway is via the caspase-mediated activation of apoptosis. Thus, the ability of dsRNA to induce the cleavage and shedding of the 34-kDa sTNFR1 from human bronchial epithelial cells represents a novel mechanism by which innate immune responses to viral infections are modulated.  相似文献   

7.
8.
Toll-like receptors (TLRs) 3, 7, and 9 are innate immune receptors that recognize nucleic acids from pathogens in endosomes and initiate signaling transductions that lead to cytokine production. Activation of TLR9 for signaling requires proteolytic processing within the ectodomain by endosome-associated proteases. Whether TLR3 requires similar proteolytic processing to become competent for signaling remains unclear. Herein we report that human TLR3 is proteolytically processed to form two fragments in endosomes. Unc93b1 is required for processing by transporting TLR3 through the Golgi complex and to the endosomes. Proteolytic cleavage requires the eight-amino acid Loop1 within leucine-rich repeat 12 of the TLR3 ectodomain. Proteolytic cleavage is not required for TLR3 signaling in response to poly(I:C), although processing could modulate the degree of response toward viral double-stranded RNAs, especially in mouse cells. Both the full-length and cleaved fragments of TLR3 can bind poly(I:C) and are present in endosomes. However, although the full-length TLR3 has a half-life in HEK293T cells of 3 h, the cleaved fragments have half-lives in excess of 7 h. Inhibition of TLR3 cleavage by either treatment with cathepsin inhibitor or by a mutation in Loop1 decreased the abundance of TLR3 in endosomes targeted for lysosomal degradation.  相似文献   

9.
Toll-like receptors are a family of pattern-recognition receptors that contribute to the innate immune response. Toll-like receptor 3 (TLR3) signals in response to foreign, endogenous and synthetic ligands including viral dsRNA, bacterial RNA, mitochondrial RNA, endogenous necrotic cell mRNA and the synthetic dsRNA analog, poly(I:C). We have generated a monoclonal antibody (mAb CNTO2424) that recognizes the extracellular domain (ECD) of human TLR3 in a conformation-dependent manner. CNTO2424 down-regulates poly(I:C)-induced production of IL-6, IL-8, MCP-1, RANTES, and IP-10 in human lung epithelial cells. In addition, mAb CNTO2424 was able to interfere with the known TLR3-dependent signaling pathways, namely NF-κB, IRF-3/ISRE, and p38 MAPK. The generation of this neutralizing anti-TLR3 mAb provides a unique tool to better understand TLR3 signaling and potential cross-talk between TLR3 and other molecules.  相似文献   

10.
11.
The antimicrobial peptide LL-37 is known to have a potent LPS-neutralizing activity in monocytes and macrophages. Recently, LL-37 in gingival crevicular fluids is suggested to be the major protective factor preventing infection of periodontogenic pathogens. In this study, we tried to address the effect of LL-37 on proinflammatory responses of human gingival fibroblasts (HGFs) stimulated with Toll-like receptor (TLR)-stimulant microbial compounds. LL-37 potently suppressed LPS-induced gene expression of IL6, IL8 and CXCL10 and intracellular signaling events, degradation of IRAK-1 and IκBα and phosphorylation of p38 MAPK and IRF3, indicating that the LPS-neutralizing activity is also exerted in HGFs. LL-37 also suppressed the expression of IL6, IL8 and CXCL10 induced by the TLR3 ligand poly(I:C). LL-37 modestly attenuated the expression of IL6 and IL8 induced by the TLR2/TLR1 ligand Pam3CSK4, but did not affect the expression induced by the TLR2/TLR6 ligand MALP-2. Interestingly, LL-37 rather upregulated the expression of IL6, IL8 and CXCL10 induced by another TLR2/TLR6 ligand FSL-1. Thus, the regulatory effect of LL-37 is differently exerted towards proinflammatory responses of HGFs induced by different microbial stimuli, which may lead to unbalanced proinflammatory responses of the gingival tissue to infection of oral microbes.  相似文献   

12.
Toll-like receptors (TLRs) are pattern recognition receptors that play a critical role in innate immune diseases. TLR3, which is localized in the endosomal compartments of hematopoietic immune cells, is able to recognize double-stranded RNA (dsRNA) derived from viruses and bacteria and thereby induce innate immune responses. Inflammatory periodontal bone resorption is caused by bacterial infections, which initially is regulated by innate immunity; however, the roles of TLR3 signaling in bone resorption are still not known. We examined the roles of TLR3 signaling in bone resorption using poly(I:C), a synthetic dsRNA analog. In cocultures of mouse bone marrow cells and stromal osteoblasts, poly(I:C) clearly induced osteoclast differentiation. In osteoblasts, poly(I:C) increased PGE2 production and upregulated the mRNA expression of PGE2-related genes, Ptgs2 and Ptges, as well as that of a gene related to osteoclast differentiation, Tnfsf11. In addition, we found that indomethacin (a COX-2 inhibitor) or an antagonist of the PGE2 receptor EP4 attenuated the poly(I:C)-induced PGE2 production and subsequent Tnfsf11 expression. Poly(I:C) also prolonged the survival of the mature osteoclasts associated with the increased mRNA expression of osteoclast marker genes, Nfatc1 and Ctsk. In ex vivo organ cultures of periodontal alveolar bone, poly(I:C) induced bone-resorbing activity in a dose-dependent manner, which was attenuated by the simultaneous administration of either indomethacin or an EP4 antagonist. These data suggest that TLR3 signaling in osteoblasts controls PGE2 production and induces the subsequent differentiation and survival of mature osteoclasts. Endogenous TLR3 in stromal osteoblasts and osteoclasts synergistically induces inflammatory alveolar bone resorption in periodontitis.  相似文献   

13.
14.
A monoclonal antibody (mAb) against human Toll-like receptor (TLR) 3 was established and its effect on TLR3-mediated responses was tested using human fibroblast cell lines expressing TLR3 on the cell surface. Fibroblasts are known to produce IFN-beta upon viral infection or treatment with double-stranded RNA (dsRNA) through distinct signaling pathways. Here, we show the mAb to TLR3 suppressed poly(I):poly(C)-mediated IFN-beta production by human fibroblasts naturally expressing TLR3 on their surface. By reporter gene assay using HEK293 cells transfected with a human TLR3 expression vector, TLR3 recognized dsRNA to activate NF-kappaB and the IFN-beta promoter. TLR3 signaling was not elicited by either single-stranded RNA (ssRNA) or dsDNA. Thus, specific recognition of dsRNA by extracellular TLR3 is essential for induction of type I IFN: the interassociation between dsRNA and TLR3, regardless of direct or indirect binding, should be disrupted by mAb being attached to TLR3. The mAb against TLR3 reported herein may serve as a regulator for virus-mediated immune response via an alternative pathway involving the dsRNA-TLR3 recognition which might occur on host cells.  相似文献   

15.
Viral proteins and nucleic acids stimulate TLRs to elicit production of cytokines, chemokines, and IFNs. Because of their immunostimulatory activity, several TLR agonists are being developed as vaccine adjuvants and cancer immunotherapeutics. However, TLR signaling is modified by disease state, which could enhance or impair therapeutic efficacy. For example, in the skin of psoriasis patients, the human cationic antimicrobial peptide LL37 is highly expressed and binds to host DNA. Association with LL37 enhances DNA uptake into intracellular compartments, where it stimulates TLR9-dependent overproduction of IFNs. Polyinosinic-polycytidylic acid (poly(I:C)), an analog of viral dsRNA, is recognized by TLR3 and is currently in preclinical trials as an inducer of type I IFN. If LL37 similarly enhanced IFN production, use of poly(I:C) might be contraindicated in certain conditions where LL37 is elevated. In this study, we show that TLR3 signaling was not enhanced, but was dramatically inhibited, by LL37 or mouse cathelicidin-related antimicrobial peptide in macrophages, microglial cells, and dendritic cells. Inhibition correlated with formation of a strong complex between antimicrobial peptides and poly(I:C), which partially inhibited poly(I:C) binding to TLR3. Therefore, after injury or during existing acute or chronic inflammation, when LL37 levels are elevated, the therapeutic activity of poly(I:C) will be compromised. Our findings highlight the importance of using caution when therapeutically delivering nucleic acids as immunomodulators.  相似文献   

16.

Background

Toll-like Receptor 3 (TLR3) detects viral dsRNA during viral infection. However, most natural viral dsRNAs are poor activators of TLR3 in cell-based systems, leading us to hypothesize that TLR3 needs additional factors to be activated by viral dsRNAs. The anti-microbial peptide LL37 is the only known human member of the cathelicidin family of anti-microbial peptides. LL37 complexes with bacterial lipopolysaccharide (LPS) to prevent activation of TLR4, binds to ssDNA to modulate TLR9 and ssRNA to modulate TLR7 and 8. It synergizes with TLR2/1, TLR3 and TLR5 agonists to increase IL8 and IL6 production. This work seeks to determine whether LL37 enhances viral dsRNA recognition by TLR3.

Methodology/Principal Findings

Using a human bronchial epithelial cell line (BEAS2B) and human embryonic kidney cells (HEK 293T) transiently transfected with TLR3, we found that LL37 enhanced poly(I:C)-induced TLR3 signaling and enabled the recognition of viral dsRNAs by TLR3. The presence of LL37 also increased the cytokine response to rhinovirus infection in BEAS2B cells and in activated human peripheral blood mononuclear cells. Confocal microscopy determined that LL37 could co-localize with TLR3. Electron microscopy showed that LL37 and poly(I:C) individually formed globular structures, but a complex of the two formed filamentous structures. To separate the effects of LL37 on TLR3 and TLR4, other peptides that bind RNA and transport the complex into cells were tested and found to activate TLR3 signaling in response to dsRNAs, but had no effect on TLR4 signaling. This is the first demonstration that LL37 and other RNA-binding peptides with cell penetrating motifs can activate TLR3 signaling and facilitate the recognition of viral ligands.

Conclusions/Significance

LL37 and several cell-penetrating peptides can enhance signaling by TLR3 and enable TLR3 to respond to viral dsRNA.  相似文献   

17.
Not‐self or denatured nucleic acids are recognized by pattern recognition receptors localized mainly in endosomes and cytoplasm, such as Toll‐like receptor (TLR) 3, TLR7, TLR9, retinoic acid‐inducible gene‐I, DNA‐dependent activator of IFN‐regulatory factors and other receptors. The binding of polyriboinosinic:polyribocytidylic acid (poly I:C), a synthetic dsRNA that robustly induces type I interferon, to a putative cell‐surface receptor on a rabbit kidney cell line, RK13, has been analyzed by the authors and RK13 cells found to capture poly I:C in a specific fashion with sufficient affinity. These findings suggest that an alternative receptor to poly I:C participates in the induction of type 1 interferon, which localizes on cell surfaces. Although the nature of this molecule has not yet been identified, accumulating evidence has led the present authors to speculate that there are undefined classes of RNA‐recognition molecules on cell surfaces and that these are unlikely to be categorized as previously reported dsRNA receptors. Although many years have passed since this possibility was first reported by the present authors, it remains attractive. In this article, previously reported cell‐surface dsRNA receptors are reviewed in comparison with other receptors reported to date that are firmly involved in the innate immune‐sensing of nucleic acids.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号