首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A NaCl-tolerant cell line of eggplant has been isolated, as a spontaneous variant, on agar solidified medium supplemented with 1% NaCl (Electrical conductivity –17.5 m mho/cm), a concentration lethal to the wild type cells. The stability of the altered response of the selected clone was confirmed by growing it on normal medium for 3 months and then bringing back to the stress medium. This cell line not only grew well on media containing upto 1% NaCl but also required 0.25% NaCl for its optimal growth. It is interesting to note that there is a certain concentration of NaCl (Critical point) above which the proline content of the cells rises sharply. A relationship between the NaCl stress and proline content has been found. The critical point in the wild type cultured cells (0.75% NaCl) lies below to that of the selected salt-tolerant variant (1.0% NaCl).  相似文献   

2.
A cotton (Gossypium hirsutum L.) control and NaCl-tolerant cell line (cv Coker 312) were grown on media with or without NaCl in the presence or absence of paraquat, buthionine sulfoximine, and oxidized glutathione. On medium with 150 mM NaCl the NaCl-tolerant cell line exhibited no reduction in growth, whereas a 96% reduction was observed in the control line. The NaCl-tolerant cell line that was grown on 150 mM NaCl exhibited significantly greater catalase (341%), peroxidase (319%), glutathione reductase (287%), ascorbate peroxidase (450%), [gamma]-glutamylcysteine synthetase (224%), and glutathione S-transferase (500%) activities than the intolerant control. The NaCl-tolerant cell line had a significantly lower dehydroascorbic acid/ascorbic acid ratio. Paraquat reduced growth by 20 and 53.7%, respectively, in the NaCl-tolerant and control cell line. The NaCl-tolerant cell line also showed a slight tolerance to buthionine sulfoximine. In the buthionine sulfoximine experiments reduced glutathione restored growth in both cell lines, whereas oxidized glutathione restored growth only in the NaCl-tolerant cell line. These data indicate that the NaCl-tolerant cell line exhibited a cross-tolerance to a variety of stress variables and had a more active ascorbate-glutathione cycle.  相似文献   

3.
Cell lines able to grow on media containing 50, 100, 150 or 200 mM NaCl were established from potato callus cultures by direct recurrent selection or gradual selection. In callus subjected to direct selection only small clusters of cells survived on medium with 150 or 200 mM NaCl, whereas on 100 mM small cell portions appear necrotic. When cell lines were obtained by successive subcultures on media with increased concentrations of NaCl, salt-tolerant calli were more compact and developed a greenish colour free from necrotic areas. The response of calli lines grown on media with NaCl was compared to control line. The NaCl-tolerant calli showed a decrease in relative growth rate and water content, with higher reductions in the 150 mM tolerant callus. Lipid peroxidation was increased in 50 mM and 100 mM NaCl-tolerant calli, while in 150 mM tolerant callus remained similar to 100 mM values. There was a significant increase in ascorbic acid content in 100 mM and 150 mM NaCl-tolerant calli as compared to the 50 mM, that was two-fold the value found in the control. Also, the contents of soluble and insoluble proteins increased in salt-tolerant lines. SDS-PAGE of soluble proteins showed the synthesis of specific polypeptides in the presence of NaCl in culture medium and the synthesis of a new polypeptide.  相似文献   

4.
进化代谢选育高渗透压耐受型产琥珀酸大肠杆菌   总被引:1,自引:0,他引:1  
在以碳酸钠为酸中和剂的大肠杆菌两阶段发酵产琥珀酸的过程中,由于Na+的积累造成发酵体系中渗透压的提高,严重抑制了琥珀酸的产物浓度。为了增强大肠杆菌对渗透压的耐受性,考察了利用进化代谢方法筛选高渗透压耐受型高产琥珀酸大肠杆菌菌株的可行性。进化代谢系统作为一种菌株突变装置,可以使菌体在连续培养条件下以最大的生长速率生长。以NaCl为渗透压调节剂,通过在连续培养装置中逐步提高NaCl浓度使菌体在高渗透压条件下快速生长,最终得到了一株高渗透压耐受型琥珀酸生产菌株Escherichia coli XB4。以碳酸钠为酸中和剂,在7 L发酵罐中利用Escherichia coli XB4进行两阶段发酵,厌氧培养60 h后,琥珀酸产量达到了69.5 g/L,琥珀酸生产速率达到了1.81 g/(L.h),分别比出发菌株提高了18.6%和20%。  相似文献   

5.
Accurate and automatic control strategies for a feedback-control system of volatile carbon source feeding and dissolved oxygen (DO) level were investigated. To maintain the optimal ethanol concentration for microbial growth, carbon dioxide concentration in exhaust gas was used as a stepwise control parameter of ethanol feeding. A proportional-differential (PD) control program was used to correct the errors. The coefficient of stepwise control was calculated stoichiometrically, and parameters of PD were experimentally preset and were not changed during cultivation. DO was also controlled by the PD control and the stepwise program based on carbon dioxide concentration of the exhaust gas. Agitation speed and partial pressure of oxygen of the inlet gas were changed stepwise in accordance with the oxygen consumption rate. The stepwise coefficients were estimated from stoichiometry and material balance of molecular oxygen. The PD control program was only used for the agitation speed control to correct the fluctuations of DO level. The parameters did not need to be changed during cultivation. By use of these sophisticated control programs for fed-batch culture of Candida brassicae, ethanol concentration and DO level were accurately controlled at 3.4–3.7 g/l and 2.2–2.8 ppm, respectively, while cell mass concentration reached about 80 g/l. No manual operation was needed.  相似文献   

6.
A tomato ( Lycopersicon esculentum Mill. cv. Pera) callus culture tolerant to NaCl was obtained by successive subcultures of NaCl-sensitive calli in medium supplemented with 50 m M NaCl. NaCl-tolerant calli grew better than NaCl-sensitive calli in media supplemented with 50 and 100 m M NaCl. Analysis of callus ion content showed a strong increase in Na+ and Cl both in NaCl-tolerant and -sensitive calli grown in media containing NaCl for one subculture. Cells from NaCl-tolerant calli showed a higher H+ extrusion activity than those from NaCl-sensitive calli grown for one subculture in the presence of NaCl. The inhibition of H+ extrusion by NaCl-sensitive cells was correlated with an inhibition of microsomal vanadate-sensitive H+-ATPase (EC 3.6.1.35) and ATP-dependent H+ transport, while the stimulation of H+ extrusion by cells tolerant to 50 m M NaCl was correlated with an increase in plasma membrane ATP-dependent H+ transport. The increase of ATP-dependent H+ extrusion in plasma membranes isolated from 50 m M NaCl-tolerant calli was not a result of stimulation of a vanadate-sensitive ATP hydrolytic activity or an increase in passive permeability to H+. Relative to NaCl-sensitive calli, plasma membrane H+-ATPase from calli tolerant to 50 m M NaCl showed a lower Km for Mg2+-ATP. Our results indicate that tolerance of tomato calli to 50 m M NaCl increases the affinity of plasma membrane H+-ATPase for the substrate ATP and stimulates the H+-pumping activity of this enzyme without modifying its phosphohydrolytic activity.  相似文献   

7.
An NaCl-resistant line has been developed from suspension-cultured tobacco cells (Nicotiana tabacum/gossii) by stepwise increases in the NaCl concentration in the medium. Resistance showed stability through at least 24 generations in the absence of added NaCl.

Above an external NaCl concentration of 35 millimolar, proline concentration in the selected cells rose steeply with external NaCl, particularly so above 100 millimolar NaCl. Proline accumulation in the wild type was far slighter. Selected cells which had been grown for 24 generations in the absence of added NaCl accumulated proline strongly on re-exposure to NaCl medium, indicating stability of this character. Proline accumulation was fully reversible with a half-time of about 6 hours. When selected cells were transferred sequentially to lower and lower NaCl concentrations, their proline content fell to the level corresponding to the new NaCl concentration. The NaCl-selected cells responded to water stress (i.e. added mannitol) by accumulating markedly more proline than did the wild type.

The addition of Ca2+ to the growing and rinsing media minimized Na+ and K+ binding in the Donnan free space of cell walls and thus allowed assessment of intracellular Na+ and K+. In both cell types, internal Na+ content rose steadily as a function of external NaCl concentration. In the course of 7 days in NaCl media, the wild type cells lost a considerable part of their K+ content, the extent of the loss increasing with rise in external NaCl concentration. The selected cells, by contrast, lost no K+ at external NaCl concentrations below 50 millimolar external NaCl, and at higher concentrations lost less than the wild type.

  相似文献   

8.
Four selected NaCl-tolerant cell lines of Sour orange (Citrus aurantium) were compared with the nonselected cell line in their growth and internal ion content of Na+, K+, and Cl when exposed to increasing NaCl concentrations. No difference was found among the various NaCl-tolerant cell lines in Na+ and Cl uptake, and all these cell lines took up similar or even larger amounts of Na+ and Cl than the NaCl-sensitive cell line. Exposure of cells of NaCl-sensitive and NaCl-tolerant lines to equal external concentrations of NaCl, resulted in a greater loss of K+ from the NaCl-sensitive cell line. This observation leads to the conclusion that growth and ability to retain high levels of internal K+ are correlated. Exposure of the NaCl-tolerant cell lines to salts other than NaCl resulted in even greater tolerance to Na2SO4, but rather poor tolerance to K+ introduced as either K2SO4 or KCl; the latter has a stronger inhibitory effect. The NaCl-sensitive cell line proved to be more sensitive to replacement of Na+ by K+. Analyses of internal Na+, K+, and Cl concentrations failed to identify any particular internal ion concentration which could serve as a reliable marker for salt tolerance.  相似文献   

9.
Plants were regenerated successfully through shoot organogenesis of a NaCl-selected callus line of Chrysanthemum morifolium Ramat. cv. Maghi Yellow (a salt sensitive cultivar), developed through stepwise increase in NaCl concentration (0-100mM) in the MS medium. The stepwise increase in NaCl concentration from a relatively low level to cytotoxic level was found to be a better way to isolate NaCl-tolerant callus line, since direct transfer of callus to high saline medium was detrimental to callus survival and growth. The selected callus line exhibited significant increase in superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2) activities compared to control callus (grown in medium devoid of NaCl). Stability of salt tolerance character of the selected callus line was checked by growing the calli in NaCl-free medium for 3 consecutive months followed by re-exposure to higher salinity stress (120mM NaCl). Among different growth regulator treatments, a combination of 5mgl(-1) TDZ (Thidiazuron) along with 0.25mgl(-1) NAA and 0.5mgl(-1) GA(3) was found to be the most effective for shoot organogenesis in selected callus line. The regeneration potential of the NaCl-tolerant callus ranged from 20.8% to 0% against 62.4% to 0% in control callus line. Under elevated stress condition (medium supplemented with 250mM NaCl), selected calli derived regenerants (S1 plants) exhibited significantly higher SOD and APX activities over both PC (positive control: control callus derived plants grown on MS medium devoid of NaCl) and NC (negative control: control callus derived plants subjected to 250mM NaCl stress) plants. In addition, the NC plants showed stunted growth, delayed root initiation, and had lesser number of roots as compared to S1 plants. Based on growth performance and antioxidant capacity, the S1 plants could be considered as NaCl-tolerant line showing all positive adaptive features towards the salinity stress. Further study on agronomic performance of these S1 plants under saline soil condition need to be undertaken to check the genetic stability of the induced salt-tolerance.  相似文献   

10.
Callus cultures were initiated from soybean (Glycine max (L.) Merr cv. Acme) cotyledons onMiller's basal medium supplemented with 2 mg L–1NAA and 0.5 mg L–1 kinetin. Growing cells wereexposed to increasing concentrations of NaCl in themedium. A concentration of 100 mM NaCl completelyinhibited callus growth. After incubation for 28 d,cells which could tolerate this concentration of NaClgrew to form cell colonies. A NaCl-tolerant line wasobtained through continuous subculturing on 100 mMNaCl. Salt tolerance in this culture was characterizedby an altered growth behavior, reduced cell volume, and accumulation of Na+, Cl, proline and sugars when grown under salt stress, as well as on normal media. These characteristics, which proved tobe stable after the culture was transferred to asalt-free medium, is commonly associated with halophytes. Presented data suggest that this salt tolerance is the result of a shift towards a halophytic behavior.  相似文献   

11.
A NaCl-tolerant cell line which was selected from ovular callus of `Shamouti' orange (Citrus sinensis L. Osbeck) proved to be a true cell line variant. This conclusion is based on the following observations. (a) Cells which have been removed from the selection pressure for at least four passages retain the same NaCl tolerance as do cells which are kept constantly on 0.2 molar NaCl. (b) Na+ and Cl uptake are considerably lower in salt-tolerant cells (R-10) than in salt-sensitive cells (L-5) at a given external NaCl concentration. (c) Growth of salt-tolerant cells is markedly suppressed upon replacement of NaCl by KCl, whereas the growth of salt-sensitive cells is only slightly affected. Accumulation of K+ and Cl accompanies the inhibition of growth. Experiments carried out with sodium and potassium sulfate suggest that the toxic effect is due to the accumulated Cl. (d) Removal of Ca2+ from the growth medium severely inhibits the growth of salt-tolerant cells in the presence of NaCl, while it has a minor effect on growth of salt-sensitive cells in the presence of NaCl. (e) Electron micrographs show that the salt-tolerant cells have very big vacuoles when exposed to salt, while the size of the vacuoles of the salt-sensitive cells does not change.  相似文献   

12.
《Process Biochemistry》2007,42(6):1033-1038
Valienamine is an important medicinal intermediate with broad use in the synthesis of some stronger α-glucosidase inhibitors. In order to improve valienamine concentration in the fermentation broth and make the downstream treatment easy, a fed-batch process for the enhanced production of valienamine by Stenotrophomonas maltrophilia in a stirred tank bioreactor was developed. Results showed that supplementation of validamycin A in the process of cultivation could increase the valienamine concentration. One-pulse feeding was observed to be the best strategy. The maximum valienamine concentration of 2.35 g L−1 was obtained at 156 h when 86.4 g of validamycin A was added to a 15-L bioreactor containing 8 L fermentation medium with one-pulse feeding. The maximum valienamine concentration had a great improvement and was increased above 100% compared to batch fermentation in the stirred tank bioreactor. The pH-controlled experiments showed that controlling the pH in the process of one-pulse feeding fermentation had not obvious effect on the production of valienamine.  相似文献   

13.
The embryonic calli produced from immature embryos of inbred “Huangzhao-4” of maize, that had been maintained for half a year, were transferred to media supplemented with different NaC1 concentrations (5, 10, 15, 20, 25, 30g/L) for callus selection. NaCl tolerant calli were established through three generations of selections. The growth and frequency of survival calli were affected significantly by NaCl concentration. The proliferetion of NaCl-tolerant calli was relatively good on medium containing of 10g/L NaC1. From these calli, plant lets could be produced on differentiation medium. On medium supplemented with 10g/L of NaC1 the plantlets could normally grow to transplantation. In NaCl-tolerant calli cultured on medium containing 10g/L of NaC1, the contents of free amino acids, free proline, Na+, K+ were 18.0%,87.3%,661.9%,25.5% respectively higher than those in un-selected calli grown on subculture medium, but Ca2+ content decreased significantly. On medium containing 10g/L of NaC1, cells and their organelles in NaCl-tolerant calli had normal morphology and structure, and vigorous metabolism, but in un-selected calli, the majority of cells turned to wards dying. Although tolerant plants regenerated and their filial ones had grown in non-salted soil, their progenies retained the property tolerance, but showed segregation of the degrees of tolerance. In 10g/L NaC1 solution, the seeds of progenies from one plant regenerated could germinate normally, and grow into healthy seedlings. Therefore, the NaCl-tolerant calli and plantlets that we have obtained NaCl-tolerant variants.  相似文献   

14.
Fermentation and succinic acid production by Actinobacillus succinogenes YZ0819 was inhibited by high NaCl. To enhance the resistance of this strain to osmotic stress, an NaCl-tolerant mutant strain of A. succinogenes (CH050) was screened and selected through a continuous culture using survival in 0.7 M NaCl as the selection criterion. Using Na2CO3 as the pH regulator and glucose as the carbon source in batch fermentation, the isolated osmo-resistant stain, A. succinogenes CH050, produced up to 66 g/l succinic acid with a yield of 73.37% (w/w). The concentration of succinic acid and mass yield were increased by 37.5 and 4.37%, respectively, compared to the parent strain. The dry cell weight reached 10.1 g/l, which is 37% higher than that of the parent strain. The high tolerance of A. succinogenes CH050 to osmotic stress increased improved the succinic acid production from batch fermentation.  相似文献   

15.
A novel feeding strategy in fedbatch recombinant yeast fermentation was developed to achieve high plasmid stability and protein productivity for fermentation using low-cost rich (non-selective) media. In batch fermentations with a recombinant yeast, Saccharomyces cerevisiae, which carried the plasmid pSXR125 for the production of beta-galactosidase, it was found that the fraction of plasmid-carrying cells decreased during the exponential growth phase but increased during the stationary phase. This fraction increase in the stationary phase was attributed to the death rate difference between the plasmid-free and plasmid-carrying cells caused by glucose starvation in the stationary phase. Plasmid-free cells grew faster than plasmid-carrying cells when there were plenty of growth substrate, but they also lysed or died faster upon the depletion of the growth substrate. Thus, pulse additions of the growth substrate (glucose) at appropriate time intervals allowing for significant starvation period between two consecutive feedings during fedbatch fermentation should have positive effects on stabilizing plasmid and enhancing protein production. A selective medium was used to grow cells in the initial batch fermentation, which was then followed with pulse feeding of concentrated non-selective media in fedbatch fermentation. Both experimental data and model simulation show that the periodic glucose starvation feeding strategy can maintain a stable plasmid-carrying cell fraction and a stable specific productivity of the recombinant protein, even with a non-selective medium feed for a long operation period. On the contrary, without glucose starvation, the fraction of plasmid-carrying cells and the specific productivity continue to drop during the fedbatch fermentation, which would greatly reduce the product yield and limit the duration that the fermentation can be effectively operated. The new feeding strategy would allow the economic use of a rich, non-selective medium in high cell density recombinant fedbatch fermentation. This new feeding strategy can be easily implemented with a simple IBM-PC based control system, which monitors either glucose or cell concentration in the fermentation broth.  相似文献   

16.
A moderate halophile and thermotolerant fungal strain was isolated from a sugarcane bagasse fermentation in the presence of 2 M NaCl that was set in the laboratory. This strain was identified by polyphasic criteria as Aspergillus caesiellus. The fungus showed an optimal growth rate in media containing 1 M NaCl at 28°C and could grow in media added with up to 2 M NaCl. This strain was able to grow at 37 and 42°C, with or without NaCl. A. caesiellus H1 produced cellulases, xylanases, manganese peroxidase (MnP) and esterases. No laccase activity was detected in the conditions we tested. The cellulase activity was thermostable, halostable, and no differential expression of cellulases was observed in media with different salt concentrations. However, differential band patterns for cellulase and xylanase activities were detected in zymograms when the fungus was grown in different lignocellulosic substrates such as wheat straw, maize stover, agave fibres, sugarcane bagasse and sawdust. Optimal temperature and pH were similar to other cellulases previously described. These results support the potential of this fungus to degrade lignocellulosic materials and its possible use in biotechnological applications.  相似文献   

17.
A soft sensor approach is described for controlling metabolic overflow from mixed-acid fermentation and glucose overflow metabolism in a fed-batch cultivation for production of recombinant green fluorescence protein (GFP) in Escherichia coli. The hardware part of the sensor consisted of a near-infrared in situ probe that monitored the E. coli biomass and an HPLC analyzer equipped with a filtration unit that measured the overflow metabolites. The computational part of the soft sensor used basic kinetic equations and summations for estimation of specific rates and total metabolite concentrations. Two control strategies for media feeding of the fed-batch cultivation were evaluated: (1) controlling the specific rates of overflow metabolism and mixed-acid fermentation metabolites at a fixed pre-set target values, and (2) controlling the concentration of the sum of these metabolites at a set level. The results indicate that the latter strategy was more efficient for maintaining a high titer and low variability of the produced recombinant GFP protein.  相似文献   

18.

Background

Microorganisms can adapt to perturbations of the surrounding environment to grow. To analyze the adaptation process of the yeast Saccharomyces cerevisiae to a high ethanol concentration, repetitive cultivation was performed with a stepwise increase in the ethanol concentration in the culture medium.

Methodology/Principal Findings

First, a laboratory strain of S. cerevisiae was cultivated in medium containing a low ethanol concentration, followed by repetitive cultivations. Then, the strain repeatedly cultivated in the low ethanol concentration was transferred to medium containing a high ethanol concentration and cultivated repeatedly in the same high-ethanol-concentration medium. When subjected to a stepwise increase in ethanol concentration with the repetitive cultivations, the yeast cells adapted to the high ethanol concentration; the specific growth rate of the adapted yeast strain did not decrease during repetitive cultivation in the medium containing the same ethanol concentration, while that of the non-adapted strain decreased during repetitive cultivation. A comparison of the fatty acid composition of the cell membrane showed that the contents in oleic acid (C18:1) in ethanol-adapted and non-adapted strains were similar, but the content of palmitic acid (C16:0) in the ethanol-adapted strains was lower than that in the non-adapted strain in media containing ethanol. Moreover, microscopic observation showed that the mother cells of the adapted yeast were significantly larger than those of the non-adapted strain.

Conclusions

Our results suggest that activity of cell growth defined by specific growth rate of the yeast cells adapted to stepwise increase in ethanol concentration did not decrease during repetitive cultivation in high-ethanol-concentration medium. Moreover, fatty acid content of cell membrane and the size of ethanol-adapted yeast cells were changed during adaptation process. Those might be the typical phenotypes of yeast cells adapted to high ethanol concentration. In addition, the difference in sizes of the mother cell between the non-adapted and ethanol strains suggests that the cell size, cell cycle and adaptation to ethanol are thought to be closely correlated.  相似文献   

19.
The polyamine content of Escherichia coli is inversely related to the osmolality of the growth medium. The experiments described here demonstrate that a similar phenomenon occurs in mammalian cells. When grown in media of low NaCl concentration, HeLa cells and human fibroblasts were found to contain high levels of putrescine, spermidine, and spermine. The putrescine content of HeLa cells was a function of the osmolality of the medium, as shown by growing cells in media containing mannitol or additional glucose. External osmolality per se had no effect on the contents of spermidine and spermine. For all media, the total cellular polyamine content could be correlated with the activity of ornithine decarboxylase, the first enzyme in polyamine biosynthesis. Different levels of enzyme activity appear to result solely from variations in the rate of enzyme degradation.A sudden increase in NaCl concentration produced rapid loss of ornithine decarboxylase activity and a gradual loss of putrescine and spermidine. A sudden decrease in NaCl concentration led to rapid and substantial increases in ornithine decarboxylase activity and putrescine.  相似文献   

20.
《Process Biochemistry》1999,34(4):355-366
The production of pigment-free pullulan by Aureobasidium pullulans in batch and fed-batch culture was investigated. Batch culture proved to be a better fermentation system for the production of pullulan than the fed-batch culture system. A maximum polysaccharide concentration (31.3 g l−1), polysaccharide productivity (4.5 g l−1 per day), and sugar utilization (100%) were obtained in batch culture. In fed-batch culture, feed medium composition influenced the kinetics of fermentation. For fed-batch culture, the highest values of pullulan concentration (24.5 g l−1) and pullulan productivity (3.5 g l−1 per day) were obtained in culture grown with feeding substrate containing 50 g l−1 sucrose and all nutrients. The molecular size of pullulan showed a decline as fermentation progressed for both fermentation systems. At the end of fermentation, the polysaccharide isolated from the fed-batch culture had a slightly higher molecular weight than that of batch culture. Structural characterization of pullulan samples (methylation and enzymic hydrolysis with pullulanase) revealed the presence of mainly α-(1→4) (∼66%) and α-(1→6) (∼31%) glucosidic linkages; however, a small amount (<3%) of triply linked (1,3,4-, 1,3,6-, 1,2,4- and 1,4,6-Glc p) residues were detected. The molecular homogeneity of the alcohol-precipitated polysaccharides from the fermentation broths as well as the structural features of pullulan were confirmed by 13C-NMR and pullulanase treatments followed by gel filtration chromatography of the debranched digests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号