首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yamamoto K  Kawabata H 《PloS one》2011,6(12):e29414

Background

We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF). DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique.

Methods and Findings

Participants produced a single voice sound repeatedly with specific delay times of DAF (0, 66, 133 ms) during three minutes to induce ‘Lag Adaptation’. They then judged the simultaneity between motor sensation and vocal sound given feedback. We found that lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. Furthermore, we found that the temporal recalibration in vocalization can be affected by averaging delay times in the adaptation phase.

Conclusions

These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.  相似文献   

2.
Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking) functions abnormally in the speech motor systems of persons who stutter (PWS). Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants' compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls' and had close-to-normal latencies (~150 ms), but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05). Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands.  相似文献   

3.
Mochida T  Gomi H  Kashino M 《PloS one》2010,5(11):e13866

Background

There has been plentiful evidence of kinesthetically induced rapid compensation for unanticipated perturbation in speech articulatory movements. However, the role of auditory information in stabilizing articulation has been little studied except for the control of voice fundamental frequency, voice amplitude and vowel formant frequencies. Although the influence of auditory information on the articulatory control process is evident in unintended speech errors caused by delayed auditory feedback, the direct and immediate effect of auditory alteration on the movements of articulators has not been clarified.

Methodology/Principal Findings

This work examined whether temporal changes in the auditory feedback of bilabial plosives immediately affects the subsequent lip movement. We conducted experiments with an auditory feedback alteration system that enabled us to replace or block speech sounds in real time. Participants were asked to produce the syllable /pa/ repeatedly at a constant rate. During the repetition, normal auditory feedback was interrupted, and one of three pre-recorded syllables /pa/, /Φa/, or /pi/, spoken by the same participant, was presented once at a different timing from the anticipated production onset, while no feedback was presented for subsequent repetitions. Comparisons of the labial distance trajectories under altered and normal feedback conditions indicated that the movement quickened during the short period immediately after the alteration onset, when /pa/ was presented 50 ms before the expected timing. Such change was not significant under other feedback conditions we tested.

Conclusions/Significance

The earlier articulation rapidly induced by the progressive auditory input suggests that a compensatory mechanism helps to maintain a constant speech rate by detecting errors between the internally predicted and actually provided auditory information associated with self movement. The timing- and context-dependent effects of feedback alteration suggest that the sensory error detection works in a temporally asymmetric window where acoustic features of the syllable to be produced may be coded.  相似文献   

4.

Background

Recent research has addressed the suppression of cortical sensory responses to altered auditory feedback that occurs at utterance onset regarding speech. However, there is reason to assume that the mechanisms underlying sensorimotor processing at mid-utterance are different than those involved in sensorimotor control at utterance onset. The present study attempted to examine the dynamics of event-related potentials (ERPs) to different acoustic versions of auditory feedback at mid-utterance.

Methodology/Principal findings

Subjects produced a vowel sound while hearing their pitch-shifted voice (100 cents), a sum of their vocalization and pure tones, or a sum of their vocalization and white noise at mid-utterance via headphones. Subjects also passively listened to playback of what they heard during active vocalization. Cortical ERPs were recorded in response to different acoustic versions of feedback changes during both active vocalization and passive listening. The results showed that, relative to passive listening, active vocalization yielded enhanced P2 responses to the 100 cents pitch shifts, whereas suppression effects of P2 responses were observed when voice auditory feedback was distorted by pure tones or white noise.

Conclusion/Significance

The present findings, for the first time, demonstrate a dynamic modulation of cortical activity as a function of the quality of acoustic feedback at mid-utterance, suggesting that auditory cortical responses can be enhanced or suppressed to distinguish self-produced speech from externally-produced sounds.  相似文献   

5.
Like humans, songbirds are one of the few animal groups that learn vocalization. Vocal learning requires coordination of auditory input and vocal output using auditory feedback to guide one’s own vocalizations during a specific developmental stage known as the critical period. Songbirds are good animal models for understand the neural basis of vocal learning, a complex form of imitation, because they have many parallels to humans with regard to the features of vocal behavior and neural circuits dedicated to vocal learning. In this review, we will summarize the behavioral, neural, and genetic traits of birdsong. We will also discuss how studies of birdsong can help us understand how the development of neural circuits for vocal learning and production is driven by sensory input (auditory information) and motor output (vocalization).  相似文献   

6.

Background

Hearing ability is essential for normal speech development, however the precise mechanisms linking auditory input and the improvement of speaking ability remain poorly understood. Auditory feedback during speech production is believed to play a critical role by providing the nervous system with information about speech outcomes that is used to learn and subsequently fine-tune speech motor output. Surprisingly, few studies have directly investigated such auditory-motor learning in the speech production of typically developing children.

Methodology/Principal Findings

In the present study, we manipulated auditory feedback during speech production in a group of 9–11-year old children, as well as in adults. Following a period of speech practice under conditions of altered auditory feedback, compensatory changes in speech production and perception were examined. Consistent with prior studies, the adults exhibited compensatory changes in both their speech motor output and their perceptual representations of speech sound categories. The children exhibited compensatory changes in the motor domain, with a change in speech output that was similar in magnitude to that of the adults, however the children showed no reliable compensatory effect on their perceptual representations.

Conclusions

The results indicate that 9–11-year-old children, whose speech motor and perceptual abilities are still not fully developed, are nonetheless capable of auditory-feedback-based sensorimotor adaptation, supporting a role for such learning processes in speech motor development. Auditory feedback may play a more limited role, however, in the fine-tuning of children''s perceptual representations of speech sound categories.  相似文献   

7.
The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG) signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (−100 cents) pitch perturbations in their voice auditory feedback (speaking task). ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP) and event-related band power (ERBP) responses, primarily in the high gamma (70–150 Hz) range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG). The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control.  相似文献   

8.
Liu P  Chen Z  Jones JA  Huang D  Liu H 《PloS one》2011,6(7):e22791

Background

Auditory feedback has been demonstrated to play an important role in the control of voice fundamental frequency (F0), but the mechanisms underlying the processing of auditory feedback remain poorly understood. It has been well documented that young adults can use auditory feedback to stabilize their voice F0 by making compensatory responses to perturbations they hear in their vocal pitch feedback. However, little is known about the effects of aging on the processing of audio-vocal feedback during vocalization.

Methodology/Principal Findings

In the present study, we recruited adults who were between 19 and 75 years of age and divided them into five age groups. Using a pitch-shift paradigm, the pitch of their vocal feedback was unexpectedly shifted ±50 or ±100 cents during sustained vocalization of the vowel sound/u/. Compensatory vocal F0 response magnitudes and latencies to pitch feedback perturbations were examined. A significant effect of age was found such that response magnitudes increased with increasing age until maximal values were reached for adults 51–60 years of age and then decreased for adults 61–75 years of age. Adults 51–60 years of age were also more sensitive to the direction and magnitude of the pitch feedback perturbations compared to younger adults.

Conclusion

These findings demonstrate that the pitch-shift reflex systematically changes across the adult lifespan. Understanding aging-related changes to the role of auditory feedback is critically important for our theoretical understanding of speech production and the clinical applications of that knowledge.  相似文献   

9.
As we talk, we unconsciously adjust our speech to ensure it sounds the way we intend it to sound. However, because speech production involves complex motor planning and execution, no two utterances of the same sound will be exactly the same. Here, we show that auditory cortex is sensitive to natural variations in self-produced speech from utterance to utterance. We recorded event-related potentials (ERPs) from ninety-nine subjects while they uttered “ah” and while they listened to those speech sounds played back. Subjects'' utterances were sorted based on their formant deviations from the previous utterance. Typically, the N1 ERP component is suppressed during talking compared to listening. By comparing ERPs to the least and most variable utterances, we found that N1 was less suppressed to utterances that differed greatly from their preceding neighbors. In contrast, an utterance''s difference from the median formant values did not affect N1. Trial-to-trial pitch (f0) deviation and pitch difference from the median similarly did not affect N1. We discuss mechanisms that may underlie the change in N1 suppression resulting from trial-to-trial formant change. Deviant utterances require additional auditory cortical processing, suggesting that speaking-induced suppression mechanisms are optimally tuned for a specific production.  相似文献   

10.
Auditory feedback is required to maintain fluent speech. At present, it is unclear how attention modulates auditory feedback processing during ongoing speech. In this event-related potential (ERP) study, participants vocalized/a/, while they heard their vocal pitch suddenly shifted downward a ½ semitone in both single and dual-task conditions. During the single-task condition participants passively viewed a visual stream for cues to start and stop vocalizing. In the dual-task condition, participants vocalized while they identified target stimuli in a visual stream of letters. The presentation rate of the visual stimuli was manipulated in the dual-task condition in order to produce a low, intermediate, and high attentional load. Visual target identification accuracy was lowest in the high attentional load condition, indicating that attentional load was successfully manipulated. Results further showed that participants who were exposed to the single-task condition, prior to the dual-task condition, produced larger vocal compensations during the single-task condition. Thus, when participants’ attention was divided, less attention was available for the monitoring of their auditory feedback, resulting in smaller compensatory vocal responses. However, P1-N1-P2 ERP responses were not affected by divided attention, suggesting that the effect of attentional load was not on the auditory processing of pitch altered feedback, but instead it interfered with the integration of auditory and motor information, or motor control itself.  相似文献   

11.
We describe an illusion in which a stranger's voice, when presented as the auditory concomitant of a participant's own speech, is perceived as a modified version of their own voice. When the congruence between utterance and feedback breaks down, the illusion is also broken. Compared to a baseline condition in which participants heard their own voice as feedback, hearing a stranger's voice induced robust changes in the fundamental frequency (F0) of their production. Moreover, the shift in F0 appears to be feedback dependent, since shift patterns depended reliably on the relationship between the participant's own F0 and the stranger-voice F0. The shift in F0 was evident both when the illusion was present and after it was broken, suggesting that auditory feedback from production may be used separately for self-recognition and for vocal motor control. Our findings indicate that self-recognition of voices, like other body attributes, is malleable and context dependent.  相似文献   

12.
Evidence regarding visually guided limb movements suggests that the motor system learns and maintains neural maps between motor commands and sensory feedback. Such systems are hypothesized to be used in a feed-forward control strategy that permits precision and stability without the delays of direct feedback control. Human vocalizations involve precise control over vocal and respiratory muscles. However, little is known about the sensorimotor representations underlying speech production. Here, we manipulated the heard fundamental frequency of the voice during speech to demonstrate learning of auditory-motor maps. Mandarin speakers repeatedly produced words with specific pitch patterns (tone categories). On each successive utterance, the frequency of their auditory feedback was increased by 1/100 of a semitone until they heard their feedback one full semitone above their true pitch. Subjects automatically compensated for these changes by lowering their vocal pitch. When feedback was unexpectedly returned to normal, speakers significantly increased the pitch of their productions beyond their initial baseline frequency. This adaptation was found to generalize to the production of another tone category. However, results indicate that a more robust adaptation was produced for the tone that was spoken during feedback alteration. The immediate aftereffects suggest a global remapping of the auditory-motor relationship after an extremely brief training period. However, this learning does not represent a complete transformation of the mapping; rather, it is in part target dependent.  相似文献   

13.
When we speak, we provide ourselves with auditory speech input. Efficient monitoring of speech is often hypothesized to depend on matching the predicted sensory consequences from internal motor commands (forward model) with actual sensory feedback. In this paper we tested the forward model hypothesis using functional Magnetic Resonance Imaging. We administered an overt picture naming task in which we parametrically reduced the quality of verbal feedback by noise masking. Presentation of the same auditory input in the absence of overt speech served as listening control condition. Our results suggest that a match between predicted and actual sensory feedback results in inhibition of cancellation of auditory activity because speaking with normal unmasked feedback reduced activity in the auditory cortex compared to listening control conditions. Moreover, during self-generated speech, activation in auditory cortex increased as the feedback quality of the self-generated speech decreased. We conclude that during speaking early auditory cortex is involved in matching external signals with an internally generated model or prediction of sensory consequences, the locus of which may reside in auditory or higher order brain areas. Matching at early auditory cortex may provide a very sensitive monitoring mechanism that highlights speech production errors at very early levels of processing and may efficiently determine the self-agency of speech input.  相似文献   

14.
Normal speech and swallow depend on the integrity of the oral motor system and the underlying processes of respiration, phonation, sensation, resonance and articulation. A variety of age-related changes occur in the oral peripheral mechanism, some of which affect speech and swallow. Nonpathologic changes in the thoracic and laryngeal structures that serve to reduce the vital capacity of the lungs and produce perturbations in the acoustic signal alter the quality of the aging voice. As one ages, the oral mucosa reportedly thins, salivary flow may be decreased, and the sensory and motor integrity of the tongue musculature is altered. The effect of such changes on speech articulation and voice production in the elderly is discussed. Although not dependent on one another, speech and swallowing use many of the same oral structures and underlying physiologic mechanisms. The anatomic and physiologic changes in the aging pharvngeal area and oral tract that can affect swallowing are reviewd and studies of these changes are discussed. Viewing the oral area and vocal tract has required invasive, cumbersome or dangerous radiographic procedures, thereby limiting the quantity of research in this field. Recent work on the use of real-time ultrasound imaging to view the oral soft tissues and dynamic lingual gestures in vivo during speech and swallow are reviewed and ongoing studies of speech and swallowing performance in normal aging persons using this technique are presented.  相似文献   

15.
Tschida KA  Mooney R 《Neuron》2012,73(5):1028-1039
Hearing loss prevents vocal learning and causes learned vocalizations to deteriorate, but how vocalization-related auditory feedback acts on neural circuits that control vocalization remains poorly understood. We deafened adult zebra finches, which rely on auditory feedback to maintain their learned songs, to test the hypothesis that deafening modifies synapses on neurons in a sensorimotor nucleus important to song production. Longitudinal in vivo imaging revealed that deafening selectively decreased the size and stability of dendritic spines on neurons that provide input to a striatothalamic pathway important to audition-dependent vocal plasticity, and changes in spine size preceded and predicted subsequent vocal degradation. Moreover, electrophysiological recordings from these neurons showed that structural changes were accompanied by functional weakening of both excitatory and inhibitory synapses, increased intrinsic excitability, and changes in spontaneous action potential output. These findings shed light on where and how auditory feedback acts within sensorimotor circuits to shape learned vocalizations.  相似文献   

16.
Research into speech perception by nonhuman animals can be crucially informative in assessing whether specific perceptual phenomena in humans have evolved to decode speech, or reflect more general traits. Birds share with humans not only the capacity to use complex vocalizations for communication but also many characteristics of its underlying developmental and mechanistic processes; thus, birds are a particularly interesting group for comparative study. This review first discusses commonalities between birds and humans in perception of speech sounds. Several psychoacoustic studies have shown striking parallels in seemingly speech-specific perceptual phenomena, such as categorical perception of voice-onset-time variation, categorization of consonants that lack phonetic invariance, and compensation for coarticulation. Such findings are often regarded as evidence for the idea that the objects of human speech perception are auditory or acoustic events rather than articulations. Next, I highlight recent research on the production side of avian communication that has revealed the existence of vocal tract filtering and articulation in bird species-specific vocalization, which has traditionally been considered a hallmark of human speech production. Together, findings in birds show that many of characteristics of human speech perception are not uniquely human but also that a comparative approach to the question of what are the objects of perception--articulatory or auditory events--requires careful consideration of species-specific vocal production mechanisms.  相似文献   

17.

Background

Brain-machine interfaces (BMIs) involving electrodes implanted into the human cerebral cortex have recently been developed in an attempt to restore function to profoundly paralyzed individuals. Current BMIs for restoring communication can provide important capabilities via a typing process, but unfortunately they are only capable of slow communication rates. In the current study we use a novel approach to speech restoration in which we decode continuous auditory parameters for a real-time speech synthesizer from neuronal activity in motor cortex during attempted speech.

Methodology/Principal Findings

Neural signals recorded by a Neurotrophic Electrode implanted in a speech-related region of the left precentral gyrus of a human volunteer suffering from locked-in syndrome, characterized by near-total paralysis with spared cognition, were transmitted wirelessly across the scalp and used to drive a speech synthesizer. A Kalman filter-based decoder translated the neural signals generated during attempted speech into continuous parameters for controlling a synthesizer that provided immediate (within 50 ms) auditory feedback of the decoded sound. Accuracy of the volunteer''s vowel productions with the synthesizer improved quickly with practice, with a 25% improvement in average hit rate (from 45% to 70%) and 46% decrease in average endpoint error from the first to the last block of a three-vowel task.

Conclusions/Significance

Our results support the feasibility of neural prostheses that may have the potential to provide near-conversational synthetic speech output for individuals with severely impaired speech motor control. They also provide an initial glimpse into the functional properties of neurons in speech motor cortical areas.  相似文献   

18.
Experimental manipulations of sensory feedback during complex behavior have provided valuable insights into the computations underlying motor control and sensorimotor plasticity1. Consistent sensory perturbations result in compensatory changes in motor output, reflecting changes in feedforward motor control that reduce the experienced feedback error. By quantifying how different sensory feedback errors affect human behavior, prior studies have explored how visual signals are used to recalibrate arm movements2,3 and auditory feedback is used to modify speech production4-7. The strength of this approach rests on the ability to mimic naturalistic errors in behavior, allowing the experimenter to observe how experienced errors in production are used to recalibrate motor output.Songbirds provide an excellent animal model for investigating the neural basis of sensorimotor control and plasticity8,9. The songbird brain provides a well-defined circuit in which the areas necessary for song learning are spatially separated from those required for song production, and neural recording and lesion studies have made significant advances in understanding how different brain areas contribute to vocal behavior9-12. However, the lack of a naturalistic error-correction paradigm - in which a known acoustic parameter is perturbed by the experimenter and then corrected by the songbird - has made it difficult to understand the computations underlying vocal learning or how different elements of the neural circuit contribute to the correction of vocal errors13.The technique described here gives the experimenter precise control over auditory feedback errors in singing birds, allowing the introduction of arbitrary sensory errors that can be used to drive vocal learning. Online sound-processing equipment is used to introduce a known perturbation to the acoustics of song, and a miniaturized headphones apparatus is used to replace a songbird''s natural auditory feedback with the perturbed signal in real time. We have used this paradigm to perturb the fundamental frequency (pitch) of auditory feedback in adult songbirds, providing the first demonstration that adult birds maintain vocal performance using error correction14. The present protocol can be used to implement a wide range of sensory feedback perturbations (including but not limited to pitch shifts) to investigate the computational and neurophysiological basis of vocal learning.  相似文献   

19.
Auditory experience is critical for the acquisition and maintenance of learned vocalizations in both humans and songbirds. Despite the central role of auditory feedback in vocal learning and maintenance, where and how auditory feedback affects neural circuits important to vocal control remain poorly understood. Recent studies of singing birds have uncovered neural mechanisms by which feedback perturbations affect vocal plasticity and also have identified feedback-sensitive neurons at or near sites of auditory and vocal motor interaction. Additionally, recent studies in marmosets have underscored that even in the absence of vocal learning, vocalization remains flexible in the face of changing acoustical environments, pointing to rapid interactions between auditory and vocal motor systems. Finally, recent studies show that a juvenile songbird's initial auditory experience of a song model has long-lasting effects on sensorimotor neurons important to vocalization, shedding light on how auditory memories and feedback interact to guide vocal learning.  相似文献   

20.
The zebra finch learns his song by memorizing a tutor's vocalization and then using auditory feedback to match his current vocalization to this memory, or template. The neural song system of adult and young birds responds to auditory stimuli, and exhibits selective tuning to the bird's own song (BOS). We have directly examined the development of neural tuning in the song motor system. We measured song system responses to vocalizations produced at various ages during sleep. We now report that the auditory response of the song motor system and motor output are linked early in song development. During sleep, playback of the current BOS induced a response in the song nucleus HVC during the song practice period, even when the song consisted of little more than repeated begging calls. Halfway through the sensorimotor period when the song was not yet in its final form, the response to BOS already exceeded that to all other auditory stimuli tested. Moreover, responses to previous, plastic versions of BOS decayed over time. This indicates that selective tuning to BOS mirrors the vocalization that the bird is currently producing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号