首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The seasonal development of autotrophic picoplankton was investigated in seven Danish lakes representing a eutrophication gradient. Highest cell abundance between 1.5 to 6 × 105 cells ml−1 were found in mid-summer. Minor peaks were observed in spring. In winter, densities were below 103 ml−1. The highest relative picoplankton contribution to total autotrophic biomass also occurred in mid-summer. In the eutrophic lakes and one humic lake the average seasonal contribution of picoplankton to total chlorophyll was below 1% increasing to 5-8% in the meso- and oligotrophic clear water lakes. During short periods the proportion of picoplankton did reach 25%. The higher relative importance of picoplankton in less productive lakes was not due to higher actual chlorophyll concentrations, but due to a much more pronounced response by larger algae at higher nutrient loading. Both cyanobacteria and eukaryote organisms were present as picoplankton. Only eukaryotes were found in one eutrophic lake and an acidic, humic lake. In the eutrophic lakes eukaryote picoplankton was dominant; both with respect to cell densities and biovolume, whereas cyanobacteria dominated the two meso-oligotrophic lakes. Autotrophic picoplankton were present in all lake types, however their importance seemed to be less in most eutrophic lakes than in less productive, meso-oligotrophic lakes.  相似文献   

2.
The abundance of picoplankton (0.2-2 μm) was measured seasonally in the surface waters of six New Zealand lakes that represent a range of trophic states. The lakes were: Wakatipu, Te Anau, Manapouri, Hayes, Mahinerangi and Ross Creek Reservoir. Among the lakes, picoplankton abundance was associated positively with temperature; picoplankton were most abundant in summer and autumn when they attained densities of 108,000-270,000 cells/ml in the oligotrophic lakes. In these lakes, prokaryotic picoplankton was generally an order of magnitude more abundant than eukaryotic picoplankton. Consistent with the hypothesis that picoplankton are more important in oligotrophic than eutrophic ecosystems, there was a weak negative correlation between the density of prokaryotic picoplankton in the lakes and the level of chlorophyll a. The presence of large numbers of chroococcoid cyanobacteria in the guts of Ceriodaphnia dubia and Bosmina meridionalis implies that prokaryotic picoplankton are collected, but not digested, by these species.  相似文献   

3.
The seasonal abundance and composition of photosynthetic picoplankton (0.2-2 μm) was compared among five oligotrophic to mesotrophic lakes in Ontario. Epilimnetic picocyanobacteria abundance followed a similar pattern in all lakes; maximum abundance (2-4 × 105 cells · ml−1) occurred in late summer following a period of rapid, often exponential increase after epilimnetic temperatures reached 20 °C. In half of the lakes picocyanobacteria abundance was significantly correlated with temperature, while in other lakes the presence of a small spring peak resulted in a poor correlation with temperature. In all lakes there was a significant correlation between epilimnetic abundance and day of the year. Correlations with water chemistry parameters (soluble reactive phosphorus, total phosphorus, particulate C: P and C: N) were generally weaker or insignificant. However, in the three lakes with the highest spring nitrate concentrations, a significant negative correlation with nitrate was observed. During summer stratification, picocyanobacteria abundance reached a maximum within the metalimnion and at or above the euphotic zone (1% of incident light) in all lakes. These peaks were not related to nutrient gradients. The average total phytoplankton biomass ranged from 0.5 g m−3 (wet weight) in the most oligotrophic lake to 1.4 g m−3 for the most mesotrophic with picoplankton biomass ranging from 0.01 g m−3 to 0.3 g m−3. Picocyanobacteria biomass comprised 1 to 9 % of total phytoplankton biomass in late summer, but in one year for one lake represented a maximum of 56%. Other photosynthetic picoplankton (unidentified eukaryotes, Chlorella spp. Nannochloris spp.), although less abundant (103 cells · ml−1) than picocyanobacteria, represented biomass equal or greater than that of the picocyanobacteria in spring and early summer. On average, half of the photosynthetic picoplankton biomass was eukaryotic in the more coloured lakes, while in the clear lakes less than 20% was eukaryotic. Among the lakes there was a significant positive correlation between the average light extinction coefficient and the proportion of eukaryotic biomass of the picoplankton. In mesotrophic Jack's Lake, the contribution of picoplankton to the maximum photosynthetic rate ranged from 10 to 47% with the highest values in the spring (47%) and late summer (33%), as a result of eukaryotic picoplankton and picocyanobacteria respectively. Picocyanobacteria cell specific growth rates were high during July (0.6-0.8 day−1) and losses were close to 80% of the growth rate. Thus, despite low biomass, photosynthetic picoplankton populations appeared to turn over rapidly and potentially contributed significantly to planktonic food webs in early spring and late summer.  相似文献   

4.
The abundance and relative importance of autotrophic picoplankton were investigated in two lakes of different trophic status. In the eutrophic lake, measurements of primary production were performed on water samples in situ and in a light incubator three times during the day whereas for the oligotrophic lake, only one measurement of primary production was performed on water samples in the incubator. Dark-carbon losses of phytoplankton from Lake Loosdrecht were investigated in time series. Cell numbers of autotrophic picoplankton in eutrophic Lake Loosdrecht (3.2 × 104 cells ml–1) were lower than in meso-oligotrophic Lake Maarsseveen (9.8 and 11.4 × 104 cells ml–1 at the surface and bottom respectively). In the phytoplankton of both lakes the ratio of picoplankton production increased with decreasing light intensity. In Lake Loosdrecht depth-integrated contribution of picoplankton to total photosynthesis was less than 4%. The P-I-relationship showed diurnal variations in light saturated photosynthesis, while light limited carbon uptake remained constant during the day. Dark carbon losses from short-term labelled phytoplankton during the first 12 hours of the night period accounted for 10–25% of material fixed during the preceeding light period.  相似文献   

5.
Eight New Zealand lakes were surveyed for 14C uptake by phytoplankton as a function of light intensity. The results support the view that the photosynthetic picoplankton is an important contributor to primary productivity in oligotrophic lakes but is relatively unimportant in more eutrophic lakes. A comparison of carbon uptake vs. light intensity characteristics (P vs. I) of the picoplankton size class vs. that of the total phytoplankton community supports the view that the picoplankton size class may be adapted to utilization of dimmer light.  相似文献   

6.
Autotrophic picoplankton communities were examined in eleven oligotrophic lakes from a broad geographic region of western Canada, representing a variety of physico-chemical and biological conditions. During our study, several of the lakes were treated with additions of inorganic nitrogen and phosphorus fertilizers. Picoplankton communities in most lakes were dominated (>70%) by unicellular or colonial coccoid cyanobacteria, provisionally identified by morphological and autofluorescence properties as Synechococcus. Also common in some lakes were red-fluorescing cyanobacteria and Chlorella-like eucaryotes. Autotrophic picoplankters contributed from 36-63% to total chlorophyll, from >2-26% to total phytoplankton carbon, and from 29–53% to total photosynthesis. Average populations ranged from >5-10,000 cells·ml−1 in winter and early spring to 65-75,000 cells · ml−1 in summer and fall. Peak densities in most lakes occurred in August-September and most populations were within the epilimnion or metalimnion/hypolimnion boundary. Subsurface peaks were prevalent only in untreated, strongly stratified lakes. Eucaryotic picoplankters became dominant in acidic (pH < 6.2), humic lakes. Colonial picoplankters were more common in more productive interior lakes in August, and though present, were uncommon in coastal systems. Picoplankton populations exhibited large increases under ice in a Yukon lake, and their abundance and seasonal distribution showed little relation to temperature or to light. Fertilization of lakes resulted in picoplankton population increases (>2x) and the elimination of subsurface peaks. Nutrients were considered to be one of the major factors controlling population abundance in these oligotrophic lakes with average pH < 6.5.  相似文献   

7.
Budding and prosthecate bacteria were enumerated in spring and summer by viable counting procedures in several freshwater habitats in Australia including oligotrophic lakes, a mesotrophic lake, and eutrophic ponds.Caulobacter spp. were the most numerous type encountered. They were present in the highest concentrations (exceeding 1000/ml) in the mesotrophic lake during the summer. Their proportion to total viable heterotrophic bacteria was also highest (35.1 to 37.7) in this habitat. From 17 to 330/mlCaulobacter spp. were counted in the eutrophic habitats where their proportion to total viable numbers was less than 1.0%. In the oligotrophic lakes they varied from 5 to 23/ml and comprised greater than 5% of the total viable count.Hyphomicrobium- like bacteria were also numerous in the mesotrophic lake and in one oligotrophic lake during the summer sampling period.Ancalomicrobium spp. occurred in high concentrations (130/ml) in the mesotrophic lake. Budding bacteria of thePlanctomyces-Pasteuria group were most numerous in the eutrophic habitats where as many as 240/ml were counted; their proportion to total heterotrophs remained relatively constant regardless of trophic state, however. A similar pattern was observed withProsthecobacter spp.  相似文献   

8.
Vertical profiles of temperature, light and chlorophyll a concentration were examined in Lake Moreno Oeste, an oligotrophic South Andean lake (Argentina), during the warmest period of the year (November-April), when thermal stratification is characteristic. Concurrent samples for the enumeration of phytoplankton and green ciliates were taken, and the different contribution of these fractions to total chlorophyll a concentration was analysed. The development of a distinctive deep chlorophyll maximum was observed during summer months. The deep chlorophyll maximum was situated near the limit of the euphotic zone and just below the upper limit of the metalimnion. The results showed that the green ciliate Ophrydium naumanni with endosymbiotic Chlorella dominated the metalimnion causing the deep chlorophyll maximum. Additional laboratory experiments revealed a strong dependence of O.naumanni on light. Therefore, the symbiotic association appears to be an effective exploitation of the water column in poor-nutrient-high-light ecosystems like large Andean lakes.   相似文献   

9.
10.
This study examines the factors which contribute to the abundance of algal picoplankton in lakes. A three-year field study of a meso-eutrophic lake was compared with observations from oligotrophic and highly eutrophic lakes in the region. Trophic state alone (oligotrophic vs. eutrophic) was not a good predictor of the importance of picoplankton; smaller cells were relatively abundant when phosphorus was limiting other phytoplankters, but also when nitrogen was in surplus. Subsequent field experiments found that picoplankton growth was stimulated by N, but not by P additions. This relationship was strongly affected by light and grazer levels. Grazers apparently mediate the effects of nutrient deficiency, and favor the growth of larger algal size classes, especially nanoplankton. The flux of P within experimental enclosures was controlled by picoplankton abundance under low nutrient conditions, but was a function of total phytoplankton biomass under P surplus.  相似文献   

11.
Caballero  Margarita  Vázquez  Gabriela 《Hydrobiologia》2020,847(20):4161-4176

In many temperate oligotrophic lakes, algal accumulations can form below the mixing zone. However, Deep Chlorophyll Maxima (DCM) have also been found in some eutrophic, tropical lakes and in this paper we aim to identify if they are recurrent features in these kinds of lakes and to recognize the factors that favor their formation. We analyzed 5 years of thermal stratification, water quality, and chlorophyll a concentrations in a tropical eutrophic lake in Central Mexico. Thermal stratification patterns were characteristic of warm monomictic lakes. Full water column deoxygenation during winter mixing was recorded in 3 of the analyzed years, and an increase of ~ 1 °C in the hypolimnion was detected between 2011 and 2015. DCM were detected in 4 out of the 5 studied years, at the top of the hypolimnion when the water column was stratified (spring–summer). This study is the first report of recurrent DCM formation in the northern limit of the Neotropics. It confirms that high light penetration is a necessary condition for DCM. Stratified nutrients with epilimnetic P depletion are also factors favoring DCM formation.

  相似文献   

12.
Bukvić-ternjej  I.  Kerovec  M.  Mihaljević  Z.  Tavcar  V.  Mrakovcić  M.  Mustafić  P. 《Hydrobiologia》2001,(1):325-333
The copepod communities of karstic lakes along the eastern Adriatic coast were studied. Lakes were divided in several groups according to their morphology (deep, shallow, barrage and reservoirs), production (oligotrophic, mesotophic and eutrophic), and salinity of water: freshwater and brackish. Copidodiaptomus steueri, Eucyclops serrulatusand Macrocyclops albidus belong to the group that inhabited most of the lakes under the study, regardless of lake type. The shallow karstic lakes are usually inhabited by Thermocyclops dybowskii, T. oithonoides, Cyclops vicinus and Eudiaptomus padanus etruscus in freshwater biotopes, and Calanipedia aquaedulcis and Copidodiaptomus steueri in brackish biotopes. The last two species can also be found in deep karstic lakes with brackish water (Bacina lakes in the Neretva River delta). Species like Cyclops abyssorumcan be found in most deep freshwater lakes. Some Calanoida were recorded in only one lake, like Eudiaptomus transsylvanicusin the deep Lake Vrana on the island of Cres, or Eudiaptomus hadzici in the barrage Lake Visovac. Production of the lakes, expressed as copepod biomass, depends on lake trophy, and in some lakes also on hydrology and salinity. Most of the meso-eutrophic lakes in the study area had Calanoida dominating, while Cyclopoida dominated in some oligotrophic and eutrophic lakes as well.  相似文献   

13.
The abundance and composition of autotrophic picoplankton (APP) were studied between February 2003 and March 2004 in Lake Balaton. Water samples were taken fortnightly in the eutrophic western basin and mesotrophic eastern basin. Our study, which took more than one year, revealed pronounced seasonal pattern of the picoplankton abundance and composition. According to our results there were three types of picoplankton in Lake Balaton: 1. Phycoerythrin‐rich coccoid cyanobacteria (PE), dominant summer picoplankters in the mesotrophic lake area; 2. Phycocyanin‐rich cyanobacteria (PC), the most abundant summer picoplankters in the eutrophic lake area; 3. Picoeukaryotes, dominant winter picoplankters in the whole lake. The observed abundance of picoeukaryotes (3 × 105 cells ml–1) was one of the highest ever found. Our study confirms that in Lake Balaton the colonial autotrophic picoplankton (colonial APP) become dominant in summer in the nutrient limited period. We have found strong negative relationship between the concentrations of available nitrogen forms (NH4–N, NO3–N, urea‐N) and the colonial APP abundance. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The chemical composition of watershed waters supplying 13 mesotrophic lakes (in N.E. Poland) including as the deepest lake L. Hańcza, z = 108.5 m (summer total phosphorus [TP] content ≤0.050 mg · 1−1, chlorophyll a ≤5μg · 1−1, SD≥2.5 m) in a typical postglacial lake district (Suwalski Landscape Park) as well as surface and bottom waters of the lakes were studied in summer. Although the underestimated (i.e. including only surface runoff, river inflows and precipitation) yearly TP loading is equal to or higher than the permissible value, the lakes have maintained their mesotrophic features for 20 to 30 years. P sorption to the allochthonous inorganic material as well as decalcification processes in the lakes are probably responsible for this situation, as there is a strong difference between the chemical content of supplying waters and lake waters and as there is a considerable enrichment of P on sestonic particles. As a consequence of the low bio-availability of P, the midsummer amount of chlorophyll a is lower than predicted from the “TP—chlorophyll-a” relation found for harmoniously eutrophicating (i.e. P-limited) lakes.  相似文献   

15.
Lake Mburo and Lake Kachera are shallow, eutrophic lakes in mid‐western Uganda. Lake Mburo recorded higher values of Secchi and eutrophic depths and lower extinction coefficient (k) values. The lakes showed a ‘red shift’ phenomenon in maximum light transmission. The average values of electrical conductivity in Lake Mburo and Lake Kachera were 136 and 244 μS cm?1, respectively. The pH values indicated high photosynthetic activity. Dissolved oxygen concentration averaged 6.9 and 7.8 mg l?1 in Lake Mburo and Lake Kachera, respectively. The lakes had high total nitrogen (TN) : total phosphorus (TP) ratios averaging 200 and 280 in Lake Mburo and Lake Kachera, respectively. The lakes are dominated by cyanobacterial blooms that reduce light penetration to less than 1 m. Lake Mburo had a lower algal biomass than Lake Kachera. Chlorophyll a concentrations correlated positively (r = 0.73, P < 0.05) with the extinction coefficient in Lake Mburo but not in Lake Kachera. The correlations between chlorophyll a and TN and TP were also high. Both lakes recorded high primary productivity, Lake Mburo showing higher values. The study highlighted the need to investigate the organism–community interrelationships in the two water bodies.  相似文献   

16.
1. This synthesis examines 35 long‐term (5–35 years, mean: 16 years) lake re‐oligotrophication studies. It covers lakes ranging from shallow (mean depth <5 m and/or polymictic) to deep (mean depth up to 177 m), oligotrophic to hypertrophic (summer mean total phosphorus concentration from 7.5 to 3500 μg L?1 before loading reduction), subtropical to temperate (latitude: 28–65°), and lowland to upland (altitude: 0–481 m). Shallow north‐temperate lakes were most abundant. 2. Reduction of external total phosphorus (TP) loading resulted in lower in‐lake TP concentration, lower chlorophyll a (chl a) concentration and higher Secchi depth in most lakes. Internal loading delayed the recovery, but in most lakes a new equilibrium for TP was reached after 10–15 years, which was only marginally influenced by the hydraulic retention time of the lakes. With decreasing TP concentration, the concentration of soluble reactive phosphorus (SRP) also declined substantially. 3. Decreases (if any) in total nitrogen (TN) loading were lower than for TP in most lakes. As a result, the TN : TP ratio in lake water increased in 80% of the lakes. In lakes where the TN loading was reduced, the annual mean in‐lake TN concentration responded rapidly. Concentrations largely followed predictions derived from an empirical model developed earlier for Danish lakes, which includes external TN loading, hydraulic retention time and mean depth as explanatory variables. 4. Phytoplankton clearly responded to reduced nutrient loading, mainly reflecting declining TP concentrations. Declines in phytoplankton biomass were accompanied by shifts in community structure. In deep lakes, chrysophytes and dinophytes assumed greater importance at the expense of cyanobacteria. Diatoms, cryptophytes and chrysophytes became more dominant in shallow lakes, while no significant change was seen for cyanobacteria. 5. The observed declines in phytoplankton biomass and chl a may have been further augmented by enhanced zooplankton grazing, as indicated by increases in the zooplankton : phytoplankton biomass ratio and declines in the chl a : TP ratio at a summer mean TP concentration of <100–150 μg L?1. This effect was strongest in shallow lakes. This implies potentially higher rates of zooplankton grazing and may be ascribed to the observed large changes in fish community structure and biomass with decreasing TP contribution. In 82% of the lakes for which data on fish are available, fish biomass declined with TP. The percentage of piscivores increased in 80% of those lakes and often a shift occurred towards dominance by fish species characteristic of less eutrophic waters. 6. Data on macrophytes were available only for a small subsample of lakes. In several of those lakes, abundance, coverage, plant volume inhabited or depth distribution of submerged macrophytes increased during oligotrophication, but in others no changes were observed despite greater water clarity. 7. Recovery of lakes after nutrient loading reduction may be confounded by concomitant environmental changes such as global warming. However, effects of global change are likely to run counter to reductions in nutrient loading rather than reinforcing re‐oligotrophication.  相似文献   

17.
SUMMARY 1. The development of bream populations, water transparency, chlorophyll‐a concentration, extent of submerged vegetation and densities of the zebra mussel, Dreissena polymorpha, were analysed in three shallow eutrophic lake systems subject to different fish management. 2. In Lake Veluwemeer, the bream population was reduced from c. 100 to 20 kg ha?1 after 5 years of fishing. The mortality caused by the fishery was estimated at 38% of bream >15 cm in addition to a 13% natural mortality of bream >17 cm. The decline was followed by an expansion of the Chara beds present in the shallow parts, an increase in water transparency in the open‐water zone, an increase in the density of zebra mussels and a decrease in chlorophyll‐a concentrations. 3. The newly created Lake Volkerak showed trends opposite to those in Lake Veluwemeer. Bream colonised the lake in 1988 and reached a biomass of c. 140 kg ha?1 in 1998. The water transparency decreased from a maximum of 3 m to c. 1 m and the chlorophyll‐a concentration increased from 5 to 45 μg L?1. Submerged vegetation colonised up to 20% of the total lake area in the first 5 years after creation of the lake in 1987 but decreased to 10% as turbidity increased. 4. Seine fishery in the Frisian lake system did not appear to affect the bream population despite annual catches as high as 40–50 kg ha?1. The estimated natural mortality of fish >15 cm was 15% and mortality by fishery was 26%. The high loss was apparently compensated by good recruitment and high growth rates resulting from a c. 1 °C higher water temperature during the years when bream were removed by fishing. There was only a slight decrease in chlorophyll‐a concentrations and a slight increase in water transparency. 5. The results of this study suggest that the effects of bream exploitation in eutrophic lakes can vary depending on the efficiency of the fishery, recruitment success and temperature regime. In the absence of fishery, bream dominated the fish community in the study lakes and apparently prevented D. polymorpha and submerged vegetation from establishing because of physical disturbance, enhanced internal P‐loading and resettling of resuspended sediments.  相似文献   

18.
Kufel  Lech 《Hydrobiologia》2001,443(1-3):59-67
Total phosphorus and total nitrogen explained a low percentage of summer chlorophyll variability in epilimnia of the Great Masurian Lakes. Division of the whole data set into two subgroups of lakes improved approximation of the chlorophyll nutrient relationship but revealed also functional differences between the lakes distinguished in that way. Chlorophyll in eutrophic lakes correlated well with nitrogen and phosphorus, that in mesotrophic lakes (those with summer chlorophyll <=22 mg m–3 as calculated in the model) was related to none of the nutrients. Higher summer chlorophyll content in epilimnetic waters was accompanied by higher chl:PP and chl:PN ratios. Algal adaptation to poor light conditions in eutrophic lakes is postulated as a possible reason for that difference.Chlorophyll – nutrient relationships varied with the trophic status of lakes. Epilimnetic chlorophyll strictly followed phosphorus changes in eutrophic lakes but did not do so in mesotrophic ones. Detailed comparison of selected meso- and eutrophic lakes showed marked differences in the seasonal changes of chlorophyll and nutrient concentrations and in sedimentation rates, especially in spring. Nutrient limitation rather than zooplankton grazing is suggested as a possible mechanism of controlling algal abundance and the sequence of spring events in a eutrophic lake. It is hypothesised that phosphorus turnover in eutrophic lakes is dominated by seasonal vertical fluxes, while in mesotrophic lakes it is more conservative with consumption and regeneration restricted mostly to metalimnion. Possible consequences of such conclusion are discussed in the paper.  相似文献   

19.
1. We used flow cytometry to characterize freshwater photosynthetic picoplankton (PPP) and heterotrophic bacteria (HB) in Lake Kivu, one of the East‐African great lakes. Throughout three cruises run in different seasons, covering the four major basins, phycoerythrin‐rich cells dominated the PPP. Heterotrophic bacteria and PPP cell numbers were always high and spatial variations were modest. This represents an important difference from temperate and high latitude lakes that show high fluctuations in cell abundance over an annual cycle. 2. Three populations of picocyanobacteria were identified: one corresponded to single‐cells (identified as Synechococcus by epifluorescence microscopy, molecular methods and pigment content), and the two other that most probably correspond to two and four celled colonies of the same taxon. The proportion of these two subpopulations was greater under stratified conditions, with stronger nutrient limitation. 3. High PPP concentrations (c. 105 cell mL?1) relative to HB (c. 106 cell mL?1) were always found. Lake Kivu supports relatively less bacteria than phytoplankton biomass than temperate systems, probably as a consequence of factors such as temperature, oligotrophy, nutrient limitation and trophic structure. 4. A review of PPP concentration across aquatic systems suggests that the abundance of Synechococcus‐like cyanobacteria in large, oligotrophic, tropical lakes is very high. 5. Photosynthetic picoplankton cell abundances in the oligotrophic tropical lakes Kivu and Tanganyika are comparable to those of eutrophic temperate lakes. This apparently contradicts the view that PPP abundance increases with increasing eutrophy. More data on PPP in tropical lakes are needed to explore further this particular pattern.  相似文献   

20.
Based on the currently largest available dataset of phytoplankton in lakes in northern Europe, we quantified the responses of three major phytoplankton classes to eutrophication. Responses were quantified by modelling the proportional biovolumes of a given group along the eutrophication gradient, using generalized additive models. Chlorophyll-a (Chl-a) was chosen as a proxy for eutrophication because all classes showed more consistent responses to Chl-a than to total phosphorus. Chrysophytes often dominate in (ultra-) oligotrophic lakes, and showed a clear decrease along the eutrophication gradient. Pennate diatoms were found to be most abundant at moderate eutrophication level (spring-samples). Cyanobacteria often dominate under eutrophic conditions, especially in clearwater lakes at Chl-a levels >10 μg l−1 (late summer samples). We compare the relationships among types of lakes, based on the lake typology of the northern geographic intercalibration group, and among countries sharing common lake types. Significant differences were found especially between humic and clearwater lakes, and between low- and moderately alkaline lakes, but we could not identify significant differences between shallow and deep lakes. Country-specific differences in response curves were especially pronounced between lakes in Norway and Finland, while Swedish lakes showed an intermediate pattern, indicating that country-specific differences reflect large-scale geographic and climatic differences in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号