首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the yeast strain P5 isolated from a mangrove system was identified to be a strain of Aureobasidium pullulans var. melanogenum and was found to be able to secrete a large amount of heavy oil into medium. After optimization of the medium for heavy oil production and cell growth by the yeast strain P5, it was found that 120.0 g/l of glucose and 0.1 % corn steep liquor were the most suitable for heavy oil production. During 10-l fermentation, the yeast strain P5 produced 32.5 g/l of heavy oil and cell mass was 23.0 g/l within 168 h. The secreted heavy oils contained 66.15 % of the long-chain n-alkanes and 26.4 % of the fatty acids, whereas the compositions of the fatty acids in the yeast cells were only C16:0 (21.2 %), C16:1(2.8 %), C18:0 (2.9 %), C18:1 (39.8 %), and C18:2 (33.3 %). We think that the secreted heavy oils may be used as a new source of petroleum in marine environments. This is the first report of yeast cells which can secrete the long-chain n-alkanes.  相似文献   

2.
《Biological Wastes》1989,27(1):71-75
Eight culture-collection yeast strains of various species and five newly isolated strains were tested for both growth in olive oil extraction effluents and fermentation of the sugars in the same media. The culture-collection yeast strains did not grow in an effluent containing 2·86% sugar (w/v), 8 g/litre phenolic substances, 4·58 g/litre titratable acidity and pH 4·96, whereas the newly isolated strains of Torulopsis sp. MK-1, Saccharomyces norbensis MC-1, S. oleaceus MC-2 and S. oleaginosus grew well and fermented the sugars. In the medium mentioned above, they produced alcohol in amounts of 1·63 to 1·38%, respectively. None of the yeasts grew in an olive oil extraction effluent vacuum-concentrated to over 13–14% of dry matter. The strain of T. sp. MK-1 showed a hogher stability.  相似文献   

3.
Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.  相似文献   

4.
A new green microalga isolate Micractinium sp. GA001 was found to accumulate long-chain fatty acids, and the strain was subjected to flow cytometry-based adaptive evolution approach to produce improved phenotypes. At first, original phenotype of new isolate GA001 was well characterized followed by establishment of flow cytometry conditions in combination with fluorescent dyes BODIPY and Nile Red, to screen intracellular long-chain fatty acids in GA001. Fluorescent dyes staining and flow cytometry analysis revealed the progressive accumulation of desirable lipid components in GA001. Further, a flow cytometry-based strategy was used to selectively isolate and enrich particular GA001 phenotypes with higher accumulation of long-chain fatty acids, under nitrogen-depletion and –repletion conditions. This strategy yielded an improved population with high lipid content than original population. Micractinium sp. GA001 was proved to be a promising strain with improved phenotypes for the production of large-scale target-specific long-chain fatty acids.  相似文献   

5.
Lipase secretion, extracellular lipolysis, and fatty acid uptake were quantified in the yeast Yarrowia lipolytica grown in the presence of olive oil and/or glucose. Specific lipase assays, Western blot analysis, and ELISA indicated that most of the lipase activity measured in Y. lipolytica cultures resulted from the YLLIP2 lipase. Lipase production was triggered by olive oil and, during the first hours of culture, most of the lipase activity and YLLIP2 immunodetection remained associated with the yeast cells. YLLIP2 was then released in the culture medium before it was totally degraded by proteases. Olive oil triglycerides were largely degraded when the lipase was still attached to the cell wall. The fate of lipolysis products in the culture medium and inside the yeast cell, as well as lipid storage, was investigated simultaneously by quantitative TLC–FID and GC analysis. The intracellular levels of free fatty acids (FFA) and triglycerides increased transiently and were dependent on the carbon sources. A maximum fat storage of 37.8% w/w of yeast dry mass was observed with olive oil alone. A transient accumulation of saturated FFA was observed whereas intracellular triglycerides became enriched in unsaturated fatty acids. So far, yeasts have been mainly used for studying the intracellular synthesis, storage, and mobilization of neutral lipids. The present study shows that yeasts are also interesting models for studying extracellular lipolysis and fat uptake by the cell. The quantitative data obtained here allow for the first time to establish interesting analogies with gastrointestinal and vascular lipolysis in humans.  相似文献   

6.
Effects of Long-Chain Fatty Acids on Growth of Rumen Bacteria   总被引:5,自引:2,他引:3       下载免费PDF全文
The effects of low concentrations of long-chain fatty acids (palmitic, stearic, oleic, and vaccenic) on the growth of seven species (13 strains) of rumen bacteria were investigated. Except for Bacteroides ruminicola and several strains of Butyrivibrio fibrisolvens, bacterial growth was not greatly affected by either palmitic or stearic acids. In contrast, growth of Selenomonas ruminantium, B. ruminicola, and one strain of B. fibrisolvens was stimulated by oleic acid, whereas the cellulolytic species were markedly inhibited by this acid. Vaccenic acid (trans Δ11 18:1) had far less inhibitory effect on the cellulolytic species than oleic acid (cis Δ9 18:1). Inclusion of powdered cellulose in the medium appeared to reverse both inhibitory and stimulatory effects of added fatty acids. However, there was little carry-over effect observed when cells were transferred from a medium with fatty acids to one without. Considerable variation in response to added fatty acids was noted among five strains of B. fibrisolvens. In general, exogenous long-chain fatty acids appear to have little, if any, energy-sparing effect on the growth of rumen bacteria.  相似文献   

7.
Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms.  相似文献   

8.
Penicillium candidum grew and produced lipase in a culture medium supplemented with 0.2% olive oil. Significant enzyme production required the presence of olive, oil and was prevented by cycloheximide. Polyacrylamide gel electrophoresis of filtrates from olive oil fermentations gave a single band of lipase activity (MW 80 KDa). Among the olive oil components only oleate allowed significant lipase production. Other carboxylic and saturated fatty acids containing similar or lower numbers of carbon atoms, did not cause derepression of lipase formation.  相似文献   

9.
Microorganisms can produce lipases with different biochemical characteristics making necessary the screening of new lipase-producing strains for different industrial applications. In this study, 90 microbial strains were screened as potential lipase producers using a sensitive agar plate method with a suitable medium supplemented with Tween 20 and also a liquid culture supplemented with olive oil. The highest cell growth and lipase production for Candida viswanathii were observed in triolein and oleic acid when used as the only pure carbon source. Renewable low-cost triacylglycerols supported the best cell growth, and olive oil was found to be the best inducer for lipase production (19.50 g/L and 58.50 U). The selected conditions for enzyme production were found with yeast extract as nitrogen source and 1.5 % (w/v) olive oil (85.70 U) that resulted in a good cell growth yield (YX/S?=?1.234 g/g) and lipase productivity (1.204 U/h) after 72 h of shake-flask cultivation. C. viswanathii lipase presented high hydrolytic activity on esters bonds of triacylglycerols of long-chain, and this strain can be considered an important candidate for future applications in chemical industries.  相似文献   

10.
Candida ingens, a pellicle-forming yeast utilizing volatile fatty acids, grew over a pH range of 4.1 to 6.0 on nonsterile supernatants from anaerobically fermented pig wastes; growth was inconsistent between pH 4.1 and 4.6. When ambient temperature above the pellicle was 21°C and the temperature of the medium was 29 to 32°C, a pH range of 4.8 to 5.0 gave yields of 1.90 to 3.31 g of dry matter per liter, and 0.059 to 0.065 mol of volatile fatty acids was utilized per liter. There was no advantage in utilization of volatile fatty acids and yield of dry matter in keeping the pH constant during a 24-h growth period. C. ingens grew at pH 4.8 and 5.0 when both ambient and medium temperatures were 30°C. When ambient temperature was 10°C, maximum yield and utilization of volatile fatty acids occurred at a medium temperature of 28 to 30°C.  相似文献   

11.
Maternal diabetes impairs fetal development and growth. We studied the effects of maternal diets enriched in unsaturated fatty acids capable of activating peroxisome proliferator-activated receptors (PPARs) on the concentrations of 15deoxyΔ12,14PGJ2 (15dPGJ2), lipid mass, and the de novo lipid synthesis in 13.5-day fetuses from control and diabetic rats. Diabetes was induced by neonatal streptozotocin administration (90 mg/kg). Rats were treated with a standard diet supplemented or not with 6% olive oil or 6% safflower oil from days 0.5 to 13.5 of gestation. Fetuses from diabetic rats fed with the standard diet showed reduced 15dPGJ2 concentrations, whereas maternal treatments with olive and safflower oils increased 15dPGJ2 concentrations. Fetuses from diabetic rats showed increased concentrations of phospholipids and increased synthesis of triglycerides, phospholipids, cholesterol and free fatty acids. Diabetic rat treatments with olive and safflower oils reduced phospholipids, cholesterol, and free fatty acid concentrations and the de novo lipid synthesis in the fetuses. These effects were different from those observed in fetuses from control rats, and seem not to involve PPARγ activation. In conclusion, olive oil- and safflower oil-supplemented diets provide beneficial effects in maternal diabetes, as they prevent fetal impairments in 15dPGJ2 concentrations, lipid synthesis and lipid accumulation.  相似文献   

12.
Acyl-coenzyme A synthetases (ACSs) are associated with the anabolism and catabolism of fatty acids and play fundamental roles in various metabolic pathways. The cDNA of long-chain acyl-coenzyme A synthetase (LACS), one of the ACSs, was isolated from Nannochloropsis oculata and named as NOLACS. The predicted amino acid sequence was highly similar to LACSs of other species. NOLACS encodes a long-chain acyl-coenzyme A synthetase; it recovered the function of LACS in Saccharomyces cerevisiae YB525 (a LACS-deficient yeast strain). The substrate specificity of the enzyme was also assayed in yeast. It was found that NOLACS can activate saturated fatty acids (C12:0, C14:0, C16:0, and C18:0) and some unsaturated fatty acids (C18:2Δ9, 12 and C20:2Δ11, 14) with a preference for long-chain fatty acids. Our findings will provide a deep understanding of CoA-dependent fatty acid activation and also make some contribution to understanding the metabolic pathways of lipids in Nannochloropsis. These findings will also facilitate studies on the regulation of gene expression and genetic modification of fatty acid synthesis and storage of N. oculata.  相似文献   

13.
Summary Growth of Pseudomonas aeruginosa strain 44T1 on glucose, an n-alkane mixture or olive oil was characterized by the formation of intracellular lipid inclusions and extracellular accumulation of rhamnolipids. Maximum values of cellular lipid accumulation were obtained in olive-oil-grown cells and reached up to 38% w/w of its dry biomass. The principal fatty acids of cellular lipids drived from P. aeruginosa cultures varied with the carbon source employed. The major fatty acids detected were palmitic and trans-oleic acids. Arachidonic acid was only found in medium containing glucose or the n-alkane mixture. Offprint requests to: A. Manresa  相似文献   

14.
The native strain Yarrowia lipolytica VKMY-2373 grown in a complete medium exhibited the maximum lipase activity at the concentration of rapesseed oil of at least 5.0 g/l. In the course of yeast growth, no considerable changes were observed in the glycerol concentration, the proportions of the major free fatty acids formed via oil hydrolysis, or the fatty acid composition of oil. Under nitrogen limitation of cell growth, the accumulation of citric acids reached 77.1 g/l with predominance of isocitric acid at pH 6.0, whereas at pH 4.5, almost equal amounts of citric and isocitric acids were produced. Cultivation of the mutant strain Y. lipolytica N 1 at pH 4.5 resulted in the predominant accumulation of citric acid (66.6 g/l) with an insignificant amount of isocitric acid. In the period of intense acid synthesis, high production of lipase was observed.  相似文献   

15.
The regulation of the nature and quantity of the fatty acids produced in vivo by Acholeplasma laidlawii B in the presence of various exogenous fatty acids has been investigated. In the presence of exogenous medium- or long-chain fatty acids, the organism appears to reduce the amounts of de novo biosynthesized fatty acids in its cellular lipid pool by two distinct mechanisms: an excretion of biosynthesized fatty acids to the growth medium as free fatty acids, and a reduction in total de novo biosynthetic output. These two mechanisms do not suffice to maintain constant total membrane lipid levels, but they do appear to significantly moderate the effect of exogenous fatty acids on the level of membrane lipid. In the presence of short-chain fatty acids, total membrane lipid levels are not elevated. Exogenous fatty acids can cause shifts in the average chain length of de novo biosynthesized fatty acids; the magnitudes and directions of these shifts can be correlated with the specificity of the exogenous species for esterification to the 1- or the 2-position of the glycerol moiety of membrane glycerolipids. As the various endogenously synthesized fatty acids differ in their positional specificity for glycerolipid esterification, we propose that the competition of an exogenous species with significant specificity for a particular position with the endogenously derived fatty acids specific for that position can selectively depress the synthesis of such endogenously derived species, thereby altering the overall product spectrum of de novo fatty acid biosynthesis in vivo.  相似文献   

16.
《Process Biochemistry》2014,49(5):725-731
In this study, the yeast strain P10 which was identified to be a member of Aureobasidium pullulans var. melanogenum isolated from the mangrove ecosystems was found to be able to accumulate high content of oil in its cells. After optimization of the medium for lipid production and cell growth by the yeast strain P10, it was found that 8.0 g of glucose per 100 ml, 0.02 g of yeast extract per 100 ml, 0.02 g of ammonium sulfate per 100 ml, pH 6.0 in the medium were the most suitable for lipid production. During 10-l fermentation, a titer was 66.3 g oil per 100 g of cell dry weight, cell mass was 1.3 g per 100 ml, a yield was 0.11 g of oil per g of consumed sugar and a productivity was 0.0009 g of oil per g of consumed sugar per h within 120 h. At the same time, only 0.07 g of reducing sugar per 100 ml was left in the fermented medium. The compositions of the fatty acids produced were C16:0 (26.7%), C16:1(1.7%), C18:0 (6.1%), C18:1 (44.5%), and C18:2 (21.0%). The biodiesel produced from the extracted lipid could be burnt well.  相似文献   

17.
Biosurfactant production may be an economic approach to improving oil recovery. To obtain candidates most suitable for oil recovery, 207 strains, mostly belonging to the genus Bacillus, were tested for growth and biosurfactant production in medium with 5% NaCl under aerobic and anaerobic conditions. All strains grew aerobically with 5% NaCl, and 147 strains produced a biosurfactant. Thirty-five strains grew anaerobically with 5% NaCl, and two produced a biosurfactant. In order to relate structural differences to activity, eight lipopeptide biosurfactants with different specific activities produced by various Bacillus species were purified by a new protocol. The amino acid compositions of the eight lipopeptides were the same (Glu/Gln:Asp/Asn:Val:Leu, 1:1:1:4), but the fatty acid compositions differed. Multiple regression analysis showed that the specific biosurfactant activity depended on the ratios of both iso to normal even-numbered fatty acids and anteiso to iso odd-numbered fatty acids. A multiple regression model accurately predicted the specific biosurfactant activities of four newly purified biosurfactants (r2 = 0.91). The fatty acid composition of the biosurfactant produced by Bacillus subtilis subsp. subtilis strain T89-42 was altered by the addition of branched-chain amino acids to the growth medium. The specific activities of biosurfactants produced in cultures with different amino acid additions were accurately predicted by the multiple regression model derived from the fatty acid compositions (r2 = 0.95). Our work shows that many strains of Bacillus mojavensis and Bacillus subtilis produce biosurfactants and that the fatty acid composition is important for biosurfactant activity.  相似文献   

18.
Two highly purified syntrophic associations resulting in acetogenesis from stearate (SM) and oleate (OM) were obtained from the sludges of a sewage digestor. In both cases, Methanospirillum hungatei together with short, motile, gram-negative, nonfluorescent rods morphologically similar to Syntrophomonas wolfei were identified by microscopic examination. Besides growing on volatile fatty acids (butyrate through caproate), both cultures grew on oleate (C18:1) and numerous even-numbered, saturated long-chain fatty acids (LCFA [decanoate through stearate]). In addition, during growth on LCFA, supplementation of the culture media with calcium chloride was an absolute requirement. The sole difference between the associations was observed when SM and OM cultures were transferred from a stearate to an oleate medium. The SM culture needed 10 days before starting to degrade oleate, whereas the OM culture grew immediately, but the OM culture also grew immediately when transferred to stearate medium. Saturated LCFA degradation occurred in the presence of equinormal amounts of calcium (fatty acid/Ca ratio, 2). On the other hand, OM degradation only took place in the presence of an equimolar amount of calcium (fatty acid/Ca ratio, 1). These observations are discussed by considering the solubility constants of LCFA as calcium salts and the toxicity of the free acids against microorganisms.  相似文献   

19.
A facultative psychrophilic bacterium, strain L-2, that grows at 0 and 5°C as minimum growth temperatures in complex and defined media, respectively, was isolated. On the basis of taxonomic studies, strain L-2 was identified as Cobetia marina. The adaptability of strain L-2 to cold temperature was higher than that of the type strain and of other reported strains of the same species. When the bacterium was grown at 5–15°C in a defined medium, it produced a high amount of trans-unsaturated fatty acids. By contrast, in a complex medium in the same temperature range it produced a low amount of trans-unsaturated fatty acids. In the complex medium at 5°C, the bacterium exhibited a three-fold higher growth rate than that obtained in the defined medium. Following a temperature shift from 11 to 5°C, strain L-2 grew better in complex than in defined medium. Furthermore, when the growth temperature was shifted from 0 to 5°C both the growth rate and the yield of strain L-2 growing in complex medium was markedly enhanced. These phenomena suggest that an upshift of the growth temperature had a positive effect on metabolism. The effects of adding complex medium components to the defined medium on bacterial growth rate and fatty acid composition at 5°C were also studied. The addition of yeast extract followed by peptone was effective in promoting rapid growth, while glutamate addition was less effective, resulting in a cis-unsaturated fatty acid ratio similar to that of cells grown in the complex medium. These results suggest that the rapid growth of strain L-2 at low temperatures requires a high content of various amino acids rather than the presence of a high ratio of cis-unsaturated fatty acids in the cell membrane.  相似文献   

20.
The influence on lipase induction in Mucor hiemalis of different types of triglycerides containing mainly oleic acid (olive oil), erucic acid (mustard oil), or saturated fatty acids of 8 to 16 carbons (coconut oil) was studied. The fungus was grown in shake flasks in a fermentation medium containing peptone, minerals, and glucose or one of the oils as the carbon source. Maximum lipase was produced when the initial pH of the fermentation medium was kept at 4.0. Addition of Ca2+ to the medium did not increase lipase production. The optimum pH for activity of both the mycelial and extracellular lipases was found to be 7.0. The fungus produced a significant amount of lipase in the presence of glucose, but the lipase activity increased markedly when olive oil was added to the medium at the beginning of the fermentation. Addition of olive oil at a later stage did not induce as much enzyme. Studies with washed mycelia showed that a greater amount of lipase was released when olive oil was present than when glucose was present. Among the various types of triglycerides used as the carbon source, olive oil was found to be most effective in inducing the lipase. Olive oil and mustard oil fatty acids inhibited the lipase more than those of coconut oil. The lipase induced by a particular type of triglyceride did not seem to be specific for the same triglyceride, nor was it inhibited specifically by it. Irrespective of the triglyceride used in the fermentation medium, the lipase produced was most active against coconut oil triglyceride, and this specificity, as shown by lipase activities in an n-heptane system, was not found to be due to a better emulsification of this oil. The lipase of M. hiemalis can be considered to be both constitutive and inducible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号