首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to investigate quantitatively the interesterification reaction, triolein and stearic acid were used as substrates and eight commercially available lipases were tested for their suitability for the reaction. Three fungal lipase preparations were found to be suitable. The hydrolytic activity of the commercial lipases was tested with olive oil, and it 2was noted that there was no correlation between their hydrolytic and interesterification activities. Among the lipases tested, Mucor miehei lipase was chosen for further study because of it high protein content and its relatively high hydrolytic and interesterification activities, both of which are required for effective interesterification. The effect of water activity of the interesterification reaction was investigated. interesterification activity was shown to be maximum at the water activity of 0.25. As the water activity of the lipase increased, hydrolysis of triglyceride was accelerated. At zero water activity, high conversion was achieved, although interesterification activity was relatively lower than that at the water activity of 0.25. A new and simple immobilization method was developed in order to render hydrophobicity to the lipase and hence to improve the interesterification activity of the lipase. The lipase was immobilized covalently with glutaraldehyde or with six alkyl chains as spacers onto Florisil (magnesium silicate, a inorganic matrix). Interesterification activity of the immobilized lipase with the hydrophobic spacers were increased against that of re lipase. The increase of activity was up to 8-fold that of the original activity of free lipase when the spacer was 7-aminoheptanoic acids. Relatively high stability of the immobilized lipase was shown in a continuous packed bed column reactor with a half-life of 97 days. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
The kinetics of enzymatic interesterification of oils and fats, using acetone dried cells of Rhizopus chinensis as a lipase catalyst, have been investigated in a batch operation. To clarify the mechanism of this reaction, several models are discussed under various conditions in terms of the ratio of triglyceride (TG)/fatty acid (FA) and of the water content.First, in the reaction between olive oil and methyl stearate, the parameters involved in each model were determined by the trial-and-error method so as to make the calculated results fit with the experimental data. Then, the models were compared with the experimental data obtained from the reactions with a mixture of stearic and palmitic acid methyl esters, where the proportions of (TG)/(FA) and water content were varied.From the results, the model based on either first order kinetics or on the formation of the glyceride-enzyme complex was confirmed to fit best with the data under a wide range of reaction conditions. This suggests that the fatty acid moiety of TG seems to be exchanged through the glyceride-enzyme complex in the enzymatic interesterification of oils and fats.  相似文献   

3.
The industrial feasibility of an interesterification process using acetone-dried fungus (as a lipase catalyst) immobilized in biomass support particles (BSPs) was examined by continuous interesterification between olive oil and methyl stearate, where the water content of the reaction mixture (Cw) was controlled at a given value. The Cw affected not only the inactivation rate of lipase in the cells but also the production rate of the by-product (diglycerides). The optimal Cw was determined as about 100 ppm. The half-life of lipase in the cells was about 1200 h at the optimal Cw, suggesting that the interesterification process using the immobilized fungus is industrially feasible.  相似文献   

4.
An immobilized lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) suitable for fat interesterification has been prepared by precipitation onto diatomaceous earth (Celite) with acetone of a crude lipase preparation from an Aspergillus. Non-lipase material present in the preparation which precipitated at high acetone concentrations or ovalbumin added prior to the immobilization reduced the measured interesterification activity without affecting lipolytic activity. The non-lipase material reduced the interesterification activity by as much as 50%. The interesterification activity of immobilized preparations was enhanced by the use of higher concentrations of the crude lipase or, more substantially, by admixture of purified lipase.  相似文献   

5.
Summary Interesterification in isooctane with triacetin as an acyl donor was found to be a new and effective method of racemic resolution of d,l-menthol, when using the free and immobilized lipase of Candida cylindracea. No water was produced by this highly stereoselective type of reaction in contrast to ester synthesis with acetic acid as an acyl donor. Even with diacetin no possible back reaction occurred and the enzyme was easily separated from the reaction solution as opposed to ester hydrolysis in aqueous systems. Inhibition of interesterification was caused by increasing concentrations of the acyl donor triacetin by more than 10 mmol·l-1 on the one hand, and especially by diacetin on the other hand. The reaction product menthyl acetate had no influence. By adding water the interesterification activity of the lipase was reduced significantly. An alteration of the acyl donor triacetin to longerchained triglycerides caused changes in higher specific activities but poor enantioselectivities of the products, as in the case of ester synthesis starting from longer-chained organic acids.Dedicated to Prof. Dr. Fritz Wagner on the occasion of his 60th birthday  相似文献   

6.
Summary Lipases were investigated with respect to their ability to catalyse the incorporation of fatty acids into phosphatidylcholine (PC) by interesterification reactions. The enzymes were dried onto solid support materials and the conversions were carried out in water-saturated toluene. Three lipases (two fungal and one plant enzyme) had the desired activity; immobilized lipase from Mucor miehei (Lipozyme) was the most active enzyme. The Lipozyme-catalysed interesterification was selective for the sn-1 position of PC and during 48 h of reaction around 50% of the fatty acids in this position were replaced with heptadecanoic acid, a fatty acid which was practically absent in the original phospholipid. Due to adsorption on the support material and the competing hydrolysis reaction the total amount of PC in the reaction solution decreased to about 40% of the original amount. Higher interesterification rates were obtained with free fatty acids as acyl donors than with fatty acid esters. Offprint requests to: I. Svensson  相似文献   

7.
Kinetic data for lipase-catalyzed interesterification reactions between free fatty acids and triglycerides were collected and the dynamics of the interesterification reactions were successfully modeled using tow rate experssions requiring a total of five adjustable parameters. One rate expression describes the disappearance of the free fatty acid (octanoic or linolenic acid), and the second describes the rate of release of fatty acid residues from the triglycerides (olive oil or milkfat). This model is able to account for the effects of the concentration of all chemical species participating in interesterification throughout the entire reaction. When the data for both milkfat and olive oil were subjected to nonlinear regression analyses using the same mathematical model, the parameter estimates for both systems were comparable. In addition to reproducing the tendencies observed experimentally, simulations of the interesterification system under a variety of initial conditions provided insight into the effects of several reaction variables which could not be examined experimentally. Among the most significant findings of the simulation work are (1) there is a limit beyond which increasing the initial concentration of water produces no further increase in the initial rate of the interesterification reaction; (2) an increase in the initial concentration of lower glycerides produces a concomitant increase in the rate of the interesterification reaction; (3) the free fatty acids inhibit the rate of hydrolysis of the fatty acid residues of the triglycerides; (4) there is a limit beyond which increasing the initial concentration of triglycerides produces no significant increase in the rate of either the hydrolysis reaction or the interesterification reaction. (c) 1994 John Wiley & Sons, Inc.  相似文献   

8.
Immobilized lipases were used to catalyze batch-directed interesterification of tallow, resulting in oleins containing significantly higher levels of unsaturated fatty acids than obtained by fractionation without lipase. After 14 days, a reaction catalyzed by 2% Novozym 435 yielded 57% olein unsaturation, compared with 45% in a no-enzyme control. Free fatty acid levels increased to 2-3% during reactions. Incubation of the enzyme in multiple batches of melted fat caused a gradual loss of interesterification activity, apparently due to progressive dehydration. The activity could be restored by addition of water to the reaction medium. Immobilized lipase was also used to catalyze directed interesterification in a continuous flow reactor. Melted tallow was circulated through a packed bed enzyme reactor and a separate crystallization vessel. The temperatures of the two parts of the apparatus were controlled separately to allow crystallization to occur separately from interesterification. Operation of the reactor with conventionally dry, prefractionated tallow allowed the formation of an olein consisting of up to 60% unsaturated fatty acids. The greatest changes in olein fatty acid composition were achieved when the fractionation temperature was kept constant at a value that promoted selective crystallization of trisaturated triglycerides that were continuously produced by enzymic interesterification. The enzyme could be reused without apparent loss of activity, and its activity was apparently enhanced by preincubation in melted tallow for up to several days. Control of both the water activity of the enzyme and tallow feedstock and of the absorption of atmospheric water vapor were required to maintain enzyme activity, during multiple reuse and minimize free fatty acid formation. This method may form the basis for a process to produce highly mono-unsaturated tallow fractions for use in food applications (e.g. frying) where a "healthy" low saturated fat product is required.  相似文献   

9.
The lipase-catalyzed intresterification of triglycerides and fatty acids in n-hexane was studied. Initially, lipase Saiken was modified with a surfactant of sorbitan esters so that its dispersibility in hydrophobic organic media was improved. The surfactant-modified lipase formed in the modification process carried out in a buffer solution has 1,3-positional specificity and predominantly catalyzed the interesterification reaction in a microaqueous n-hexane system. The modification technique converted inactive lipases to very active biocatalysts for the interesterification of triglycerides and fatty acids. The pH and the weight ratio of surfactant to enzyme used during the lipase modification process have shown significant effects in determining the recoveries of the protein and enzyme activity from the buffer solution, the protein content of the modified lipase complex after being freeze dried, and the interesterification activity of the complex. The water content in the reaction solution has strongly influenced the enzyme activity as well as the distribution of the products. (c) 1995 John Wiley & Sons, Inc.  相似文献   

10.
Composite multi-component biocatalysts were prepared by entrapping lysates of a recombinant rE. coli/lip strain producing Thermomyces lanuginosus lipase into composite nanocarbon-containing matrices based on a SiO2 xerogel. The dependence of the lipase activity and operational stability on the type of the carbon component (nanotubes or nanospheres of different diameters) was studied in the bioconversion of triglycerides (hydrolysis and interesterification), as well as in the esterification of saturated fatty acids—namely, butyric (C4:0), capric (C10:0), and stearic (C18:0) acids—with isoamyl alcohol. It was shown that the biocatalytic properties were determined by both the texture parameters of the nanostructured carbon included and the type of enzymatic reaction performed. Biocatalysts without a nanocarbon component had the highest operational stability in the batch process of interesterification of sunflower oil with ethyl acetate; the half-life time was found to be 720 h at 40°C. Biocatalysts containing carbon nanotubes of ~21 nm in diameter were five to six times more active in the batch esterification process than biocatalysts without a nanocarbon component. Biocatalysts containing carbon nanotubes catalyzed the synthesis of esters in a binary organic solvent (hexane and diethyl ether) without a loss of activity for more than 500 h at 40°C.  相似文献   

11.
Biodiesel is increasingly perceived as an important component of solutions to the important current issues of fossil fuel shortages and environmental pollution. Utilization of soluble lipase offers an alternative approach to lipase-catalyzed biodiesel production using immobilized enzyme or whole-cell catalysis. Soluble lipase NS81020, produced by submerged fermentation of genetically modified Aspergillus oryzae microorganism, was first proposed here as the catalyst of biodiesel preparation with oleic acid in the biphasic aqueous-oil systems. The effect factors such as enzyme concentration, water content, temperature, molar ratio of methanol to oil, stirring rate and pH of buffer solution on the esterification rate were investigated systematically. The reaction time could be shortened with the increasing of enzyme concentration as long as the maximum enzyme absorptive capacity on the interface in the biphasic aqueous-oil systems was not achieved. The optimal water content in the biphasic aqueous-oil systems was 10 wt% by oleic acid weight. The reaction rate was enhanced with the increasing molar ratio of methanol to oil, the increasing stirring rate or the decreasing temperature. Although soluble lipase NS81020 had lower activity at pH 10.55, hydroxyl ion conduced to restrain hydrolysis of methyl ester and facilitated the reaction toward the methyl ester formation.  相似文献   

12.
Biocatalysis is nowadays considered as one of the most important tools in green chemistry. The elimination of multiple steps involved in some of the most complex chemical synthesis, reducing the amounts of wastes and hazards, thus increasing the reaction yields and decreasing the intrinsic costs, are the major advantages of biocatalysis. This work aims at improving the enzymatic hydrolysis of olive oil to produce valuable fatty acids through emulsion systems formed by long alkyl chain ionic liquids (ILs). The optimization of the emulsion and the best conditions to maximize the production of fatty acids were investigated. The stability of the emulsion was characterized considering the effect of several parameters, namely, the IL and its concentration and different water/olive oil volumetric ratios. ILs from the imidazolium and phosphonium families were evaluated. The results suggest that the ILs effect on the hydrolysis performance varies with the water concentration and the emulsion system formed, that is, water‐in‐oil or oil‐in‐water emulsion. Although at low water concentrations, the presence of ILs does not present any advantages for the hydrolysis reaction, at high water contents (in oil‐in‐water emulsions), the imidazolium‐based IL acts as an enhancer of the lipase catalytic capacity, super‐activating 1.8 times the enzyme, and consequently promoting the complete hydrolysis of the olive oil for the highest water contents [85% (v/v)]. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1473–1480, 2015  相似文献   

13.
Acetone-dried cells of Rhizopus chinensis (with a 1,3-positional specificity lipase) were investigated for the interestierification reaction of olive oil and methyl stearate. First, the culture conditions for intracellular lipase production were examined, and then the activities of dried cells obtained from immobilization in Biomass Support Particles (BSPs) were compared with those of freely suspended cells.It was clear from cultivation of freely suspended cells that intracellular lipase activity for the interesterification reaction was enhanced sifnificantly by the presence of oleic acid, oil, and tea oil, but that the presence of glucose reduced the activity.The specific activity of dried cells within BSPs increased 7-fold compared with that obrained from freely suspended cells.The process presented here, using immobilization within BSPs, can provide cells directly as a catalyst with high activity, where cells become immobilized simply during batch operation, and no special preparation of cells is necessary. Therefore, the reaction system using dried cells immobilized within BSPs is a promising interesterifcation process for industrial applications.  相似文献   

14.
An enzymatic hydrolysis in a symmetric membrane, combining reaction and separation, has been studied. PVA hydrogel was chosen because of its hydrophilicity expecting to minimize membrane fouling and concentration polarization. The membrane pores containing covalently bound enzymes serve as catalyst support. The membrane immobilization of the enzyme and the filtration mode of operating the process were chosen in order to avoid product inhibition of the enzyme. The properties of cross‐linked PVA hydrogel were investigated. The conversion of the hydrolysis of p‐nitrophenyllaurate with two different loadings of Cr lipase was evaluated. The conversion of the reaction decreased with both increasing substrate flux and initial concentration. The kinetic parameters were obtained. Compared to the free lipase, the Km of the membrane bonded enzyme was lower and its Rmax approximately the same.  相似文献   

15.
The catalytic activity of Candida antarctica lipase B upon alcoholysis of a constant concentration of 15.2% vinyl acetate (vol/vol) and varying concentrations of methanol (0.7–60%) in toluene was determined experimentally by measuring the initial reaction velocity. The molecular mechanism of the deactivation of the enzyme by methanol was investigated by fitting the experimental data to a kinetic model and by molecular dynamics simulations of C. antarctica lipase B in toluene–methanol–water mixtures.  相似文献   

16.
The continuous acidolysis of triolein and stearic acid was carried out by an immobilized lipase to elucidate the characteristics of supercritical carbon dioxide (SC-CO2) as a reaction medium. At first, an effect of temperature and pressure on the water adsorption to the immobilized lipase in the SC-CO2 was examined. Then, the continuous interesterification of triolein and stearic acid by the moist immobilized lipase was examined. The amount of water adsorption to the immobilized lipase in the supercritical carbon dioxide measured under the condition of a different temperature and pressure has been expressed by a correlation equation of Freundlich type by using relative water standardized with the solubility of water in each condition. Optimum operating conditions of the interesterification by immobilized lipase in the SC-CO2 was 323 K, 16.9 MPa and adsorbed-water concentration of 2 wt%. The production rate obtained by enzymatic acidolysis in the SC-CO2 was found to be about 0.03 mmol/h2g-immobilized enzyme, leaving 74% residual triglyceride at the optimum operating conditions.  相似文献   

17.
Abstract

The reaction kinetics of Candida antarctica lipase B (CalB) in the commercially available preparation Novozym® 435 (N435) were compared to those of preparations of CalB immobilised on Accurel® MP1000 (porous polypropylene). Two polypropylene preparations were made using enzyme loadings of 0.2% and 2% (w/w). All three preparations were used in hydrolysis as well as transesterification of two substrates, ethyl acrylate and ethyl methacrylate with octanol. Reactions carried out at water activity levels from 0.06 to 0.96 and at octanol concentrations between 25 and 500 mM showed that both water and octanol can inhibit CalB. Pronounced mass transfer limitations were also observed, which were more pronounced for N435 than for the two MP1000 preparations. The MP1000 preparations could thus use the lipase more efficiently in these reactions, achieving a specific activity (per g enzyme) between 5 and 20 times that of N435. To achieve high rates in the transesterification reaction, it is recommended to use low water activity and moderate alcohol concentration. In order to carry out a hydrolysis reaction, an intermediate water activity should be used to balance the effects of water as a limiting substrate and as a competitive inhibitor.  相似文献   

18.
Candida rugosa lipase has been used to investigate the hydrolysis of palm oil in a lecithin/isooctane reversed micellar system. The reaction obeys Michaelis-Menten kinetics for the initial conditions. Kinetic parameters such as maximum rate and Michaelis constant (K m) were determined for lipase-catalyzed hydrolysis in n-hexane and isooctane. According to the K m values, the enzyme affinity towards the substrate was increased in isooctane. The maximum degree of hydrolysis was generally decreased as the initial substrate concentration was increased. This may suggest that the hydrolysis in lecithin reversed micelles should be regarded as a one-substrate first-order reversible reaction. It is shown in this study that the proposed one-substrate first-order kinetic model can serve for the precise prediction of the degree of hydrolysis for a known reaction time or vice versa, when the initial substrate concentration is less than 0.325 mol/dm3. A disagreement with this model was found when the initial substrate concentration was higher than approximately 0.3 mol/dm3. This may be due to the effects of the products on lipase activity or even to the conversion of the reversed micellar system to other systems. Received: 16 May 1997 / Received revision: 22 October 1997 / Accepted: 24 October 1997  相似文献   

19.
Lipases with abnormal functionalities such as high thermostability and optimal activity at extreme conditions gain special attentions because of their applicability in the restricted reaction conditions. In particular, coldactive lipases have gained special attentions in various industrial fields such as washer detergent, pharmaceutical catalyst, and production of structured lipid. However, production of cold-active lipase is mostly found from psychrophilic microorganisms. Recently we found a novel cold-active lipase from Pichia lynferdii Y-7723 which is mesophilic yeast strain. In this study, we purified the cold active lipase and the enzyme was further characterized in several parameters. The enzyme was purified with 33 purification fold using chromatographic techniques and the purified lipase represented maximum lipolytic activity at 15°C and the maximum activity was highly dependent on pH.  相似文献   

20.
AOT reverse micellar system was modified with DMSO for improved esterification activity of Chromobacteriumviscosum lipase (glycerol–ester hydrolase, EC 3.1.1.3). The enzymatic activity was strongly affected by the concentration of DMSO, and maximum activity was obtained at 30–40 mM. The various relevant physical parameters such as w0 (molar ratio of water to AOT), pH and reaction temperature that influence the activity of lipase were studied in order to obtain the best value and compared with those in simple AOT reverse micelles. The apparent activation energy decreased in the presence of DMSO. The stability of lipase entrapped in modified AOT systems was excellent, and the half-life was about 3.25 times than that observed in simple AOT systems at 25°C. A simple first-order deactivation model was considered to determine the deactivation rate constant. The thermodynamic stability of lipase in reverse micelles was measured by the Gibbs free energy. A fluorescence study was performed to provide information on structural changes in AOT reverse micelles which was accompanied by the addition of DMSO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号