首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyclonal antibodies directed against (i) rodent lung beta 2-adrenergic receptor, (ii) a synthetic fragment of an extracellular domain of the receptor, and (iii) human placenta G-protein beta-subunits, were used to localize these antigens in situ in intact and permeabilized human epidermoid carcinoma A431 cells. Antibodies directed against beta 2-adrenergic receptors showed a punctate immunofluorescence staining throughout the cell surface of fixed intact cells. Punctate staining was also observed in clones of Chinese hamster ovary cells transfected with an expression vector harbouring the gene for the hamster beta 2-adrenergic receptor. The immunofluorescence observed with anti-receptor antibodies paralleled the level of receptor expression. In contrast, the beta-subunits common to G-proteins were not stained in fixed intact cells, presumably reflecting their intracellular localization. In detergent-permeabilized fixed cells, strong punctate staining of G beta-subunits was observed throughout the cytoplasm. This is the first indirect immunofluorescence localization of beta-adrenergic receptors and G-proteins. Punctate immunofluorescence staining suggests that both antigens are distributed in clusters.  相似文献   

2.
Summary The localization and movements of four nuclear proteins, originally contained in the germinal vesicle ofXenopus oocytes, were followed through early development from cleavage to late neurula. The study made use of monoclonal antibodies directed against germinal vesicle proteins. Biochemical methods showed that all proteins persist in the embryo without a change in molecular size or gross concentration. At early stages the proteins are localized preferentially in the cytoplasm of the animal hemisphere. They shift from the cytoplasm to the nucleus at stages specific for the individual proteins. During mitosis the proteins are released from the nucleus into the cytoplasm.  相似文献   

3.
The localization of immunoglobulins G, A and M in glial cells of neoplastic and reactive origin have been investigated by the use of the PAP (peroxidase-antiperoxidase) method on paraffin embedded tissue previously fixed in calcium formol. It has been found, that some glial cells of astrocyte type showed a very intense staining when oligoclonal antibodies to human immunoglobulins G, A and M specific for gamma, alpha, and mu chains were used. The localization of immunoglobulins was disclosed in astrocytes of various morphology; astrocytes with well developed processes, gemistocyte type cells without or only with short and thick cell processes and in small cells with scanty cytoplasm. The number of cells with immunoglobulins localized is very small. No positive results have been noted if the normal brain tissue is concerned. The specificity of the method is discussed.  相似文献   

4.
5.
《The Journal of cell biology》1983,97(5):1566-1572
To determine whether red blood cell-mediated microinjection of antibodies can be used to study nuclear protein localization and function, we microinjected antibodies that have been shown to react specifically with nucleolar acidic phosphoprotein C23 into Walker 256 cells. The intracellular distribution of microinjected anti-C23 antibodies and preimmune immunoglobulins were determined by immunofluorescence. At 3 h after microinjection, affinity-purified anti- C23 antibodies were localized in the cytoplasm and nucleolus. At 17 h after microinjection, the affinity-purified antibody was localized to those nucleolar structures previously shown to contain protein C23. Furthermore, the antibody remained localized in the nucleolus for at least 36 h after microinjection. In contrast to the results obtained with specific antibodies, preimmune immunoglobulins remained in the cytoplasm 36 h after microinjection. These results indicate that red blood cell-mediated microinjection of antibodies can be used to study nucleolar and nuclear antigens.  相似文献   

6.
The liver represents a site of expression of neurotrophins and their receptors. We have characterized the expression and intracellular localization of the nerve growth factor (NGF) receptor, Trk-A, in liver cells in vivo and in vitro. In both normal and fibrotic liver tissue, Trk-A immunostaining was present in different cell types, including parenchymal cells and cells of the inflammatory infiltrate. In hepatocytes and activated stellate cells (HSC), Trk-A showed a predominant nuclear localization, both in the presence and absence of injury. In cultured HSC, Trk-A was found to be functional, because exposure of the cells to recombinant NGF resulted in stimulation of cell migration and activation of intracellular signaling pathways, including Ras-ERK and PI3K/Akt. Remarkably, in cultured HSC, Trk-A staining was found constitutively in the nucleus. In these cells, Trk-A could be stained only by antibodies directed against the intracellular domain but not by those recognizing the extracellular portion of Trk-A suggesting that the intracellular portion of the receptor is the major determinant of nuclear Trk-A staining. In contrast to HSC, freshly isolated hepatocytes did not show any nuclear localization of the intracellular portion of Trk-A. In pheocromocytoma cells, nuclear staining for Trk-A was not present in conditions of serum deprivation, but could be induced by exposure to NGF or to a mixture of soluble mediators. We conclude that nuclear localization of the intracellular domain of Trk-A is observed constitutively in liver cells such as HSC, while in other cell types it could be induced in response to soluble factors.  相似文献   

7.
Antibody molecules directed against RNA polymerase I, the enzyme responsible for rRNA synthesis, were introduced into rat hepatoma cells by red cell-mediated microinjection. Access of the antibodies to the nucleolus, the site of rRNA synthesis, was facilitated by microinjecting mitotic cells. Using indirect immunofluorescence, anti-RNA polymerase I immunoglobulins, but not control immunoglobulins, were found localized in the nucleoli of microinjected cells. To assess whether intracellular antibodies could alter RNA synthesis, cultures were labeled with [3H] uridine at various times after microinjection. Reduction in RNA synthesis, relative to cells microinjected with non-immune immunoglobulins, was observed within three hours. These results demonstrate that antibodies introduced into the cytoplasm of mitotic cells via red cell-mediated microinjection have free access to nuclear components and that they remain functional within the nuclei of living cells.  相似文献   

8.
In previous studies, a lectin designated as carbohydrate-binding protein 35 (CBP35) has been isolated from cultured 3T3 fibroblasts. In the present study, rabbit antibodies directed against CBP35 were used to analyze the subcellular distribution of CBP35 in 3T3 cells. Several lines of evidence indicate that CBP35 is found externally exposed at the cell surface: immunofluorescent staining of live 3T3 cells; agglutination of suspension of 3T3 fibroblasts by specific antibodies; and isolation, by immunoaffinity chromatography, of a Mr 35,000 component from cells surface-labeled with 125I. In addition to the plasma membrane, CBP35 could also be found intracellularly, as revealed by immunofluorescence studies of fixed and permeabilized 3T3 cells. The staining pattern showed the presence of CBP35 on the nucleus and in the cytoplasm. These results are consistent with the finding that among several subcellular fractions, CBP35 can be found by immunoblotting procedures in the nuclear pellet, the soluble fraction, and the plasma membrane fraction of the postnuclear supernatant.  相似文献   

9.
The zona pellucida is the unique extracellular glycoprotein matrix which is assembled during growth of the mammalian oocyte. The present studies were carried out to examine the formation of this structure in relation to the differentiation of ovarian cell types during follicular development. Specific antibodies were developed against total rabbit ZP proteins as well as against ZP proteins electrophoretically purified by high-resolution two-dimensional polyacrylamide electrophoresis gels (2D-PAGE). Antibodies were characterized by (a) immunoelectrophoresis, (b) a Staphylococcus aureus protein A binding assay, and (c) immunoblotting following 2D-PAGE separation of ZP proteins. Immunoperoxidase localization with these antibodies was used to determine the stage of ovarian follicular development at which ZP antigens first appear as well as to evaluate the cellular and extracellular distribution of these proteins throughout folliculogenesis. The ZP proteins were first observed in the cytoplasm and at the periphery of the oocytes surrounded by a thin squamous follicular cell layer. No staining was observed in the cytoplasm of follicle cells during early folliculogenesis. As the ZP matrix was assembled extracellularly, the intensity of staining of the outer and inner regions could be distinguished. This differentiation of the matrix coincided with the differentiation of the follicular cells into a multilayer cell complex. At this stage, specific ZP proteins are localized within the cytoplasm of the inner layers of these follicular cells. The staining is then diminished in cells of preantral follicles. These studies demonstrate that the formation of the ZP is an excellent model system to study the early stages of follicular development and cell differentiation.  相似文献   

10.
Localization of ribonucleotide reductase in mammalian cells.   总被引:10,自引:2,他引:8       下载免费PDF全文
The results of immunocytochemical studies using two different monoclonal antibodies against the M1 subunit of ribonucleotide reductase show an exclusively cytoplasmic localization of this subunit both in cultured MDBK and mouse 3T6 cells, and in cells from various rat tissues. By fluorescent light microscopy, there is a diffuse staining of the cytoplasm, while by electron microscopy the immunoreactive material appears to be associated with ribosomes. In the rat tissues, only actively dividing cells show M1-specific immunofluorescence revealing a strong correlation between the presence of protein M1 and DNA synthesis. Therefore M1 immunofluorescence could be used to study cell proliferation in normal, inflammatory or neoplastic tissue. A lesser variation in M1 staining is observed between individual cells in tissue culture, where most cells are positive, but neither here nor in the tissues examined are any cells with nuclear staining detected. We interpret our results to mean that in mammalian cells ribonucleotide reduction takes place in the cytoplasm and from there the deoxyribonucleotides are transported into the nucleus to serve in DNA synthesis.  相似文献   

11.
The transport of proteins into the nucleus requires the recognition of a nuclear localization signal sequence. Several proteins that interact with these sequences have been identified, including one of about 66 kDa. We have prepared antibodies that recognize the 66-kDa nuclear localization signal binding protein (NLSBP) and inhibit nuclear localization in vitro. By immunofluorescence, it is seen that the NLSBP is predominantly cytoplasmic and is distributed peripherally around the nucleus and the microtubule organizing center. There is also a weak punctate staining of the surface of the nucleus. Methanol-fixed cells can also be stained directly with fluorescently labeled karyophilic proteins. These stains reveal the same cytoplasmic structures as anti-NLSBP. The expression of the NLSBP is growth dependent. When cells grown to confluence are examined, the cytoplasmic staining is greatly reduced, leaving the punctate nuclear staining as the predominant feature. In serum-starved cells, very little staining of either the cytoplasm or the nucleus can be seen. Upon simulation by the addition of serum, the original cytoplasmic and nuclear envelope staining is restored. Cells grown in the presence of colchicine or taxol have an altered NLSBP distribution but apparently normal cytoplasmic nuclear transport.  相似文献   

12.
The objective of this study was to determine the cellular and subcellular distribution of small nuclear ribonucleoprotein particles (snRNPs) in the adult rat testis in relation to the different cell types at the various stages of the cycle of the seminiferous epithelium. The distribution of snRNPs in the nucleus and cytoplasm of germ cells was quantitated in an attempt to correlate RNA processing with morphological and functional changes occurring during the development of these cells. Light-microscopic immunoperoxidase staining of rat testes with polyclonal anti-Sm and monoclonal anti-Y12 antibodies localized spliceosome snRNPs in the nuclei and cytoplasm of germ cells up to step 10 spermatids. Nuclear staining was intense in Sertoli cells, spermatogonia, spermatocytes, and in the early steps of round spermatid development. Although comparatively weaker, cytoplasmic staining for snRNPs was strongest in mid and late pachytene spermatocytes and early round spermatids. Quantitative electron-microscopic immunogold labeling of Lowicryl embedded testicular sections confirmed the light-microscopic observations but additionally showed that the snRNP content peaked in the cytoplasm of midpachytene spermatocytes and in the nuclei of late pachytene spermatocytes. The immunogold label tended to aggregate into distinct loci over the nuclear chromatin. The chromatoid body of spermatids and spermatocytes and the finely granular material in the interstices of mitochondrial aggregates of spermatocytes were found to be additional sites of snRNP localization and were intensely labeled. This colocalization suggests that these dense cytoplasmic structures may be functionally related. Anti-U1 snRNP antibodies applied to frozen sections showed the same LM localization pattern as spliceosome snRNPs. Anti-U3 snRNP antibodies applied to frozen sections stained nucleoli of germ cells where pre-rRNA is spliced.  相似文献   

13.
Little is known about the relative intracellular localizations of the calcium-dependent proteases, calpains, and their naturally occurring inhibitor, calpastatin. In the present study, the intracellular localization of mu-calpain, m-calpain, and calpastatin was studied at the light microscopic level in proliferating A431 cells. Highly specific antibodies against the three antigens revealed distinct staining patterns in interphase and mitotic cells. Most notably, calpastatin in interphase cells was localized near the nucleus in tube-like, or large granular structures, while the calpains were more uniformly distributed through the cytoplasm in either a fibrillar form (mu-calpain) or a diffuse or fine granular form (m-calpain). The distribution patterns of the two calpain isozymes were distinctly different during mitosis. m-Calpain was concentrated at the mitotic spindle poles and midbody, while mu-calpain appeared to accumulate at the cell membrane and the spindles. Four other human cell lines as well as normal human monocytes were examined to determine if the calpains-calpastatin segregation patterns are common to other cells or are unique to the A431 line. With the exception of abundant nuclear mu-calpain in the C-33A cervical carcinoma, the segregation of the proteins was similar to that of A431. These studies indicate that calpains may be localized at regions which are relatively poor in calpastatin content. Proteins at these sites may be susceptible to calpain-catalyzed cleavage.  相似文献   

14.
The localization of estrogen receptors alpha (ERalpha) and beta (ERbeta) in osteosarcoma SaOS-2 and hepatocarcinoma HepG2 cells was studied by immunofluorescence labelling and confocal laser scanning microscopy, as well as by subcellular fractionation and immunoblotting of the proteins of the fractions with respective antibodies. In both cell types, ERalpha was localized mainly in the nucleus, particularly concentrated on nuclear structures, which on the basis of their staining with pyronin and with antibodies against the nucleoli-specific Ki67 antigen and C23-nucleolin, were characterized as nucleoli. A faint, diffuse ERalpha staining was also observed in the cytoplasm. ERbeta was specifically enriched at the site of the mitochondria, visualized by labelling with the vital dye CMX and antibody against the mitochondrial-specific cytochrome oxidase subunit I. Immunoblotting experiments corroborated the immunofluorescence labelling distribution of ERalpha and ERbeta. These findings support the concept of a direct action of steroid/thyroid hormones on mitochondrial functions by way of their cognate receptors and also suggest a direct involvement of ERalpha in nucleolar-related processes.  相似文献   

15.
Genes encoding the heavy and light chains of a hapten-specific IgM antibody were modified by site-directed mutagenesis to destroy the hydrophobic leader sequences and allow expression in the cytoplasm of non-lymphoid cells. The in situ assembly of the mutant heavy and light chains was tested in transfected cell lines by immunofluorescence using anti-idiotypic antibodies. A positive diffuse cytoplasmic staining was observed. This demonstrated that the antibody polypeptide chains could assemble in the cell cytoplasm and led us to ask whether antibodies could be further targeted to the nucleus. Mutations were therefore made in which the leader sequence of the light chain was replaced by the nuclear localization signal of the SV40 large T antigen. Transfectants in which the heavy chain lacking the hydrophobic leader was expressed together with a light chain carrying the nuclear localization signal were selected and a nuclear distribution of the assembled antibody was found. Thus, it should prove possible to target a specific antibody to the cell nucleus with the aim of interfering with the function of a nuclear antigen.  相似文献   

16.
The localization of glucocorticoid and estrogen receptors alpha (GRalpha, ERalpha) and beta (GRbeta, ERbeta) in osteosarcoma SaOS-2 and hepatocarcinoma HepG2 cells was studied by immunofluorescence labelling and confocal laser scanning microscopy, as well as by subcellular fractionation and immunoblotting of the proteins of the fractions with respective antibodies. In HepG2 and SaOS-2 cells GRbeta and ERalpha were localized mainly in the nucleus, particularly concentrated in nuclear structures, which on the basis of their staining with antibody against C23-nucleolin, were characterized as nucleoli. A faint, diffuse GRbeta and ERalpha staining was also observed in the cytoplasm. GRalpha and ERbeta were specifically enriched at the site of cell mitochondria, which were visualized by labelling with the vital dye CMX. Immunoblotting experiments corroborated the immunofluorescence labelling distribution of glucocorticoid and estrogen receptor isoforms in the cell lines studied. These findings support the concept of a direct action of steroid/thyroid hormones on mitochondrial functions by way of their cognate receptors and also suggest a direct involvement of GRbeta and ERalpha in nucleolar-related processes in HepG2 and SaOS-2 cells.  相似文献   

17.
 Glutathione S-transferase-mediated metabolism of exogenous compounds usually leads to detoxification, but there are some exceptions. For example, glutathione S-transferase-T1 (GSTT1) can also generate genotoxic metabolites. Studies on the biology of GSTT1 are limited by the lack of specific antibodies recognizing GSTT1 in animal tissues. We localized GSTT1 immunohistochemically in mouse kidney, liver, and lung using a novel antibody targeted against the C-terminus of rat GSTT1 (rGSTT1). The antibody was characterized using immunoblot and shown to specifically recognize rGSTT1 and mouse GSTT1, but not human GSTT1. In kidney, GSTT1 staining was detected only in collecting duct epithelium. In liver, pericentral hepatocytes showed cytoplasmic and nuclear staining. Nuclear staining was also observed in several other hepatocytes without relation to liver zonation. Nuclei and supranuclear cytoplasm of bile duct epithelium and endothelium of interlobular arterioles also reacted strongly. In lung, staining was observed in bronchiolar epithelium and in surrounding muscle cells. Type II pneumocytes and endothelial cells of intrapulmonary capillaries also showed strong positive staining. This report describes the first immunohistochemical localization of GSTT1 in mammalian tissues. The reported location of GSTT1 is consistent with its known metabolic activity toward compounds such as dichloromethane and their metabolism into genotoxic products. Accepted: 11 May 1998  相似文献   

18.
The present study revealed the mechanism underlying the nuclear trafficking of metallothionein (MT). Nuclear localization of MT in digitonin-permeabilized BALB 3T3 cells was enhanced in the presence of a cytosolic factor added as a rat red blood cell lysate by oxidation with H2O2 in a dose-dependent manner, but inhibited with excess glutathione. A cytosolic partner was assumed to bind MT and retain it in the cytoplasm, and its oxidation can mobilize MT to the nuclei on cellular oxidation. Pre-treatment of nuclei with H2O2 did not enhance the localization, and MT that had been localized in the nuclei was washed out, indicating that MT is in the nuclei as a result of a higher rate of uptake by the nuclei than the rate of diffusion from the nuclei. Nuclear localization of lysozyme and nuclear localization signal (NLS)-bearing allophycocyanin were not enhanced by the oxidation in the presence of cytosolic factor, suggesting that the nuclear traffic occurring on oxidation is specific to MT. Moreover, when cells were arrested the cell cycle at the S phase, MT was localized in the nuclei in response to coincidental generation of a feeble reactive oxygen species (ROS). These observations suggest that MT comes localized in the nuclei on the sensing of intracellular oxidation, whereby a cytosolic partner specific to MT comes oxidized as a cargo system, MT being localized as a result of enhanced uptake in the nuclei and re-localized in the cytoplasm diffusely. Nuclear MT was proposed to protect the nuclei from the oxidation occurring with progression of the cell cycle.  相似文献   

19.
Epitope-specific antibodies to the M1 and M2 subunits of mammalian ribonucleotide reductase were prepared using peptides predicted to have a high antigenic index. Western blotting demonstrated that the anti-M1 antibody was specific for the 89-kilodalton M1 subunit (and its degradation fragments) and the anti-M2 antibody specifically recognized the 45-kilodalton M2 subunit. Both antibodies inhibited the CDP-reductase activity of the holoenzyme. Using these antibodies, both the M1 and M2 subunits were shown to be localized in the cytoplasm and in the nuclear regions of a number of cell types, including B77 avian sarcoma virus transformed NRK cells, T51B rat liver cells, 5123tc hepatoma cells, and rat liver cells in vivo. In addition, the M1 subunit was found to be localized as a halo around isolated rat liver nuclei. Biochemical analysis of the cytoplasmic fraction of liver cells and a Triton X-100 wash of nuclei from these cells confirmed the location of the enzyme activity in these cellular compartments. The M1 subunit appears to be glycosylated, as indicated by its retention on a Affi-Gel-concanavalin A affinity column. Therefore, in mammalian cells ribonucleotide reductase appears to be not only in the cytoplasm, but is also associated with the nuclear membrane or nuclear lamina. The activity of the enzyme in the membrane fraction changes dynamically during the cell cycle.  相似文献   

20.
In eukaryotic cells, nucleus-cytoplasm exchanges play an important role in genomic regulation. We have analyzed the localization of four nuclear antigens in different growth conditions: two replicative proteins, DNA polymerase alpha and proliferating cell nuclear antigen (PCNA), and two oncogenic regulatory proteins, c-Myc and c-Fos. A kinetic study of subcellular localization of these proteins has been done. In cultures in which cells were sparse, these proteins were detected in the nucleus. When proliferation was stopped by the high density of culture cells or by serum starvation, these proteins left the nucleus for the cytoplasm with different kinetics. DNA polymerase alpha is the first protein to leave the nucleus, with the PCNA protein, c-Fos, and c-Myc leaving the nucleus later. In contrast, during serum stimulation c-Fos and c-Myc relocalize into the nucleus before the replicative proteins. We also noticed that in sparse cell cultures, 10% of the cells exhibit a perinuclear staining for the DNA polymerase alpha, PCNA, and c-Myc proteins but not for c-Fos. This peculiar staining was also observed as an initial step to nuclear localization after serum stimulation and in vivo in Xenopus embryos when the G1 phase is reintroduced in the embryonic cell cycle at the mid-blastula stage. We suggest that such staining could reflect specific structures involved in the initiation of the S phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号