首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Growth cones are highly polarized and dynamic structures confined to the tips of axons. The polarity of growth cones is in part maintained by suppression of protrusive activity from the distal axon shaft, a process termed axon consolidation. The mechanistic basis of axon consolidation that contributes to the maintenance of growth cone polarity is not clear. We report that inhibition of RhoA‐kinase (ROCK) or myosin II resulted in unstable consolidation of the distal axon as evidenced by increased filopodial and lamellipodial extension. Furthermore, when ROCK or myosin II was inhibited lamellipodia formed at the growth cone migrated onto the axon shaft. Analysis of EYFP‐actin dynamics in the distal axon revealed that ROCK negatively regulates actin polymerization and initiation of protrusive structures from spontaneously formed axonal F‐actin patches, the latter being an effect attributable to ROCK‐mediated regulation of myosin II. Inhibition of ROCK or myosin II blocked growth cone turning toward NGF by preventing suppression of protrusive activity away from the source of NGF, resulting in aborted turning responses. These data elucidate the mechanism of growth cone polarity, provide evidence that consolidation of the distal axon is a component of guidance, and identify ROCK as a negative regulator of F‐actin polymerization underlying protrusive activity in the distal axon. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

2.
Retrograde actin flow works in concert with cell adhesion to generate traction forces that are involved in axon guidance in neuronal growth cones. Myosins have been implicated in retrograde flow, but identification of the specific myosin subtype(s) involved has been controversial. Using fluorescent speckle microscopy (FSM) to assess actin dynamics, we report that inhibition of myosin II alone decreases retrograde flow by 51% and the remaining flow can be almost fully accounted for by the 'push' of plus-end actin assembly at the leading edge of the growth cone. Interestingly, actin bundles that are associated with filopodium roots elongated by approximately 83% after inhibition of myosin II. This unexpected result was due to decreased rates of actin-bundle severing near their proximal (minus or pointed) ends which are located in the transition zone of the growth cone. Our study reveals a mechanism for the regulation of actin-bundle length by myosin II that is dependent on actin-bundle severing, and demonstrate that retrograde flow is a steady state that depends on both myosin II contractility and actin-network treadmilling.  相似文献   

3.
Drebrin is a well-known side-binding protein of F-actin in the brain. Immunohistochemical data suggest that the peripheral parts of growing axons are enriched in the drebrin E isoform and mature axons are not. It has also been observed that drebrin E is concentrated in the growth cones of PC12 cells. These data strongly suggest that drebrin E plays a role in axonal growth during development. In this study, we used primary hippocampal neuronal cultures to analyze the role of drebrin E. Immunocytochemistry showed that within axonal growth cones drebrin E specifically localized to the transitional zone, an area in which dense networks of F-actins and microtubules overlapped. Over-expression of drebrin E caused drebrin E and F-actin to accumulate throughout the growth cone and facilitated axonal growth. In contrast, knockdown of drebrin E reduced drebrin E and F-actin in the growth cone and prevented axonal growth. Furthermore, inhibition of myosin II ATPase masked the promoting effects of drebrin E over-expression on axonal growth. These results suggest that drebrin E plays a role in axonal growth through actin–myosin interactions in the transitional zone of axonal growth cones.  相似文献   

4.
Yengo CM  Sweeney HL 《Biochemistry》2004,43(9):2605-2612
Myosin V is molecular motor that is capable of moving processively along actin filaments. The kinetics of monomeric myosin V containing a single IQ domain (MV 1IQ) differ from nonprocessive myosin II in that actin affinity is higher, phosphate release is extremely rapid, and ADP release is rate-limiting. We generated two mutants of myosin V by altering loop 2, a surface loop in the actin-binding region thought to alter actin affinity and phosphate release in myosin II, to determine the role that this loop plays in the kinetic tuning of myosin V. The loop 2 mutants altered the apparent affinity for actin (K(ATPase)) without altering the maximum ATPase rate (V(MAX)). Transient kinetic analysis determined that the rate of binding to actin, as well as the affinity for actin, was dependent on the net positive charge of loop 2, while other steps in the ATPase cycle were unchanged. The maximum rate of phosphate release was unchanged, but the affinity for actin in the M.ADP.Pi-state was dramatically altered by the mutations in loop 2. Thus, loop 2 is important for allowing myosin V to bind to actin with a relatively high affinity in the weak binding states but does not play a direct role in the product release steps. The ability to maintain a high affinity for actin in the weak binding states may prevent diffusion away from the actin filament and increase the degree of processive motion of myosin V.  相似文献   

5.
Growth cones are highly polarized and dynamic structures confined to the tips of axons. The polarity of growth cones is in part maintained by suppression of protrusive activity from the distal axon shaft, a process termed axon consolidation. The mechanistic basis of axon consolidation that contributes to the maintenance of growth cone polarity is not clear. We report that inhibition of RhoA-kinase (ROCK) or myosin II resulted in unstable consolidation of the distal axon as evidenced by increased filopodial and lamellipodial extension. Furthermore, when ROCK or myosin II was inhibited lamellipodia formed at the growth cone migrated onto the axon shaft. Analysis of EYFP-actin dynamics in the distal axon revealed that ROCK negatively regulates actin polymerization and initiation of protrusive structures from spontaneously formed axonal F-actin patches, the latter being an effect attributable to ROCK-mediated regulation of myosin II. Inhibition of ROCK or myosin II blocked growth cone turning toward NGF by preventing suppression of protrusive activity away from the source of NGF, resulting in aborted turning responses. These data elucidate the mechanism of growth cone polarity, provide evidence that consolidation of the distal axon is a component of guidance, and identify ROCK as a negative regulator of F-actin polymerization underlying protrusive activity in the distal axon.  相似文献   

6.
Axon extension involves the coordinated regulation of the neuronal cytoskeleton. Actin filaments drive protrusion of filopodia and lamellipodia while microtubules invade the growth cone, thereby providing structural support for the nascent axon. Furthermore, in order for axons to extend the growth cone must attach to the substratum. Previous work indicates that myosin II activity inhibits the advance of microtubules into the periphery of growth cones, and myosin II has also been implicated in mediating integrin-dependent cell attachment. However, it is not clear how the functions of myosin II in regulating substratum attachment and microtubule advance are integrated during axon extension. We report that inhibition of myosin II function decreases the rate of axon extension on laminin, but surprisingly promotes extension rate on polylysine. The differential effects of myosin II inhibition on axon extension rate are attributable to myosin II having the primary function of mediating substratum attachment on laminin, but not on polylysine. Conversely, on polylysine the primary function of myosin II is to inhibit microtubule advance into growth cones. Thus, the substratum determines the role of myosin II in axon extension by controlling the functions of myosin II that contribute to extension.  相似文献   

7.
Nonmuscle myosin II is among the most abundant forms of myosin in nerve growth cones. At least two isoforms of myosin II (A and B) that have overlapping but distinct distributions are found in growth cones. It appears that both myosin IIA and IIB may be necessary for normal nerve outgrowth and motility, but the molecular interactions responsible for their activity remain unclear. For instance, it is unknown if these myosin II isoforms produce bipolar "minifilaments" in growth cones similar to those observed in other nonmuscle cells. To determine if minifilaments are present in growth cones, we modified the electron microscopy preparative procedures used to detect minifilaments in other cell types. We found structures that appeared very similar to bipolar minifilaments found in noneuronal cells. They also labeled with antibodies to either myosin IIA or IIB. Thus, the activity of myosin II in growth cones is likely to be similar to that in other nonmuscle cells. Bipolar filaments interacting with oppositely oriented actin filaments will produce localized contractions or exert tension on actin networks. This activity will be responsible for the myosin II dependent motility in growth cones.  相似文献   

8.
Myosin light chain phosphorylation and growth cone motility   总被引:8,自引:0,他引:8  
According to the treadmill hypothesis, the rate of growth cone advance depends upon the difference between the rates of protrusion (powered by actin polymerization at the leading edge) and retrograde F-actin flow, powered by activated myosin. Myosin II, a strong candidate for powering the retrograde flow, is activated by myosin light chain (MLC) phosphorylation. Earlier results showing that pharmacological inhibition of myosin light chain kinase (MLCK) causes growth cone collapse with loss of F-actin-based structures are seemingly inconsistent with the treadmill hypothesis, which predicts faster growth cone advance. These experiments re-examine this issue using an inhibitory pseudosubstrate peptide taken from the MLCK sequence and coupled to the fatty acid stearate to allow it to cross the membrane. At 5-25 microM, the peptide completely collapsed growth cones from goldfish retina with a progressive loss of lamellipodia and then filopodia, as seen with pharmacological inhibitors, but fully reversible. Lower concentrations (2.5 microM) both simplified the growth cone (fewer filopodia) and caused faster advance, doubling growth rates for many axons (51-102 microm/h; p <.025). Rhodamine-phalloidin staining showed reduced F-actin content in the faster growing growth cones, and marked reductions in collapsed ones. At higher concentrations, there was a transient advance of individual filopodia before collapse (also seen with the general myosin inhibitor, butanedione monoxime, which did not accelerate growth). The rho/rho kinase pathway modulates MLC dephosphorylation by myosin-bound protein phosphatase 1 (MPP1), and manipulations of MPP1 also altered motility. Lysophosphatidic acid (10 microM), which causes inhibition of MPP1 to accumulate activated myosin II, caused a contracted collapse (vs. that due to loss of F-actin) but was ineffective after treatment with low doses of peptide, demonstrating that the peptide acts via MLC phosphorylation. Inhibiting rho kinase with Y27632 (100 microM) to disinhibit the phosphatase increased the growth rate like the MLCK peptide, as expected. These results suggest that: varying the level of MLCK activity inversely affects the rate of growth cone advance, consistent with the treadmill hypothesis and myosin II powering of retrograde F-actin flow; MLCK activity in growth cones, as in fibroblasts, contributes strongly to controlling the amount of F-actin; and the phosphatase is already highly active in these cultures, because rho kinase inhibition produces much smaller effects on growth than does MLCK inhibition.  相似文献   

9.
Nerve growth factor (NGF) promotes growth, differentiation, and survival of sensory neurons in the mammalian nervous system. Little is known about how NGF elicits faster axon outgrowth or how growth cones integrate and transform signal input to motor output. Using cultured mouse dorsal root ganglion neurons, we found that myosin II (MII) is required for NGF to stimulate faster axon outgrowth. From experiments inducing loss or gain of function of MII, specific MII isoforms, and vinculin-dependent adhesion-cytoskeletal coupling, we determined that NGF causes decreased vinculin-dependent actomyosin restraint of microtubule advance. Inhibition of MII blocked NGF stimulation, indicating the central role of restraint in directed outgrowth. The restraint consists of myosin IIB- and IIA-dependent processes: retrograde actin network flow and transverse actin bundling, respectively. The processes differentially contribute on laminin-1 and fibronectin due to selective actin tethering to adhesions. On laminin-1, NGF induced greater vinculin-dependent adhesion–cytoskeletal coupling, which slowed retrograde actin network flow (i.e., it regulated the molecular clutch). On fibronectin, NGF caused inactivation of myosin IIA, which negatively regulated actin bundling. On both substrates, the result was the same: NGF-induced weakening of MII-dependent restraint led to dynamic microtubules entering the actin-rich periphery more frequently, giving rise to faster elongation.  相似文献   

10.
Fascin-1 is a putative bundling factor of actin filaments in the filopodia of neuronal growth cones. Here, we examined the structure of the actin bundle formed by human fascin-1 (actin/fascin bundle), and its mode of interaction with myosin in vitro. The distance between cross-linked filaments in the actin/bundle was 8-9 nm, and the bundle showed the transverse periodicity of 36 nm perpendicular to the bundle axis, which was confirmed by electron microscopy. Decoration of the actin/fascin bundle with heavy meromyosin revealed that the arrowheads of filaments in the bundle pointed in the same direction, indicating that the bundle has polarity. This result suggested that fascin-1 plays an essential role in polarity of actin bundles in filopodia. In the in vitro motility assay, actin/fascin bundles slid as fast as single actin filaments on myosin II and myosin V. When myosin was attached to the surface at high density, the actin/fascin bundle disassembled to single filaments at the pointed end of the bundle during sliding. These results suggest that myosins may drive filopodial actin bundles backward by interacting with actin filaments on the surface, and may induce disassembly of the bundle at the basal region of filopodia.  相似文献   

11.
We addressed the mechanical basis for how embryonic chick dorsal root ganglion growth cones turn on a uniform substrate of laminin-1. Turning is significantly correlated with lamellipodial area but not with filopodial length. We assessed the lamellipodial contribution to turning by asymmetric micro-CALI of myosin isoforms that causes localized lamellipodial expansion (myosin 1c) or filopodial retraction (myosin V). Episodes of asymmetric micro-CALI of myosin 1c (or myosin 1c and V together) caused significant turning of the growth cone. In contrast, repeated micro-CALI of myosin V or irradiation without added antibody did not turn growth cones. These findings argue that lamellipodia and not filopodia are necessary for growth cone turning. To model the role of myosin 1c on growth cone turning, we fitted the measured trajectories from asymmetric micro-CALI of myosin 1c-treated and untreated growth cones to the persistent random walk model. The first parameter in this equation, root-mean-square speed, is indistinguishable between the two data sets whereas the second parameter, the persistence of motion, is significantly increased (2.5-fold) as a result of asymmetric inactivation of myosin 1c by micro-CALI. This analysis demonstrates that growth cone turning results from an increase in the persistence of directional motion rather than a change in speed. Taken together, our results suggest that myosin 1c is a molecular correlate for directional persistence underlying growth cone motility.  相似文献   

12.
The balance of actin filament polymerization and depolymerization maintains a steady state network treadmill in neuronal growth cones essential for motility and guidance. Here we have investigated the connection between depolymerization and treadmilling dynamics. We show that polymerization-competent barbed ends are concentrated at the leading edge and depolymerization is distributed throughout the peripheral domain. We found a high-to-low G-actin gradient between peripheral and central domains. Inhibiting turnover with jasplakinolide collapsed this gradient and lowered leading edge barbed end density. Ultrastructural analysis showed dramatic reduction of leading edge actin filament density and filament accumulation in central regions. Live cell imaging revealed that the leading edge retracted even as retrograde actin flow rate decreased exponentially. Inhibition of myosin II activity before jasplakinolide treatment lowered baseline retrograde flow rates and prevented leading edge retraction. Myosin II activity preferentially affected filopodial bundle disassembly distinct from the global effects of jasplakinolide on network turnover. We propose that growth cone retraction following turnover inhibition resulted from the persistence of myosin II contractility even as leading edge assembly rates decreased. The buildup of actin filaments in central regions combined with monomer depletion and reduced polymerization from barbed ends suggests a mechanism for the observed exponential decay in actin retrograde flow. Our results show that growth cone motility is critically dependent on continuous disassembly of the peripheral actin network.  相似文献   

13.
M Miller  E Bower  P Levitt  D Li  P D Chantler 《Neuron》1992,8(1):25-44
We have generated a polyclonal antibody against myosin II from a neuronally derived cell line in order to assess potential roles for myosin II in growth cone movement and synaptic transmission. The distribution of neuronal myosin II, in isolated cells as well as in tissues of the adult rat brain and spinal cord, was examined at the light microscopic and ultrastructural levels. In isolated neuroblastoma cells and dorsal root ganglion neurons, myosin II was found at the leading edge of growth cones, within neuritic processes and cell soma, and adjacent to the plasma membrane. The subcellular distribution of myosin II overlapped significantly with that of both actin and single-headed myosin I. These results implicate both myosin I and myosin II as molecular motors required for neurite elongation and growth cone motility. An exclusive postsynaptic distribution of myosin II in neurons of the mature central nervous system suggests that myosin II cannot play a role in the mobilization of synaptic vesicles, but could participate in synaptic plasticity.  相似文献   

14.
The participation of nonmuscle myosins in the transport of organelles and vesicular carriers along actin filaments has been documented. In contrast, there is no evidence for the involvement of myosins in the production of vesicles involved in membrane traffic. Here we show that the putative TGN coat protein p200 (Narula, N., I. McMorrow, G. Plopper, J. Doherty, K.S. Matlin, B. Burke, and J.L. Stow. 1992. J. Cell Biol. 114: 1113–1124) is myosin II. The recruitment of myosin II to Golgi membranes is dependent on actin and is regulated by G proteins. Using an assay that studies the release of transport vesicles from the TGN in vitro, we provide functional evidence that p200/myosin is involved in the assembly of basolateral transport vesicles carrying vesicular stomatitis virus G protein (VSVG) from the TGN of polarized MDCK cells. The 50% reduced efficiency in VSVG vesicle release from the TGN in vitro after depletion of p200/myosin II could be reestablished to control levels by the addition of purified nonmuscle myosin II. Several inhibitors of the actin-stimulated ATPase activity of myosin specifically inhibited the release of VSVG-containing vesicles from the TGN.  相似文献   

15.
The involvement of myosin II in cytokinesis has been demonstrated with microinjection, genetic, and pharmacological approaches; however, the exact role of myosin II in cell division remains poorly understood. To address this question, we treated dividing normal rat kidney (NRK) cells with blebbistatin, a potent inhibitor of the nonmuscle myosin II ATPase. Blebbistatin caused a strong inhibition of cytokinesis but no detectable effect on the equatorial localization of actin or myosin. However, whereas these filaments dissociated from the equator in control cells during late cytokinesis, they persisted in blebbistatin-treated cells over an extended period of time. The accumulation of equatorial actin was caused by the inhibition of actin filament turnover, as suggested by a 2-fold increase in recovery half-time after fluorescence photobleaching. Local release of blebbistatin at the equator caused localized accumulation of equatorial actin and inhibition of cytokinesis, consistent with the function of myosin II along the furrow. However, treatment of the polar region also caused a high frequency of abnormal cytokinesis, suggesting that myosin II may play a second, global role. Our observations indicate that myosin II ATPase is not required for the assembly of equatorial cortex during cytokinesis but is essential for its subsequent turnover and remodeling.  相似文献   

16.
Growth cones at the distal tips of growing nerve axons contain bundles of actin filaments distributed throughout the lamellipodium and that project into filopodia. The regulation of actin bundling by specific actin binding proteins is likely to play an important role in many growth cone behaviors. Although the actin binding protein, fascin, has been localized in growth cones, little information is available on its functional significance. We used the large growth cones of the snail Helisoma to determine whether fascin was involved in temporal changes in actin filaments during growth cone morphogenesis. Fascin localized to radially oriented actin bundles in lamellipodia (ribs) and filopodia. Using a fascin antibody and a GFP fascin construct, we found that fascin incorporated into actin bundles from the beginning of growth cone formation at the cut end of axons. Fascin associated with most of the actin bundle except the proximal 6--12% adjacent to the central domain, which is the region associated with actin disassembly. Later, during growth cone morphogenesis when actin ribs shortened, the proximal fascin-free zone of bundles increased, but fascin was retained in the distal, filopodial portion of bundles. Treatment with tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), which phosphorylates fascin and decreases its affinity for actin, resulted in loss of all actin bundles from growth cones. Our findings suggest that fascin may be particularly important for the linear structure and dynamics of filopodia and for lamellipodial rib dynamics by regulating filament organization in bundles.  相似文献   

17.
The mechanism of anterograde transport of alphaherpesviruses in axons remains controversial. This study examined the transport, assembly, and egress of herpes simplex virus type 1 (HSV-1) in mid- and distal axons of infected explanted human fetal dorsal root ganglia using confocal microscopy and transmission electron microscopy (TEM) at 19, 24, and 48 h postinfection (p.i.). Confocal-microscopy studies showed that although capsid (VP5) and tegument (UL37) proteins were not uniformly present in axons until 24 h p.i., they colocalized with envelope (gG) proteins in axonal varicosities and in growth cones at 24 and 48 h p.i. TEM of longitudinal sections of axons in situ showed enveloped and unenveloped capsids in the axonal varicosities and growth cones, whereas in the midregion of the axons, predominantly unenveloped capsids were observed. Partially enveloped capsids, apparently budding into vesicles, were observed in axonal varicosities and growth cones, but not during viral attachment and entry into axons. Tegument proteins (VP22) were found associated with vesicles in growth cones, either alone or together with envelope (gD) proteins, by transmission immunoelectron microscopy. Extracellular virions were observed adjacent to axonal varicosities and growth cones, with some virions observed in crescent-shaped invaginations of the axonal plasma membrane, suggesting exit at these sites. These findings suggest that varicosities and growth cones are probable sites of HSV-1 envelopment of at least a proportion of virions in the mid- to distal axon. Envelopment probably occurs by budding of capsids into vesicles with associated tegument and envelope proteins. Virions appear to exit from these sites by exocytosis.  相似文献   

18.
Myosin X is a member of the diverse myosin superfamily that is ubiquitously expressed in various mammalian tissues. Although its association with actin in cells has been shown, little is known about its biochemical and mechanoenzymatic function at the molecular level. We expressed bovine myosin X containing the entire head, neck, and coiled-coil domain and purified bovine myosin X in Sf9 cells. The Mg(2+)-ATPase activity of myosin X was significantly activated by actin with low K(ATP). The actin-activated ATPase activity was reduced at Ca(2+) concentrations above pCa 5 in which 1 mol of calmodulin light chain dissociates from the heavy chain. Myosin X translocates F-actin filaments with the velocity of 0.3 microm/s with the direction toward the barbed end. The actin translocating activity was inhibited at concentrations of Ca(2+) at pCa 6 in which no calmodulin dissociation takes place, suggesting that the calmodulin dissociation is not required for the inhibition of the motility. Unlike class V myosin, which shows a high affinity for F-actin in the presence of ATP, the K(actin) of the myosin X ATPase was much higher than that of myosin V. Consistently nearly all actin dissociated from myosin X in the presence of ATP. ADP did not significantly inhibit the actin-activated ATPase activity of myosin X, suggesting that the ADP release step is not rate-limiting. These results suggest that myosin X is a nonprocessive motor. Consistently myosin X failed to support the actin translocation at low density in an in vitro motility assay where myosin V, a processive motor, supports the actin filament movement.  相似文献   

19.
Protein kinase C (PKC) can dramatically alter cell structure and motility via effects on actin filament networks. In neurons, PKC activation has been implicated in repulsive guidance responses and inhibition of axon regeneration; however, the cytoskeletal mechanisms underlying these effects are not well understood. Here we investigate the acute effects of PKC activation on actin network structure and dynamics in large Aplysia neuronal growth cones. We provide evidence of a novel two-tiered mechanism of PKC action: 1) PKC activity enhances myosin II regulatory light chain phosphorylation and C-kinase–potentiated protein phosphatase inhibitor phosphorylation. These effects are correlated with increased contractility in the central cytoplasmic domain. 2) PKC activation results in significant reduction of P-domain actin network density accompanied by Arp2/3 complex delocalization from the leading edge and increased rates of retrograde actin network flow. Our results show that PKC activation strongly affects both actin polymerization and myosin II contractility. This synergistic mode of action is relevant to understanding the pleiotropic reported effects of PKC on neuronal growth and regeneration.  相似文献   

20.
After primary replication at the site of entry into the host, alphaherpesviruses infect and establish latency in neurons. To this end, they are transported within axons retrograde from the periphery to the cell body for replication and in an anterograde direction to synapses for infection of higher-order neurons or back to the periphery. Retrograde transport of incoming nucleocapsids is well documented. In contrast, there is still significant controversy on the mode of anterograde transport. By high-resolution transmission electron microscopy of primary neuronal cultures from embryonic rat superior cervical ganglia infected by pseudorabies virus (PrV), we observed the presence of enveloped virions in axons within vesicles supporting the "married model" of anterograde transport of complete virus particles within vesicles (C. Maresch, H. Granzow, A. Negatsch, B.G. Klupp, W. Fuchs, J.P. Teifke, and T.C. Mettenleiter, J. Virol. 84:5528-5539, 2010). We have now extended these analyses to the related human herpes simplex virus type 1 (HSV-1). We have demonstrated that in neurons infected by HSV-1 strains HFEM, 17+ or SC16, approximately 75% of virus particles observed intraaxonally or in growth cones late after infection constitute enveloped virions within vesicles, whereas approximately 25% present as naked capsids. In general, the number of HSV-1 particles in the axons was significantly less than that observed after PrV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号