首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both wild type and cr-1 mutant (adenylate cyclase and cyclic AMP-deficient) strains of Neurospora crassa contain fructose 2,6-biphosphate at levels of 2t nmol/g dry tissue weight. This level decreases by about 50% in both strains upon depriving the cells of carbon or nitrogen sources for 3 h. An increase in cyclic AMP levels produced by addition of lysine to nitrogen-starved cells produced no increase in fructose 2,6-biphosphate levels. Both strains respond to short-term addition of salicylate, acetate, or 2,4-dinitrophenol with an increase in fructose 2,6-biphosphate. Thus, the above-described regulation of fructose 2,6-biphosphate levels is cyclic AMP-independent. A suspension of the wild type produces a transient increase of fructose 2,6-biphosphate in response to administration of glucose, whereas the mutant strain does not respond unless it is fed exogenous cyclic AMP. Substitution of acetate for sucrose as a sole carbon source for growth leads to a differential decrease in fructose 2,6-biphosphate levels between the two strains: the wild type strain has 63% and the cr-1 mutant strain has 37% of the levels of fructose 2,6-biphosphate on acetate as compared to sucrose-grown controls. This may be the basis for an advantage of cr-1 over wild type in growth on acetate. Thus, although most regulation of fructose 2,6-biphosphate is cyclic AMP-independent, the levels can be regulated by a combination of carbon source and cyclic AMP levels.  相似文献   

2.
Antimicrobial peptides (AMPs) represent a potential new class of antimicrobial drugs with potent and broad-spectrum activities. However, knowledge about the mechanisms and rates of resistance development to AMPs and the resulting effects on fitness and cross-resistance is limited. We isolated antimicrobial peptide (AMP) resistant Salmonella typhimurium LT2 mutants by serially passaging several independent bacterial lineages in progressively increasing concentrations of LL-37, CNY100HL and Wheat Germ Histones. Significant AMP resistance developed in 15/18 independent bacterial lineages. Resistance mutations were identified by whole genome sequencing in two-component signal transduction systems (pmrB and phoP) as well as in the LPS core biosynthesis pathway (waaY, also designated rfaY). In most cases, resistance was associated with a reduced fitness, observed as a decreased growth rate, which was dependent on growth conditions and mutation type. Importantly, mutations in waaY decreased bacterial susceptibility to all tested AMPs and the mutant outcompeted the wild type parental strain at AMP concentrations below the MIC for the wild type. Our data suggests that resistance to antimicrobial peptides can develop rapidly through mechanisms that confer cross-resistance to several AMPs. Importantly, AMP-resistant mutants can have a competitive advantage over the wild type strain at AMP concentrations similar to those found near human epithelial cells. These results suggest that resistant mutants could both be selected de novo and maintained by exposure to our own natural repertoire of defence molecules.  相似文献   

3.
A mutant strain (PN507) of the cellular slime mold Polysphondylium pallidum is described which: (a) is morphogenetically abnormal in stalk formation; (b) secretes unusually low quantities of cyclic AMP; (c) responds to exogenous cyclic AMP in the same manner as wild type, by differentiating stalk cells and synthesizing several specific proteins; (d) complements with other morphogenetic mutants secreting normal amounts of cyclic AMP to produce fruiting structures resembling wild type. The tentative conclusion is that the critical defect of PN507 is low production of cyclic AMP.  相似文献   

4.
The cytochrome c production of the wild type strain and a mutant strain, YK 56, of Methylomonas sp. grown with excess methanol was higher than wild with limited methanol. The wild type strain grown under both conditions contained two soluble cytochromes c (c-I and c-II), though the mutant strain contained three (c-I, c-II, and c-III). The proportions of cytochromes c-II and c-III of the mutant strain damage changed according to the culture conditions.The methanol dehydrogenase of the wild type and mutant strains was purified and characterized. The enzymes were similar; they consisted of two subunits and their molecular weight was 120,000. The reactivity of cytochromes c with methanol dehydrogenase was investigated.  相似文献   

5.
Pseudomonas fluorescens J2 can produce 2,4-diacetylphloroglucinol (2,4-DAPG) as the main antibiotic compound and effectively inhibits the wilt pathogens Ralstonia solanacearum and Fusarium oxysporum. The phlF which negatively regulates the 2,4-DAPG synthesis in strain J2 was disrupted by homologous recombination to construct a mutant strain J2-phlF. The mutant J2-phlF produced much more 2,4-DAPG and showed higher inhibitory effect on R. solanacearum than the wild type strain J2 in vitro. The mutant J2-phlF also showed more colonization of tomato roots and higher inhibition to R. solanacearum in soil than wild type strain J2. The biocontrol efficiency of mutant J2-phlF was higher against tomato bacterial wilt than wild type strain J2, but the differences were not significant. However, the application of both strains with organic fertilizer improved the colonization and biocontrol efficiency against tomato bacterial wilt and mutant strain J2-phlF showed higher biocontrol efficiency against tomato bacterial wilt than wild type strain J2. Both strains, J2 and J2-phlF, could also promote the growth of tomato plants.  相似文献   

6.
Mutant strains in the tsaA gene encoding alkyl hydroperoxide reductase were more sensitive to O2 and to oxidizing agents (paraquat, cumene hydroperoxide and t-butylhydroperoxide) than the wild type, but were markedly more resistant to hydrogen peroxide. The mutant strains resistance phenotype could be attributed to a 4-fold and 3-fold increase in the catalase protein amount and activity, respectively compared to the parent strain. The wild type did not show an increase in catalase expression in response to sequential increases in O2 exposure or to oxidative stress reagents, so an adaptive compensatory mutation has probably occurred in the mutants. In support of this, chromosomal complementation of tsaA mutants restored alkyl hydroperoxide reductase, but catalase was still up-expressed in all complemented strains. The katA promoter sequence was the same in all mutant strains and the wild type. Like its Helicobacter pylori counterpart strain, a H. hepaticus tsaA mutant contained more lipid hydroperoxides than the wild type strain. Hepatic tissue from mice inoculated with a tsaA mutant had lesions similar to those inoculated with the wild type, and included coagulative necrosis of hepatocytes. The liver and cecum colonizing abilities of the wild type and tsaA mutant were comparable. Up-expression of catalase in the tsaA mutants likely permits the bacterium to compensate (in colonization and virulence attributes) for the loss of an otherwise important oxidative stress-combating enzyme, alkyl hydroperoxide reductase. The use of erythromycin resistance insertion as a facile way to screen for gene-targeted mutants, and the chromosomal complementation of those mutants are new genetic procedures for studying H. hepaticus.  相似文献   

7.
Phosphomannose isomerase (PMI) catalyzes the reversible interconversion of fructose 6-phosphate (Fru-6-P) and mannose 6-phosphate (Man-6-P), providing a link between glycolysis and the mannose metabolic pathway. In this study, we identified pmi gene (Mapmi) from the entomopathogenic fungus, Metarhizium acridum, and analyzed its functions using RNA interference (RNAi). Amending the growth medium with cell stress chemicals significantly reduced growth, conidial production and percent germination in Mapmi-RNAi mutant strain, compared to the wild-type strain. Growth of RNAi mutant was lower than the wild type strain with glucose or fructose as sole carbon source. RNAi mutant exhibited a normal growth phenotype with mannose at low concentrations, while trace or high concentration of mannose was more negatively impacted the growth of RNAi mutant than the wild type strain. Infection with Mapmi-RNAi mutant against Locusta migratoria manilensis (Meyen) led to a significantly reduced virulence compared to infection with the wild-type strain. These results suggest that Mapmi plays essential roles in stress tolerance and pathogenicity of M. acridum.  相似文献   

8.
A mutant of Escherichia coli strain CR341 has an altered 30 S ribosomal protein S18. The alteration involves a change in the electrophoretic mobility of S18. S18 proteins were purified from the mutant and the parent strain, respectively, and their amino acid composition and tryptic peptides were compared. The results have shown that the mutational alteration involves substitution of cysteine for arginine. In addition, we determined the electrophoretic mobility of S18 proteins modified by ethyleneimine. The modification, which involves conversion of cysteine residues to S-(2-aminoethyl)cysteine, causes a greater electrophoretic mobility increase in the mutant protein than in the wild type protein, resulting in identical mobilities for the aminoethylated proteins. This experiment gives further support to the conclusion that the original mobility difference between mutant and wild type proteins is due to the mutational substitution of cysteine for arginine. The S18 obtained from a recombinant was also studied. The recombinant protein was found to have the mobility of the wild type protein and the wild type primary structure, as judged by amino acid composition and tryptic peptide analysis. This recombinant was obtained from the mutant by introducing Hfr strain G10 chromosome segments in the region between 70 and 10 minutes, and not in the str-spc region at 64 minutes, as described in the preceding paper. These results, together with those in the preceding paper, show that the mutation studied here is in the structural gene for S18, and that it maps outside the str-spc region.  相似文献   

9.
The inability to synthesize cyclic AMP drastically affects the nutritional metabolism of Neurospora crassa. The adenylyl cyclase-less mutant cr-1 (crisp) did not utilize several carbon sources, including glycerol, mannitol, arabinose, and casaminoacids. However, in glucose or acetate it grew as well as the wild type. The following evidence suggested that these nutritional deficiencies were a direct result of the cr-1 mutation: (i), in crosses to wild type they segregated together with the crisp morphological marker; (ii), cyclic AMP added to the cr-1 mutant growth medium overcame the nutritional deficiencies; (iii), the cyclic AMP effect was specific for the crisp mutant, for it was not observed with the wild type, nor with a spontaneous glycerol-utilizing cr-1 strain.  相似文献   

10.
When grown under suboptimal conditions, rhizobacteria of the genus Azospirillum produce high levels of poly-β-hydroxybutyrate (PHB). Azospirillum brasilense strain Sp7 and a phbC (PHB synthase) mutant strain in which PHB production is impaired were evaluated for metabolic versatility, for the ability to endure various stress conditions, for survival in soil inoculants, and for the potential to promote plant growth. The carbon source utilization data were similar for the wild-type and mutant strains, but the generation time of the wild-type strain was shorter than that of the mutant strain with all carbon sources tested. The ability of the wild type to endure UV irradiation, heat, osmotic pressure, osmotic shock, and desiccation and to grow in the presence of hydrogen peroxide was greater than that of the mutant strain. The motility and cell aggregation of the mutant strain were greater than the motility and cell aggregation of the wild type. However, the wild type exhibited greater chemotactic responses towards attractants than the mutant strain exhibited. The wild-type strain exhibited better survival than the mutant strain in carrier materials used for soil inoculants, but no difference in the ability to promote plant growth was detected between the strains. In soil, the two strains colonized roots to the same extent. It appears that synthesis and utilization of PHB as a carbon and energy source by A. brasilense under stress conditions favor establishment of this bacterium and its survival in competitive environments. However, in A. brasilense, PHB production does not seem to provide an advantage in root colonization under the conditions tested.  相似文献   

11.
Multiply peptidase-deficient mutant strains of Salmonella typhimurium fail to carry out normal protein degradation during starvation for a carbon source. In these mutants, the extent of protein breakdown during starvation is about fourfold less than in the wild type. The products of protein breakdown in the mutant are mainly small, trichloroacetic acid-soluble peptides, not free amino acids as in the wild type. The carbon-starved mutant strain produces only about one thirtieth as much free amino acid from protein as the wild type. As a result, protein synthesis during starvation is reduced in the mutant compared to the wild type and the mutant strain shows a greatly prolonged lag phase after a nutritional shift-down.  相似文献   

12.
Mutant strain 1073 of Lemna perpusilla is concluded to be blocked between plastoquinone and cytochrome f in the photosynthetic electron transport system. The location of the block is based on the following observations of activities in chloroplasts isolated from the mutant and wild-type plants. (a) Relative to wild type, electron flow rates from water to ferricyanide, 2,6-dichlorophenol indophenol or NADP were very low in the mutant, but rates of photosystem I-dependent electron flow and cyclic phosphorylation were high. (b) Chlorophyll a fluorescence induction curves for mutant and wild type were similar. (c) Silicomolybdate and lipophilic acceptors in the mutant were photoreduced at rates comparable to wild type. (d) Cytochrome f of the mutant chloroplasts was not reduced by red light, but was oxidized by red or far red light. (e) Reduction of the primary electron acceptor of photosystem II (Q) by ATP-driven reverse electron flow was not observed in the mutant.  相似文献   

13.
The addition of 1 mM cyclic AMP to induced and repressed cultures of Aspergillus nidulans and its mutant strain (CRR 141) resistant to catabolite repression was fully capable of releasing the wild type from catabolite repression while it caused hyperproduction of cellulases in glycerol repressed cultures. The relief of the catabolite repression was also accompanied by a dramatic drop in enhanced protease levels, thereby indicating that the synthesis of proteases (during the catabolite repression) is under the control of cyclic AMP.  相似文献   

14.
Spores of the Phycomyces blakesleeanus strain S440 germinated only for some 4 to 7% when activated with a heat treatment or with ammonium acetate. Contrary to wild type spores, they showed no increase in trehalase activity during or after the activating treatment. This was not due to a variant trehalase or a defective protein kinase but rather to the absence of an increase in cellular cyclic AMP which normally occurs in the wild type. Phosphodiesterase activity in the mutant was comparable to wild type activity and in both strains phosphodiesterase was inactivated by a heat treatment. The phosphodiesterase inhibitor 1-isobutyl, 3-methyl xanthine caused germination and trehalase activation in the wild type but not in the mutant. The results corroborate the importance of cyclic AMP in the breaking of dormancy and the activation of trehalase in this fungus.  相似文献   

15.
16.
A transformation-deficient strain of Haemophilus influenzae (efficiency of transformation 104-fold less than that of the wild type), designated TD24, was isolated by selection for sensitivity to mitomycin C. In its properties the mutant was equivalent to recA type mutants of Escherichia coli. The TD24 mutation was linked with the str-r marker (about 30%) and only weakly linked with the nov-r2.5 marker. The uptake of donor deoxyribonucleic acid (DNA) was normal in the TD24 strain, but no molecules with recombinant-type activity (molecules carrying both the donor and the resident marker) were formed. In the mutant the intracellular presynaptic fate of the donor DNA was the same as that in the transformation-proficient (wild-type) strain, and the radioactive label of the donor DNA associated covalently with the recipient chromosome in about the same quantity as in the wild type. However, many fewer donor atoms were associated with segments of the mutant's recipient chromosome as compared with segments of the wild-type chromosome. In the mutant the association was accompanied by complete loss of donor marker activity. The lack of donor marker activity of the donor-recipient complex of DNA isolated from the mutant was not due to lack of uptake of the complex by the second recipient and its inability to associate with the second recipient's chromosome. Because the number of donor-atom-carrying resident molecules was higher than could be accounted for by the lengths of presynaptic donor molecules, we favor the idea that the association of donor DNA atoms with the mutant chromosome results from local DNA synthesis rather than from dispersive integration of donor DNA by recombination.  相似文献   

17.
Coenzyme Q10 (CoQ10) is a blockbuster nutraceutical molecule which is often used as an oral supplement in the supportive therapy for cardiovascular diseases, cancer and neurodegenerative diseases. It is commercially produced by fermentation process, hence constructing the high yielding CoQ10 producing strains is a pre-requisite for cost effective production. Paracoccus denitrificans ATCC 19367, a biochemically versatile organism was selected to carry out the studies on CoQ10 yield improvement. The wild type strain was subjected to iterative rounds of mutagenesis using gamma rays and NTG, followed by selection on various inhibitors like CoQ10 structural analogues and antibiotics. The screening of mutants were carried out using cane molasses based optimized medium with feeding strategies at shake flask level. In the course of study, the mutant P-87 having marked resistance to gentamicin showed 1.25-fold improvements in specific CoQ10 content which was highest among all tested mutant strains. P-87 was phenotypically differentiated from the wild type strain on the basis of carbohydrate assimilation and FAME profile. Molecular differentiation technique based on AFLP profile showed intra specific polymorphism between wild type strain and P-87. This study demonstrated the beneficial outcome of induced mutations leading to gentamicin resistance for improvement of CoQ10 production in P. denitrificans mutant strain P-87. To investigate the cause of gentamicin resistance, rpIF gene from P-87 and wild type was sequenced. No mutations were detected on the rpIF partial sequence of P-87; hence gentamicin resistance in P-87 could not be conferred with rpIF gene. However, detecting the mutations responsible for gentamicin resistance in P-87 and correlating its role in CoQ10 overproduction is essential. Although only 1.25-fold improvement in specific CoQ10 content was achieved through mutant P-87, this mutant showed very interesting characteristic, differentiating it from its wild type parent strain P. denitrificans ATCC 19367, which are presented in this paper.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-014-0506-4) contains supplementary material, which is available to authorized users.  相似文献   

18.
《Mycoscience》2003,44(1):33-40
A sporeless mutant dikaryon, completely defective in sporulation, was isolated from mycelial protoplasts of Pleurotus eryngii mutagenized by UV irradiation. Newly established dikaryons between one component monokaryon from the mutant, and 12 different wild type monokaryons from 3 other wild type dikaryons, all exhibited the sporeless phenotype, whereas those between the other monokaryon and the same wild type monokaryons all produced normal fruiting bodies. These results indicated that the sporeless mutation was induced in one of two nuclei of the mutant and was dominant. In the wild type basidia, the pattern of nuclear behavior during sporulation corresponded to the pattern C nuclear behavior as defined by Duncan and Galbraith. Cytological observation revealed that in the sporeless mutant meiosis was blocked at the meta-anaphase I in most basidia and hence basidiospores and sterigmata were not produced. Although fruiting bodies of the sporeless mutant showed a somewhat leaning growth, their gross morphology and its fruiting body productivity were comparable to that of the original wild type strain. Based on these results, it was considered that the sporeless mutant could serve as a potential material in breeding of sporeless P. eryngii commercial strains.  相似文献   

19.
Hudock GA  Bart C 《Plant physiology》1967,42(2):186-190
The responses of the wild type strain and of the y-2 mutant strain of Chlamydomonas reinhardi to long term organotrophic growth were studied. It was shown that wild type can be cultured as an organotroph for at least a month with little decrease in chlorophyll content and no loss of viability. On the other hand, the mutant strain y-2 dies during such organotrophic growth, death beginning after 5 to 6 days in the dark. The kinetics of death indicate that the loss of 95% of the chlorophyll precedes death and that revertants to wild type overgrow such a culture. The results suggest that death of y-2 is correlated with the loss of chlorophyll rather than simple metabolic response to organotrophy and that the chloroplast or a chloroplast related factor may perform certain nonphotosynthetic functions in C. reinhardi. The activities of nicotine adenine dinucleotide and nicotine adenine dinucleotide phosphate dependent triose phosphate dehydrogenases were studied during long term organotrophic growth of y-2. It was found that the activities of these enzymes varied in a manner consistent with previous findings under these conditions. The activity of glutamic dehydrogenase was found to vary as a function of chlorophyll content in the mutant strain y-2.  相似文献   

20.
Biofilm formation of Campylobacter jejuni, a major cause of human gastroenteritis, contributes to the survival of this pathogenic bacterium in different environmental niches; however, molecular mechanisms for its biofilm formation have not been fully understood yet. In this study, the role of oxidative stress resistance in biofilm formation was investigated using mutants defective in catalase (KatA), superoxide dismutase (SodB), and alkyl hydroperoxide reductase (AhpC). Biofilm formation was substantially increased in an ahpC mutant compared to the wild type, and katA and sodB mutants. In contrast to the augmented biofilm formation of the ahpC mutant, a strain overexpressing ahpC exhibited reduced biofilm formation. A perR mutant and a CosR-overexpression strain, both of which upregulate ahpC, also displayed decreased biofilms. However, the introduction of the ahpC mutation to the perR mutant and the CosR-overexpression strain substantially enhanced biofilm formation. The ahpC mutant accumulated more total reactive oxygen species and lipid hydroperoxides than the wild type, and the treatment of the ahpC mutant with antioxidants reduced biofilm formation to the wild-type level. Confocal microscopy analysis showed more microcolonies were developed in the ahpC mutant than the wild type. These results successfully demonstrate that AhpC plays an important role in the biofilm formation of C. jejuni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号