首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
To investigate the influence of pH on methane and sulfide production, continuous cultures were done using a bio-reactor packed with pumice stone. Sulfate (1 g SO42−·l−1) in a methanol defined medium (10 g·l−1) was almost completely reduced to sulfide at pHs between 7.0 and 7.5 in methane fermentation, but at pHs between 6.2 and 6.8, sulfate reduction to sulfide was suppressed up to 40%. In addition, methane fermentation was not inhibited by 10 g sulfate·l−1.  相似文献   

2.
《Process Biochemistry》2010,45(2):164-170
A pilot-scale (1.2 m3) anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal for biomass attachment was fed with sulfate-rich wastewater at increasing sulfate concentrations. Ethanol was used as the main organic source. Tested COD/sulfate ratios were of 1.8 and 1.5 for sulfate loading rates of 0.65–1.90 kgSO42−/cycle (48 h-cycle) or of 1.0 in the trial with 3.0 gSO42− l−1. Sulfate removal efficiencies observed in all trials were as high as 99%. Molecular inventories indicated a shift on the microbial composition and a decrease on species diversity with the increase of sulfate concentration. Beta-proteobacteria species affiliated with Aminomonas spp. and Thermanaerovibrio spp. predominated at 1.0 gSO42− l−1. At higher sulfate concentrations the predominant bacterial group was Delta-proteobacteria mainly Desulfovibrio spp. and Desulfomicrobium spp. at 2.0 gSO42− l−1, whereas Desulfurella spp. and Coprothermobacter spp. predominated at 3.0 gSO42− l−1. These organisms have been commonly associated with sulfate reduction producing acetate, sulfide and sulfur. Methanogenic archaea (Methanosaeta spp.) was found at 1.0 and 2.0 gSO42− l−1. Additionally, a simplified mathematical model was used to infer on metabolic pathways of the biomass involved in sulfate reduction.  相似文献   

3.
《Plant science》1988,54(1):65-74
Olive tree (Olea europaea L) plantlets were regenerated from cotyledon segment calli on a modified olive medium (OMc) supplemented with 2iP alone or in combination with indol-3-butyric acid (IBA). Cell division in the explants was initially induced on OMc medium with high auxin (5 mg·l−1 of IBA) and low cytokinin (0.2–0.5 mg·l−1 of 2-isopentenyladenine (2iP) or zeatin riboside) content. Calli were then transferred to the same medium with different levels of IBA and/or 2iP in order to promote further development and obtain calli bearing either roots or shoots. On OMc medium, 1 mg·l−1 of IBA induced the maximum of rooting, while shoot induction was greater when the medium was supplemented with 4 mg·l−1 of 2iP. Shoot induction mainly occurred from calli of cotyledon fragments proximal to the embryo axes. Whole plantlets were obtained when the regenerated shoots were stimulated to produce adventitious roots on OMr medium with 1 mg·l−1 of IBA or naphthaleneacetic acid (NAA). After root elongation on OMe medium without auxin, plantlets were transfered to peat and soil conditions where about 75–80% were able to survive. A certain variability was detected between regenerated olive plants.  相似文献   

4.
Biological treatment of sulfate and metal-containing wastewater (such as acid mine drainage) is a viable option due to lower cost and better sludge quality compared to conventional chemical treatment. Although several substrates can be used as carbon source, a low-cost substrate is required for large scale applications. This study was conducted to investigate the suitability of waste sludge as a carbon and seed source for sulfate reduction at 8 °C in batch bioassays. Around 7 mmol of sulfate was reduced when the waste sludge mixture (WS) (6700 mg SS l?1) from primary and secondary settling tank was supplemented as a carbon and seed source. However, only 1.6 mmol of sulfate was reduced with anaerobic digester effluent (ADS) (5300 mg SS l?1). The produced H2S from 1 g VSS l?1 WS and ADS oxidation can theoretically precipitate around 90 and 35 mg Fe2+, respectively. Both WS and ADS oxidized ethanol to acetate at similar rates. It appears that WS is a good candidate for carbon and start-up seed source of sulfate reduction at 8 °C, whereas sulfidogenic acetate oxidation was the limiting step. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes showed that both sludge sources contain Desulfomicrobium apsheronum strain.  相似文献   

5.
Rates of methanogenesis and methanotrophy in deep-sea sediments   总被引:3,自引:0,他引:3  
We use the carbon isotopic composition (δ13C) of the dissolved inorganic carbon (DIC) of pore fluids from Leg 175 of the Ocean Drilling Program (ODP) along the West African Margin to quantify rates of methane production (methanogenesis) and destruction via oxidation (methanotrophy) in deep‐sea sediments. Results from a model of diffusion and reaction in the sedimentary column show that anaerobic methane oxidation (AOM) occurs in the transition zone between the presence of sulfate and methane, and methanogenesis occurs below these depths in a narrow confined zone that ends at about 250 m below the sea‐sediments surface in all sediment profiles. Our model suggests that the rates of methanogenesis and AOM range between 6 · 10−8 and 1 · 10−10 mol cm−3 year−1 at all sites, with higher rates at sites where sulfate is depleted in shallower depths. Our AOM rates agree with those based solely on sulfate concentration profiles, but are much lower than those calculated from experiments of sulfate reduction through AOM done under laboratory conditions. At sites where the total organic carbon (TOC) is less than 5% of the total sediment, we calculate that AOM is the main pathway for sulfate reduction. We calculate that higher rates of AOM are associated with increased recrystallization rates of carbonate minerals. We do not find a correlation between methanogenesis rates and the content of carbonate or TOC in the sediments, porosity, sedimentation rate, or the C:N ratio, and the cause of lack of methanogenesis below a certain depth is not clear. There does, however, appear to be an association between the rates of methanogenesis and the location of the site in the upwelling system, suggesting that some variable such as the type of the organic matter or the nature of the microbiological community may be important.  相似文献   

6.
Tychoplanktonic and epilithic diatom samples were taken monthly during one year at 18 sites in small lowland rivers in the northern central region of Portugal. Canonical correspondence analysis was used to explore the relationships between measured environmental variables and patterns in the diatom assemblages. Conductivity, HCO3, and chemical oxygen demand (COD) were the most significant environmental variables influencing the structure of the tychoplankton and of the epilithon. Other less important variables, such as K+, Fe, N(NO3), and Na+ also explained significant (P < 0.05) amounts of variance. The ordination diagrams showed very similar distribution of the tychoplanktonic and epilithic diatom samples. At sites with similar geomorphology as in this study, it is possible to use only one of these samples for water quality evaluation. The optima and tolerances of some diatom taxa were calculated for the most influential variables. Although the diatoms showed high tolerances to some environmental parameters, it was possible to establish groups of taxa with defined and distinctive ecological preferences. Two species groups stood out depending on the alkalinity and mineralization of the water. With a moderate conductivity (> 600 μS·cm−1), alkaline pH, HCO3 concentrations equal or higher than 150 mg·l−1, the first group includes Achnanthes hungarica Grunow, Amphora pediculus (Kützing) Grunow, Bacillaria paxillifera (O. F. Müller) Hendey, Cymatopleura solea (Brébisson) W. Smith, Navicula accomoda Hustedt, Navicula lanceolata (Agardh) Ehrenberg, Navicula trivialis Lange-Bertalot, Nitzschia hungarica Grunow. In waters of lower conductivity (varying between 72 and 262 μS·cm−1) slightly acid pH (6 to 6.5) and HCO3−1 lower than 46 mg·l−1 the following species were common: Achnanthes oblongella Östrup, Achnanthes subatomoides (Hustedt) Lange-Bertalot, et Archibald, Cymbella gracilis (Ehrenberg) Kützing, Cymbella naviculiformis Auerswald, Diatoma mesodon (Ehrenberg) Kützing, and Eunotia exigua (Brébisson) Rabenhorst. Considering COD, two further groups were distinguished. At high values (> 40 mg·l−1) the following taxa were observed: Achnanthes delicatula (Kützing) Grunow, Navicula capitata Ehrenberg var. hungarica (Grunow) Ross, Nitzschia nana Grunow, Pinnularia interrupta W. Smith, Thalassiosira pseudonana Hasle & Heimdal, Thalassiosira weisflogii (Grunow) Fryxell et Hasle. For lower values than 19 mg·l−1, we found Cymbella naviculiformis Auerswald, Diatoma mesodon (Ehrenberg) Kützing, Eunotia exigua (Brébisson) Rabenhorst, Fragilaria arcus (Ehrenberg) Cleve, and Nitzschia epithemioides Grumow var. disputata (Carter) Lange-Bertalot.  相似文献   

7.
The growth of heterocystous bluegreen algae in various concentrations of sodium, was examined in axenic culture as well as in situ studies. Anabaena cylindrica Lemm. with no Na+ added, suffered from decreased rates of acetylene reduction, 14C, assimilation, excretion of organic C as well as lower concentrations of chlorophyll a and particulate organic C compared to cultures supplied with 5, 10, and 50 mg Na+·l−1 Sodium deficient algae released, extracellularly a higher percentage of previously fixed C as organic C. No differences in any parameter measured were demonstrable among cultures grown with 5, 10, and 50 mg Na+·l−1 High nitrate concentrations (20 mg NO3·l−1) resulted in decreased rates of acetylene reduction and heterocyst numbers in. Na sufficient, and Na deficient cultures: however, decreased, cellular Na content at high NO3 levels occurred only in N deficient, cultures. Higher percentages of excreted organic C occurred with increasing NO3 concentrations in Na deficient cultures. Sodium enrichment of natural bluegreen populations with the addition of 50, 100, and 200 mg Na+·l−1 elicited neither a stimulatory nor an inhibitory response in photosynthetic C fixation. In contrast, the addition of small amounts of Na+ (5 mg·l) resulted in increased C fixation. However, since the Na. concentration of the lake water, at ca. 5 mg Na+·l−1, was sufficient for growth of the bluegreens present, sodium, is not assumed to be limiting under most natural conditions. No increase in in situ acetylene reduction rates occurred with additions of sodium.  相似文献   

8.
A combined system designed by converting the flow mixing chamber of an anaerobic filter into an UASB resulted in an increased efficiency of removal of organic matter of 92% and in a gas production of 4.64 l·l−1·d−1, at the highest organic loading rate tested compared with that of the unmodified anaerobic filter. Both reactors were tested using dairy industry wastewater at identical operating conditions at 30°C and organic loading rate between 1 to 8 g COD·l−1·d−1.  相似文献   

9.
The effect of Eh on the methanogenesis of methanol by Methanosarcina barkeri strain Fusaro was studied in pH-controlled anaerobic batch cultures at 37°C, in which the Eh of the culture medium was controlled by the addition of Ti(III)-citrate at values ranging from −340 to −520 mV. The changes in Eh revealed that the specific growth rate, μ, specific methane production rate, QCH4 and growth yield, YX/S were optimum under an Eh between −430 and −520 mV, while they decreased at the higher Eh of −340 mV. The maximum values of QCH4 and μ under the optimum Eh condition were 210 ml CH4/g dry cell weight·h−1 and 0.11 h−1, respectively.  相似文献   

10.
The effects of culture conditions on l-arginine production by continuous culture were studied using a stable l-arginine hyperproducing strain of Corynebacterium aceto-acidophilum, SC-190. Strain SC-190 demonstrated a volumetric productivity of 35 g l−1·h−1 at a dilution rate of 0.083h−1 and feeding sugar concentration of 8%, and a product yield of 29.2% at a dilution rate 0.021h−1 and feeding sugar concentration of 15%. The corresponding values for fed-batch culture are 0.85 g·l−1·h−1 and 26%. However, the product yield decreased with an increase in the volumetric productivity. To achieve stable l-arginine production, aeration and agitation conditions sufficient to maintain an optimal level of redox potential (>−100 mV) were necessary. The addition of phosphate to the feeding medium led to a decrease in l-arginine production. It was confirmed in the steady state that growth and l-arginine formation were inhibited by a high concentration of l-arginine.  相似文献   

11.
《Comptes rendus biologies》2019,342(3-4):101-107
Two arsenic-resistant purple non-sulphur bacteria (PNSB), Q3B and Q3C, were isolated (from industrial contaminated site and paddy fields) and identified by SSU rRNA gene sequencing as Rhodospirillum and Rhodospirillaceae species, respectively. Maximum arsenic reduction by these PNSB was observed in anaerobic conditions. Rhodospirillum sp. Q3B showed 74.92% (v/v) arsenic reduction while Rhodospirillaceae sp. Q3C reduced arsenic up to 76.67% (v/v) in anaerobic conditions. Rhodospirillaceae sp. Q3C was found to contain highest carotenoid content up to 5.6 mg·g−1. Under anaerobic conditions, the isolates were able to respire arsenic in the presence of lactate, citrate, and oxalate. Rhodospirillum sp. Q3B and Rhodospirillaceae sp. Q3C were also found to produce hydrogen gas. Such diverse bacteria can be useful tools for bioremediation purposes. These bacteria can be further exploited and optimized to treat wastewater containing arsenic along with bio-hydrogen production.  相似文献   

12.
《Biological Wastes》1987,19(2):79-90
A full-scale, completely-mixed digester, with a liquid capacity of 587 m3, was constructed to process the manure from 70 000 caged layers. Biogas from the digester was used as fuel for an engine/generator set. The operating temperature was maintained at 35°C using waste heat from the engine. The digester was operated on a 22–24 day HRT. Digester influent averaged 5·90% TS, 5250 ppm TKN, and 3790 ppm NH3N. Digester effluent averaged 3·11% TS, 5090 ppm TKN, and 4060 ppm NH3N.Sustained operation of the digester was achieved during the period of study (8/83−4/85). During this period biogas production averaged 0·38 m3 kg−1 VS added (0·58 m3 kg−1 VS destroyed). The CH4 content averaged 58·0%. The major operational problem encountered was grit accumulation in the digester. This problem was reduced by settling most of the grit from the manure prior to the digester. Biogas production was reduced when concentrated lagoon-liquid was used as make-up water. Approximately 22% of the electricity produced was required for operating the system.  相似文献   

13.
《Process Biochemistry》2007,42(4):580-591
The effect of a low pH (6, 5 and 4) and different COD/SO42− ratios (9 and 3.5) on thermophilic (55 °C) sulfate reduction and acidification of sucrose was investigated using three upflow anaerobic sludge bed reactors fed with sucrose at an organic loading rate of 3.5 gCOD (lreactor d)−1. The three reactors showed nearly 100% acidification of sucrose for all pH values and COD/SO42− ratios investigated. Sulfate reduction was complete at pH 6 and a COD/SO42− ratio of 9. At pH 5, sulfate reduction efficiencies were 80–95% for both COD/SO42− ratios (9 and 3.5). At pH 4, sulfate reduction efficiencies further dropped to 55–65% at a COD/SO42− ratio of 9 and 30–40% at a COD/SO42− ratio of 3.5. The pH decrease from 6 to 5 or 4 caused a shift in the acidification products from mainly acetate to butyrate, as well as a higher production of ethanol, especially at pH 4. At pH 4, propionate and methane were not formed and hydrogen concentrations in the biogas reached 50%, equivalent to a hydrogen yield of 1.3 mol H2 (mol glucose)−1. This study shows that sulfate reduction is possible in the acidification phase of anaerobic wastewater treatment at pH values as low as 6 till 4 and that the pH strongly affects both the acidification pathways and the sulfate reduction efficiencies.  相似文献   

14.
l-Methionine-enriched cells production of an ethionine-resistant mutant of Candida boidinii no. 2201 was greatly improved by the control of pH and by feeding of methanol and other medium components during cultivation in a jar fermentor. Under the optimal conditions, 38.5 g (as dry weight)_of cells abd 282 mg of pool methionine (intracellular pool of free l-methionine) per l of culture broth were obtained after 11 d of cultivation.The culture conditions for production of l-methionine-enriched cells in continuous culture were investigated. With limited methanol in continuous cultivation, pool methionine productivity reached a maximum value of 1.14 mg·l−1·h−1 at a dilution rate of 0.05·h−1. During methanol-limited growth in continuous cultivation, the pool methionine content of the mutant was about 20–35% higher than that in batch cultivation.  相似文献   

15.
To determine the most favorable conditions for the production of ethanol by Pachysolen tannophilus, this yeast was grown in batch cultures with various initial concentrations of two of the constituents of the culture medium: d-xylose (so), ranging from 1 g·l−1 to 200 g·l−1, and yeast extract (lo), ranging from 0 g·l−1 to 8 g·l−1. The most favorable conditions proved to be initial concentrations of So=25 g·l−1 and lo=4 g·l−1, which gave a maximum specific growth rate of 0.26 h−1, biomass productivity of 0.023 g·l−1·h−1, overall biomass yield of 0.094 g·g−1, specific xylose-uptake rate (qs) of 0.3 g·g−1·h−1 (for t=50 h), specific ethanol-production rate (qE) of 0.065 g·g−1·h−1 and overall ethanol yield of 0.34 g·g−1; qs values decreased after the exponential growth phase while qE remained practically constant.  相似文献   

16.
The use of sulfate-reducing bacteria (SRB) in passive treatments of acidic effluents containing heavy metals has become an attractive alternative biotechnology. Treatment efficiency may be linked with the effluent conditions (pH and metal concentration) and also to the amount and nature of the organic substrate. Variations on organic substrate and sulfate ratios clearly interfere with the biological removal of this ion by mixed cultures of SRB. This study aimed to cultivate a mixed culture of SRB using different lactate concentrations at pH 7.0 in the presence of Ni, Mn and Cu. The highest sulfate removal efficiency obtained was 98 %, at a COD/sulfate ratio of 2.0. The organic acid analyses indicated an acetate accumulation as a consequence of lactate degradation. Different concentrations of metals were added to the system at neutral pH conditions. Cell proliferation and sulfate consumption in the presence of nickel (4, 20 and 50 mg l?1), manganese (1.5, 10 and 25 mg l?1) and copper (1.5, 10 and 25 mg l?1) were measured. The presence of metals interfered in the sulfate biological removal however the concentration of sulfide produced was high enough to remove over 90 % of the metals in the environment. The molecular characterization of the bacterial consortium based on dsrB gene sequencing indicated the presence of Desulfovibrio desulfuricans, Desulfomonas pigra and Desulfobulbus sp. The results here presented indicate that this SRB culture may be employed for mine effluent bioremediation due to its potential for removing sulfate and metals, simultaneously.  相似文献   

17.
The qualitative separation performance of a C18, C8 and C4 reversed-phase column was investigated for the separation of histidine and its metabolites histamine, 1-methyihistamine and trans- and cis-urocanic acid. Trans- and cis-urocanic acid were baseline separated from their precursor histidine on all three columns using isocratic elution with a mobile phase composed of 0.01 M aqueous TEAP pH 3.0 and acetonitrile at a ratio of 98:2 (v/v). However, histidine was not separated from histamine and 1-methyihistamine. Selecting the C8 column and introducing 0.005 M of the ion pairing reagent 1-octanesulfonic acid sodium salt into the aqueous solution and acetonitrile at a ratio of 90:10 (v/v), significantly improved the separation. The separation was also followed by a change in the retention times and the order of elution. The sequence of elution was histidine, cis-urocanic acid, trans-urocanic acid, histamine and 1-methylhistamine with retention times of 5.58±0.07, 7.03±0.15, 7.92±0.18, 18.77±0.24 and 20.79±0.21 min (mean±SD; n=5). The separation on the C8 column in the presence of the ion-pairing reagent was further improved with gradient elution that resulted in a reduction in the retention times and elution volumes of histamine and 1-methylhistamine. The detection limits of histidine and trans-urocanic acid at a wavelength of 210 nm and an injection volume of 0.05 ml were 5×10−8 mol l−1 (n=3). The kinetic of the in-vitro conversion of trans- into the cis-isomer after UV irradiation was depending on the time of exposure and the energy of the light source. UVB light induced a significantly faster conversion than UVA light. TUCA and cUCA samples kept at −25°C were stable for up to 50 weeks. Samples, eluted from human skin showed various concentrations of histidine and trans- and cis-urocanic acid with an average of 1.69±0.33×10−5 mol l−1, 1.17±0.43×10−5 mol l−1 and 1.67±0.33×10−5 mol l−1, respectively (n=8).  相似文献   

18.
The effects of organic nitrogen on the metabolism of Clostridium acetobutylicum were investigated in batch fermentations. For this study, amino acids were added to a chemically defined medium in groups from the same biosynthetic pathways. In all cases the addition of amino acids shifted the solvent ratio to higher butanol production at the expense of that of acetone (except for the glutamic acid group) and ethanol (except for histidine). Highest biomass production was obtained from media containing aromatic amino acids and histidine (4.57 g · l−1 and 5.4 g · l−1, respectively). However, the solvent production (ca. 20 g · l−1) and the solvent yield (ca. 33%) in both cases, were similar to those obtained from the synthetic medium. Lower values were obtained from fermentations carried out with other families of amino acids. The strongest inhibition of cell growth (1.13 g · l−1) which related to the lowest solvent production (3.15 g · l−1) was observed on a medium complemented with amino acids of the pyruvic acid group. During the second phase of fermentation, amino acids-complemented media caused a less efficient remetabolization of acetic and butyric acids. Highest production of acids was obtained with the aspartic acid group (7.4 g · l−1). These observations suggest that amino acids can be used as a competitive nitrogen source and also modify the level of enzyme activities involved in acid and solvent production.  相似文献   

19.
《Biomass》1990,21(1):43-54
The effect on anaerobic digestion of reducing the lignin content of vine shoots to 1% (w/w), by treatment with sodium chlorite in an acid medium at 80°C, is reported. The yields of methane obtained were 240 ml of CH4 g−1 of VS (volatile solids) fed for untreated vine shoots, and 370 ml of CH4 g−1 of VS fed for treated vine shoots. A mathematical model was used to calculate the kinetic parameters H and μ, and the increased biodegradability of the substrate in which lignin had been removed was confirmed. A study of the mass balances of the process under optimum conditions (temperature = 35°C; loading rate of 1 g litre−1 digester day−1) enabled the percentage of degraded cellulose to be calculated (35·5% for untreated vine shoots, 81·5% for the treated vine shoots), as were the volumes of biogas and methane produced per gram of VS introduced (VS1) and degraded. The blocking effect of lignin on the methanization process was confirmed.  相似文献   

20.
The algal-bacterial mat of a high-sulfate hot spring (Bath Lake) provided an environment in which to compare terminal processes involved in anaerobic decomposition. Sulfate reduction was found to dominate methane production, as indicated by comparison of initial electron flow through the two processes, rapid conversion of [2-14C]acetate to 14CO2 and not to 14CH4, and the lack of rapid reduction of NaH14CO3 to 14CH4. Sulfate reduction was the dominant process at all depth intervals, but a marked decrease of sulfate reduction and sulfate-reducing bacteria was observed with depth. Concurrent methanogenesis was indicated by the presence of viable methanogenic bacteria and very low but detectable rates of methane production. A marked increased in methane production was observed after sulfate depletion despite high concentrations of sulfide (>1.25 mM), indicating that methanogenesis was not inhibited by sulfide in the natural environment. Although a sulfate minimum and sulfide maximum occurred in the region of maximal sulfate reduction, the absence of sulfate depletion in interstitial water suggests that methanogenesis is always severely limited in Bath Lake sediments. Low initial methanogenesis was not due to anaerobic methane oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号