首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Golgins are a family of long rod-like proteins characterized by the presence of central coiled-coil domains. Members of the golgin family have important roles in membrane trafficking, where they function as tethering factors that capture transport vesicles and facilitate membrane fusion. Golgin family members also have essential roles in maintaining the organization of the Golgi apparatus. Knockdown of individual golgins in cultured cells resulted in the disruption of the Golgi structure and the dispersal of Golgi marker proteins throughout the cytoplasm. However, these cellular phenotypes have not always been recapitulated in vivo. For example, embryonic development proceeds much further than expected and Golgi disruption was observed in only a subset of cell types in mice lacking the ubiquitously expressed golgin GMAP-210. Cell-type specific functional compensation among golgins may explain the absence of global cell lethality when a ubiquitously expressed golgin is missing. In this study we show that functional compensation does not occur for the golgin USO1. Mice lacking this ubiquitously expressed protein exhibit disruption of Golgi structure and early embryonic lethality, indicating that USO1 is indispensable for early embryonic development.  相似文献   

2.
3.
The development of antigen-targeted therapeutics is dependent on the preferential expression of tumor-associated antigens (TAA) at targetable levels on the tumor. Tumor-associated antigens can be generated de novo or can arise from altered expression of normal basal proteins, such as the up-regulation of human epidermal growth factor receptor 2 (Her2/ErbB2). To properly assess the development of Her2 therapeutics in an immune tolerant model, we previously generated a transgenic mouse model in which expression of the human Her2 protein was present in both the brain and mammary tissue. This mouse model has facilitated the development of Her2 targeted therapies in a clinically relevant and suitable model. While heterozygous Her2+/- mice appear to develop in a similar manner to wild type mice (Her2-/-), it has proven difficult to generate homozygous Her2+/+ mice, potentially due to embryonic lethality. In this study, we performed whole genome sequencing to determine if the integration site of the Her2 transgene was responsible for this lethality. Indeed, we report that the Her2 transgene had integrated into the Pds5b (precocious dissociation of sisters) gene on chromosome 5, as a 162 copy concatemer. Furthermore, our findings demonstrate that Her2+/+ mice, similar to Pds5b-/- mice, are embryonic lethal and confirm the necessity for Pds5b in embryonic development. This study confirms the value of whole genome sequencing in determining the integration site of transgenes to gain insight into associated phenotypes.  相似文献   

4.
Loss of LKLF Function Results in Embryonic Lethality in Mice   总被引:4,自引:0,他引:4  
  相似文献   

5.
Polymerase-δ interacting protein 2 (Poldip2) is an understudied protein, originally described as a binding partner of polymerase delta and proliferating cell nuclear antigen (PCNA). Numerous roles for Poldip2 have been proposed, including mitochondrial elongation, DNA replication/repair and ROS production via Nox4. In this study, we have identified a novel role for Poldip2 in regulating the cell cycle. We used a Poldip2 gene-trap mouse and found that homozygous animals die around the time of birth. Poldip2−/− embryos are significantly smaller than wild type or heterozygous embryos. We found that Poldip2−/− mouse embryonic fibroblasts (MEFs) exhibit reduced growth as measured by population doubling and growth curves. This effect is not due to apoptosis or senescence; however, Poldip2−/− MEFs have higher levels of the autophagy marker LC3b. Measurement of DNA content by flow cytometry revealed an increase in the percentage of Poldip2−/− cells in the G1 and G2/M phases of the cell cycle, accompanied by a decrease in the percentage of S-phase cells. Increases in p53 S20 and Sirt1 were observed in passage 2 Poldip2−/− MEFs. In passage 4/5 MEFs, Cdk1 and CyclinA2 are downregulated in Poldip2−/− cells, and these changes are reversed by transfection with SV40 large T-antigen, suggesting that Poldip2 may target the E2F pathway. In contrast, p21CIP1 is increased in passage 4/5 Poldip2−/− MEFs and its expression is unaffected by SV40 transfection. Overall, these results reveal that Poldip2 is an essential protein in development, and underline its importance in cell viability and proliferation. Because it affects the cell cycle, Poldip2 is a potential novel target for treating proliferative conditions such as cancer, atherosclerosis and restenosis.  相似文献   

6.

Background

EpCAM (CD326) is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells.

Methodology/Principal Findings

To gain insights into EpCAM function in vivo, we generated EpCAM −/− mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to βgeo. EpCAM +/− mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/− embryos revealed that βgeo was expressed in several epithelial structures including developing ears (otocysts), eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM −/− mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM −/− embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM −/− placentas.

Conclusion

EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs.  相似文献   

7.
Biological methylation is a fundamental enzymatic reaction for a variety of substrates in multiple cellular processes. Mammalian N6amt1 was thought to be a homologue of bacterial N6-adenine DNA methyltransferases, but its substrate specificity and physiological importance remain elusive. Here, we demonstrate that N6amt1 functions as a protein methyltransferase for the translation termination factor eRF1 in mammalian cells both in vitro and in vivo. Mass spectrometry analysis indicated that about 70% of the endogenous eRF1 is methylated at the glutamine residue of the conserved GGQ motif. To address the physiological significance of eRF1 methylation, we disrupted the N6amt1 gene in the mouse. Loss of N6amt1 led to early embryonic lethality. The postimplantation development of mutant embryos was impaired, resulting in degeneration around embryonic day 6.5. This is in contrast to what occurs in Escherichia coli and Saccharomyces cerevisiae, which can survive without the N6amt1 homologues. Thus, N6amt1 is the first glutamine-specific protein methyltransferase characterized in vivo in mammals and methylation of eRF1 by N6amt1 might be essential for the viability of early embryos.Nucleic acids, proteins, carbohydrates, and lipids, as well as a body of small molecules, are subject to methylation in a wide variety of biological contexts (3). The majority of methylation reactions are catalyzed by S-adenosylmethionine (AdoMet)-dependent methyltransferases (MTases). These enzymes ubiquitously exist in species from all three domains of life.Methylation of DNA occurs on one of two bases: cytosine or adenine (19). In prokaryotes, adenine methylation is as widespread as cytosine methylation. In contrast, eukaryotic genomes are devoid of adenine methylation or this type of methylation is too rare to be detected (23, 26). Intriguingly, two putative N6-adenine DNA MTases, named N6amt1 and N6amt2, are encoded in the mouse and human genomes. In addition to the conserved AdoMet-binding signature motif GXGXG and other sequence elements, they possess the NPPY motif characteristic of the N6-adenine or N4-cytosine DNA MTases in bacteria (6, 14). N6amt1 was thus proposed as an AdoMet-dependent DNA MTase, although no evidence had been provided that N6amt1 could methylate DNA (23).No functional clue for N6amt1 existed until two groups independently identified Escherichia coli HemK, distantly related to N6amt1, as a protein MTase for polypeptide release factors RF1 and RF2 (8, 17). The HemK gene was initially discovered in a genetic screen for heme biosynthesis mutants (18), although subsequent studies revealed no direct involvement in heme metabolism. The presence of an NPPY motif, thought to be restricted to members of the adenine and cytosine amino methyltransferases, led to the suggestion that HemK could be an AdoMet-dependent DNA MTase (2). However, a series of genetic and biochemical experiments finally revealed that HemK methylates the side-chain amide group of a glutamine residue in the universally conserved tripeptide motif GGQ of the two release factors in E. coli (8, 17). Methylation of the release factors ensures efficient translation termination and release of newly synthesized peptide from the ribosome (16). Similarly, the yeast HemK homologue, YDR140w (Mtq2p), was confirmed to methylate the eukaryotic release factor eRF1 on a corresponding glutamine residue (9, 22). More recently, the human homologue N6amt1 (HemK2) was reported to methylate release factor 1 (eRF1) in vitro (5).We initially sought to characterize the function of N6amt1 as a potential DNA adenine MTase. Interestingly, the human N6amt1 gene is located on chromosome 21q21.3, a critical region for Down syndrome (1, 20). In this study, we report the identification of murine N6amt1 as a glutamine-specific MTase of eRF1 both in vitro and in vivo. Mammalian eRF1, the only mammalian release factor, is indeed methylated at the glutamine residue of the GGQ motif. Inactivation of the N6amt1 gene by targeted disruption led to embryonic lethality in the mouse. These data confirm that N6amt1 functions as a protein MTase in mammals and indicate that modulation of the eRF1 activity by N6amt1-mediated glutamine methylation might be essential for embryo viability.  相似文献   

8.
小鼠胚胎干细胞hprt基因的定位致变   总被引:5,自引:2,他引:5  
刘爱民  尚克刚 《遗传》1994,16(5):1-5
利用DNA的同源重组原理,通过基因打靶技术,在小鼠胚胎干细胞(ES细胞)中将pMC1-neo导人hprt座位,实现了基因组内指定基因的定位致变.通过电穿孔导人质粒pRV4.0线性化D^A,分别用G418与6-TG筛选HPRT-突变子.经抗性检验及DNA印迹分析,证明得到了一株预期的定位转化细胞,转化效率为1.32 x10-8载体的非同源序列对定位致变的效率和整合方式没有影响,由于采取了有效的措施,所获HPRT- ES细胞株仍维持了未分化和二倍体状态,保留了胚胎干细胞的特性.  相似文献   

9.
在小鼠胚胎干细胞进行基因打靶的策略   总被引:8,自引:0,他引:8  
基因打靶技术是一种通过同源重组按预期方式改变生物活体的遗传信息的实验手段,与小鼠胚胎干细胞培养系统相结合,使得人们可以方便地将各种突变引入小鼠体内,得以从生物整体水平上研究高等真核生物基因的表达、调控及其生理功能.扼要介绍了近年来在小鼠胚胎干细胞进行基因打靶的研究进展.  相似文献   

10.
A strategy employing gene trap mutagenesis and site-specific recombination (Cre/loxP) has been used to identify genes that are transiently expressed during early mouse development. Embryonic stem cells expressing a reporter plasmid that codes for neomycin phosphotransferase and Escherichia coli LacZ were infected with a retroviral gene trap vector (U3Cre) carrying coding sequences for Cre recombinase (Cre) in the U3 region. Activation of Cre expression from integrations into active genes resulted in a permanent switching between the two selectable marker genes and consequently the expression of β-galactosidase (β-Gal). As a result, clones in which U3Cre had disrupted genes that were only transiently expressed could be selected. Moreover, U3Cre-activating cells acquired a cell autonomous marker that could be traced to cells and tissues of the developing embryo. Thus, when two of the clones with inducible U3Cre integrations were passaged in the germ line, they generated spatial patterns of β-Gal expression.  相似文献   

11.
The deubiquitinating enzyme heterodimeric complex USP1-UAF1 regulates the Fanconi anemia (FA) DNA repair pathway. Absence of this complex leads to increased cellular levels of ubiquitinated FANCD2 (FANCD2-Ub) and ubiquitinated PCNA (PCNA-Ub). Mice deficient in the catalytic subunit of the complex, USP1, exhibit an FA-like phenotype and have a cellular deficiency in homologous-recombination (HR) repair. Here, we have characterized mice deficient in the UAF1 subunit. Uaf1+/− mice were small at birth and exhibited reduced fertility, thus resembling Usp1−/− mice. Unexpectedly, homozygous Uaf1−/− embryos died at embryonic day 7.5 (E7.5). These mutant embryos were small and developmentally retarded. As expected, Uaf1 deficiency in mice led to increased levels of cellular Fancd2-Ub and Pcna-Ub. Uaf1+/− murine embryonic fibroblasts (MEFs) exhibited profound chromosome instability, genotoxin hypersensitivity, and a significant defect in homologous-recombination repair. Moreover, Uaf1−/− mouse embryonic stem cells (mESCs) showed chromosome instability, genotoxin hypersensitivity, and impaired Fancd2 focus assembly. Similar to USP1 knockdown, UAF1 knockdown in tumor cells caused suppression of tumor growth in vivo. Taken together, our data demonstrate the important regulatory role of the USP1-UAF1 complex in HR repair through its regulation of the FANCD2-Ub and PCNA-Ub cellular pools.  相似文献   

12.
目的:通过对与小鼠胚胎发育相关的新基因AI429618表达模式的初步分析为揭示小鼠胚胎发育机理提供研究基础.方法:利用Northern-blot和原位杂交方法对该基因进行表达谱分析.结果:Northern结果表明该基因在E12.5,E.15.5,E18.5三个时期都有所表达,并且在E12.5的小鼠胚胎中处于一个相对较高的转录水平,E15.5表达骤降并且基本上与E18.5(略高)持平;原位杂交结果显示E9.5,E10.5的小鼠胚胎中这一基因的表达集中在端脑、中脑、后脑、腮弓、前肢芽以及尾芽,E15.5的切片原位杂交中这一基因的表达信号在胸腺,肺,肝,肾,小肠中极为显著.结论:AI429618基因在小鼠胚胎发育期有着持续广泛的表达,可能对胚胎的正常发育起着重要的调控作用.  相似文献   

13.
克隆参与胚胎发育的新基因并研究其表达规律和功能是揭示胚胎发育的基因调控机理的重要途径。囊胚形成和原肠形成是哺乳动物胚胎发育过程中的两个关键阶段。囊胚阶段发生了胚胎的第一次分化,是细胞多能性和分化的一个转折点。此时涉及的基因活动,既有维持胚胎干细胞全能性或多能性的基因活动,又有按照预定发育模式参与胚胎定向分化的基因活动。原肠期是胚胎发育过程中的第二个关键转折点,涉及到3个胚层的形成和细胞命运决定等多种变化。在这个时期胚胎获得了胎儿原基的所有信息,新组织的产生和细胞迁移的再生组织与形态发生、细胞增殖、细胞分化、模式形成等存在着非常复杂而相互协调的关联。大多数细胞正由原来的多潜能逐渐向寡潜能发展,控制组织器官形态建成的基因正逐渐开启。这两个时期的基因表达图式、特征和种类会有很大的差异和变化,因此研究这两个时期的新基因的表达规律和功能,将是了解胚胎发育的基因调控机理的重要途径。文章以这两个时期胚胎为原始材料,利用减法杂交方法克隆到一新的小鼠胚胎基因mED2,对其进行了表达规律和生物学功能的初步分析。RT-PCR-Southern和原位杂交实验表明,mED2基因转录水平具有发育阶段的依赖性;随着发育过程的进行,其表达主要在胚神经系统和中胚层衍生的组织表达。mED2基因活性的knockdown对于合子的卵裂和植入前早期胚胎发育均有抑制作用。亚细胞定位实验表明,mED2基因编码的蛋白基本定位于细胞核膜及其临近的内膜细胞器(粗糙内质网和高尔基体)。根据生物信息学分析,mED2蛋白可能为一跨膜蛋白且与含有硫氧还蛋白结构域的蛋白有部分匹配。由此推测mED2基因参与了小鼠植入前早期胚胎发育,其基因产物可能通过蛋白之间的相互作用,即对蛋白进行后期修饰、折叠及行使分子伴侣等作用来活化或抑制其靶蛋白的活性,进而参与小鼠的早期胚胎发育。  相似文献   

14.
目的:初步分析与小鼠胚胎发育相关的新基因0610038D11Rik表达模式及生物学功能.方法:采用RT-PCR,全胚胎原位杂交和Northern Blotting技术对该基因进行表达谱分析;细胞免疫染色对其进行细胞结构定位.结果:全胚胎原位杂交结果显示0610038D11Rik在胚胎E9.5的端脑、间脑、菱脑和听泡处有较强的信号.随着神经管逐渐关闭,胚胎E10.5在背部神经嵴,神经管区也出现表达信号.E11.5时除了在上述部位表达外,心脏部位也检测到较弱的信号.RT-PCR和Northern Blot实验发现该基因在小鼠胚胎发育直至出生后均有持续性分布,并且在发育中后期的脑、心脏、肺、肾、肝脏,肌肉和舌等多种重要脏器广泛表达.细胞定位表明其主要集中在核内和细胞质中.结论:0610038D11Rik基因在小鼠的脑神经系统和多器官表达,提示该新基因可能在这些组织的发育过程中发挥重要的作用.  相似文献   

15.
Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival.  相似文献   

16.
从早期胚胎多能干细胞生成的嵌合鼠   总被引:7,自引:2,他引:7  
宋震涛  李秋棠 《遗传学报》1993,20(6):499-503
本文利用囊胚注射法将小鼠胚胎多能干细胞-CCE细胞注射到发育3天半的昆明和C37BL/6J小鼠受体囊胚腔内,经假孕鼠借腹怀胎,获3只CCE细胞毛色嵌合鼠。实验共注射胚胎654个,经培养其恢复成活率73.8%,胚胎移植后,假母受孕率及产仔率分别为32.9%和53%。在所获3只嵌合鼠中,2只为CCE-昆明毛色嵌合鼠,1只为CCE-C37BL/6J毛色嵌合鼠,这是国内首次利用胚胎多能干细胞获得嵌合鼠。为  相似文献   

17.
目的:对与小鼠胚胎发育相关的印记基因Mcts2表达模式及生物学功能做初步的分析。方法:采用切片原位杂交,全胚胎原位杂交,Northern blot和real-time PCR对该基因进行了表达谱的分析。结果:切片原位杂交结果显示Mcts2基因在E13.5和E15.5胚胎中的脑、舌、心脏、肺脏、肝脏、肾脏等重要脏器中都有普遍表达。全胚胎原位杂交结果显示Mcts2基因在E10.5胚胎中的前脑、前肢、尾芽中出现较强的信号,其他部位信号较弱。Northern和Real-time PCR实验分析了Mcts2基因在E12.5,E15.5,E18.5胚胎和新生小鼠的脑、心脏、肺脏、肝脏和肾脏中的表达谱,发现Mcts2基因在这几个主要发育时期都有普遍表达,在E15.5胚胎中表达信号最为强烈。结论:Mcts2基因在小鼠胚胎的发育的各主要时期的重要脏器中都有普遍的表达,提示该基因在小鼠胚胎发育过程中起到了重要的作用。  相似文献   

18.
Inversion Polymorphism and Embryonic Lethality in DROSOPHILA ROBUSTA   总被引:1,自引:1,他引:0  
Linda Riles 《Genetics》1965,52(6):1335-1343
  相似文献   

19.
20.
The integrity of male germ cell genome is critical for the correct progression of spermatogenesis, successful fertilization, and proper development of the offspring. Several DNA repair pathways exist in male germ cells. However, unlike somatic cells, key components of such pathways remain largely unidentified. Gametogenetin (GGN) is a testis-enriched protein that has been shown to bind to the DNA repair protein FANCL via yeast-two-hybrid assays. This finding and its testis-enriched expression pattern raise the possibility that GGN plays a role in DNA repair during spermatogenesis. Herein we demonstrated that the largest isoform GGN1 interacted with components of DNA repair machinery in the mouse testis. In addition to FANCL, GGN1 interacted with the critical component of the Fanconi Anemia (FA) pathway FANCD2 and a downstream component of the BRCA pathway, BRCC36. To define the physiological function of GGN, we generated a Ggn null mouse line. A complete loss of GGN resulted in embryonic lethality at the very earliest period of pre-implantation development, with no viable blastocysts observed. This finding was consistent with the observation that Ggn mRNA was also expressed in lower levels in the oocyte and pre-implantation embryos. Moreover, pachytene spermatocytes of the Ggn heterozygous knockout mice showed an increased incidence of unrepaired DNA double strand breaks (DSBs). Together, our results suggest that GGN plays a role in male meiotic DSB repair and is absolutely required for the survival of pre-implantation embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号