首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conversion of (?)-carvone and (+)-carvone by a strain of Aspergillus niger was studied as one of the series of biochemical reduction of terpenes.

(?)-Carvone was found to be reduced essentially to (+)-neodihydrocarveol, although (+)-dihydrocarvone and (+)-isodihydrocarvone were also formed in small amounts, whereas (+)-carvone was converted to (?)-isodihydrocarvone, (?)-isodihydrocarveol, (?)-neoisodihydrocarveol, (?)-dihydrocarvone, (?)-neodihydrocarveol, and (+)-dihydrocarveol, of which the former three were the major products.

The metabolic pathways for (?)-carvone and (+)-carvone by the strain of Aspergillus niger are discussed and the results on microbial and chemical reductions of carvone and dihydrocarvone are summarized.  相似文献   

2.
Microbial 16β-hydroxylation of some steroids with Wojnowicia graminis, Corticium centrifugum and Bacillus megaterium has been reported, but not 16β-hydroxylation of normal 17-oxo steroids with Aspergillus niger. This time, we tried microbial transformation of dehydroepiandrosterone with this fungus, and obtained 4-androstene-3,17-dione, 17β-hydroxy-4-androstene-3,16-dione, 16β,17β-dihydroxy-4-androsten-3-one and a new compound, 16β-hydroxy-4-androstene-3,17-dione. This new compound was also obtained by the fermentation of 4-androstene-3,17-dione and testosterone.  相似文献   

3.
The microbial transformations of (−)-α- and (+)-β-thujone (1a and 1b) in cultures of Absidia species: Absidia coerulea AM93, Absidia glauca AM254 and Absidia cylindrospora AM336 were studied. The biotransformations of (−)-α-thujone (1a), by these fungi strains, afforded mixtures of 4-hydroxy- and 7-hydroxy-α-thujone (2 and 3). Aforementioned fungi strains were also able to hydroxylate of (+)-β-thujone at C-7 position. Only A. glauca AM254 transformed 1b to 8-hydroxy-β-thujone (7) and (2S)-2-hydroxyneoisothujol (6). The (4R)-4-hydroxyisothujole (5) was identified as one of the major metabolite of (+)-β-thujone (1b) in culture of A. cylindrospora AM336. This strain was also able to introduce hydroxy group to C-4 position in 1b without reduction of carbonyl group at C-3. The absolute configuration of all chiral centers of new (4R)-4-hydroxyisothujol (5) and (2S)-2-hydroxyneoisothujol (6) were established taking into account the configuration of (+)-β-thujone (1b) and their spectral data.  相似文献   

4.
5.
6.
Aspergillus niger IFO 8541 was found to be an efficient biocatalyst for the biotransformation of -ionone into hydroxy and oxo derivatives. The reaction had to be carried out with an inoculum made of about 4 × 107 fresh spores/l and with a preliminary growth period giving at least 3 g/l biomass. The fungus developed in the form of pellets when cultivated as free mycelium; entrapment of the microorganism in calcium alginate beads was an efficient way to mimic this feature in an aerated, stirred bioreactor. The biotransformation was carried out using a fed-batch mode of operation involving sequential precursor addition. -Ionone stopped the fungal growth and was converted into metabolites only when the carbon source remained present in the medium; it was fully oxidized after sucrose exhaustion. These conditions allowed recovery of about 2.5 g/l aroma compounds after 230 h cultivation with a molar yield close to 100%.  相似文献   

7.
Purified fructosyltransferase from Aspergillus niger exhibited transfructosylation activities, producing fructose, DP2, DP4, and DP5 from raffinose. The structures of two products synthesized from raffinose were identified as O--d-galactopyranosyl (16)--d-glucopyranose and O--d-galactopyranosyl (16)--d-glucopyranosyl-[O--d-fructofuranosyl (21)]--D-fructofuranoside, which means that C-2 hydroxyl group of fructose released from one raffinose molecule were linked to the C-1 hydroxyl group of fructose of another raffinose.  相似文献   

8.
The maximum yield of -glucosidase by A. niger KK2 mutant, grown on the basal medium for 7 days, was 514 I U g–1 ground rice straw, and was about twice those obtained from wheat straw or bran by previous researchers. Optimal activity of -glucosidase was at 60–70 °C and pH 4.8.  相似文献   

9.
An extracellular 1,4-α-d-glucan 6-α-d-glucosyltransferase [d-glucosyltransferase, 1,4-α-d-glucan:1,4-α-d-glucan(d-gluco 6-α-d-glucosyltransferase, EC 2.4.1.24] from Aspergillus niger R-27 has been purified and the kinetics of its proteolytic inactivation with subtilisin studied. The purified enzyme was shown to be homogeneous using disc polyacrylamide gel electrophoresis. It contained 16.0% mannose, 0.19% glucose and 2.95% 2-acetamido-2-deoxy-d-glucose. The characteristic feature of the proteolytic degradation of glucosyltransferase is rapid hydrolysis of ~12 peptide bonds per mol and the formation of an active intermediate product which is more resistant to further proteolysis, but is easily heat-inactivated. The isolation and some properties of glucosyltransferase are also described.  相似文献   

10.
Secretion of endo-1,5--l-arabinase A (ABNA) by an Aspergillus niger xylulose kinase mutant upon mycelium transfer to medium containing l-arabitol was immunochemically followed with time to monitor its induction profile. A cDNA expression library was made from polyA + RNA isolated from the induced mycelium. This library was immunochemically screened and one ABN A specific clone emerged. The corresponding abnA gene was isolated from an A. niger genomic library. Upon Southern blot analysis, a 3.1-kb HindIII fragment was identified and subcloned to result in plasmid pIM950. By means of co-tranformation using the A. niger pyrA gene as selection marker, the gene was introduced in both A. niger and A. nidulans uridine auxotrophic mutants. Prototrophic A. niger and A. nidulans transformants overproduced A. niger ABN A upon growth in medium containing sugar beet pulp as the sole carbon source, thereby establishing the identity and functionality of the cloned gene. The DNA sequence of the complete HindIII fragment was determined and the structure of the abnA gene as well as of its deduced gene product were analysed. Gene abnA contains three introns within its structural region and codes for a protein of 321 amino acids. Signal peptide processing results in a mature protein of 302 amino acids with a deduced molecular mass of 32.5 kDa. A. niger abnA is the first gene encoding an ABN to be isolated and characterized. Correspondence to: L. H. de Graaff  相似文献   

11.
Li  Gao-Xiang  Linko  Yu-Yen  Linko  P. 《Biotechnology letters》1984,6(10):645-650
Summary Aspergillus niger mycelia or spores were immobilized in calcium alginate gel beads and employed for production of glucoamylase and -amylase by repeated batch process. The immobilized mycelium produced lower enzyme activities than immobilized spores germinated in a growth medium and subsequently cultured in an enzyme production medium. In repeated batch experiments, free cells could be used for only 4 4-day batches, whereas with immobilized spores at least 11 4-day batches with a gradual increase in enzyme activities in each successive batch were possible. The activity ratio of glucoamylase and -amylase produced was altered by immobilization.  相似文献   

12.
13.
本研究对Aspergillus niger Glu05生产β-葡萄糖苷酶的培养基组分及培养条件进行了优化.优化后的培养基组成和培养条件分别为:麸皮4%,tryptone 4%,1μmol MnSO4,1μmol NaCl,KH2PO40.2%,oH自然,摇床转速250 r/min,培养温度30℃,培养周期5d.优化后发酵液中酶活力达到44.11 IU/mL,与初始的产酶水平32.87 IU/mL相比,提高了36%.  相似文献   

14.
15.
16.
Wu M  Tang C  Li J  Zhang H  Guo J 《Carbohydrate research》2011,(14):2149-2155
A parent strain Aspergillus niger LW-1 was mutated by the compound mutagenesis of vacuum microwave (VMW) and ethyl methane sulfonate (EMS). A mutant strain, designated as A. niger E-30, with high- and stable-yield β-mannanase was obtained through a series of screening. The β-mannanase activity of the mutant strain E-30, cultivated on the basic fermentation medium at 32 °C for 96 h, reached 36,675 U/g dried koji, being 1.98-fold higher than that (18,501 U/g dried koji) of the parent strain LW-1. The purified E-30 β-mannanase, a glycoprotein with a carbohydrate content of 19.6%, had an apparent molecular weight of about 42.0 kDa by SDS–PAGE. Its optimal pH and temperature were 3.5 and 65 °C, respectively. It was highly stable at a pH range of 3.5–7.0 and at a temperature of 60 °C and below. The kinetic parameters Km and Vmax, toward locust bean gum and at pH 4.8 and 50 °C, were 3.68 mg/mL and 1067.5 U/mg, respectively. The β-mannanase activity was not significantly affected by an array of metal ions and EDTA, but strongly inhibited by Ag+ and Hg2+. In addition, the hydrolytic conditions of konjak glucomannan using the purified E-30 β-mannanase were optimized as follows: konjak gum solution 240 g/L (dissolved in deionized water), hydrolytic temperature 50 °C, β-mannanase dosage 120 U/g konjak gum, and hydrolytic time 8 h.  相似文献   

17.
β-Mannosidase (EC 3.2.1.25) is an exoglycosidase specific for the hydrolysis of terminal β-linked mannoside in various sugar chains. cDNA corresponding to the β-mannosidase gene was cloned from Aspergillus niger, sequenced, and expressed in the yeast Pichia pastoris. The β-mannosidase gene contains an open reading frame which encodes the protein with 933 amino acid residues. The wild type and recombinant proteins were purified to apparent homogeneity and biochemically characterized (K(M) 0.28 and 0.44mmol/l for p-nitrophenyl β-d-mannopyranoside, pI 4.2 and 4.0, and their pH optima were at pH 4.5 and 5.5 and 65°C, respectively).  相似文献   

18.
 An endogenous β-glucuronidase that hydrolyses the chromogenic substrate 5-bromo-4-chloro-3-indolyl-β-D-glucuronide (X-gluc) in Aspergillus niger is reported. The activity was induced when the fungus was grown in media containing xylan, but was either very low, or absent, when grown on glucose. Endogenous β-glucuronidase was primarily located in newly formed hyphae, and was apparent at pH values between 3 and 6. Hydrolysis of X-gluc was sensitive to the inhibitor D-saccharic acid 1,4-lactone and was irreversibly inactivated by heating. The bacterial uidAβ-glucuronidase reporter gene was strongly expressed in the hyphae of transformed A. niger but, in contrast to the endogenous activity, the enzyme was also active at pH 7–8.5. Histochemical localization of uidA expression in A. niger, without interference from the endogenous β-glucuronidase activity, was achieved by staining at this pH. Received : 22 March 1995/Received last revision : 17 August 1995/Accepted : 22 August 1995  相似文献   

19.
α-N-Acetylgalactosaminidase (α-GalNAc-ase; EC.3.2.1.49) is an exoglycosidase specific for the hydrolysis of terminal α-linked N-acetylgalactosamine in various sugar chains. The cDNA corresponding to the α-GalNAc-ase gene was cloned from Aspergillus niger, sequenced, and expressed in the yeast Saccharomyces cerevisiae. The α-GalNAc-ase gene contains an open reading frame which encodes a protein of 487 amino acid residues. The molecular mass of the mature protein deduced from the amino acid sequence of this reading frame is 54 kDa. The recombinant protein was purified to apparent homogeneity and biochemically characterized (pI4.4, K(M) 0.56 mmol/l for 2-nitrophenyl 2-acetamido-2-deoxy-α-d-galactopyranoside, and optimum enzyme activity was achieved at pH2.0-2.4 and 50-55°C). Its molecular weight was determined by analytical ultracentrifuge measurement and dynamic light scattering. Our experiments confirmed that the recombinant α-GalNAc-ase exists as two distinct species (70 and 130 kDa) compared to its native form, which is purely monomeric. N-Glycosylation was confirmed at six of the eight potential N-glycosylation sites in both wild type and recombinant α-GalNAc-ase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号