首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a new method for identifying specific single- or double-stranded DNA sequences called nicking endonuclease signal amplification (NESA). A probe and target DNA anneal to create a restriction site that is recognized by a strand-specific endonuclease that cleaves the probe into two pieces leaving the target DNA intact. The target DNA can then act as a template for fresh probe and the process of hybridization, cleavage and dissociation repeats. Laser-induced fluorescence coupled with capillary electrophoresis was used to measure the probe cleavage products. The reaction is rapid; full cleavage of probe occurs within one minute under ideal conditions. The reaction is specific since it requires complete complementarity between the oligonucleotide and the template at the restriction site and sufficient complementarity overall to allow hybridization. We show that both Bacillus subtilis and B. anthracis genomic DNA can be detected and specifically differentiated from DNA of other Bacillus species. When combined with multiple displacement amplification, detection of a single copy target from less than 30 cfu is possible. This method should be applicable whenever there is a requirement to detect a specific DNA sequence. Other applications include SNP analysis and genotyping. The reaction is inherently simple to multiplex and is amenable to automation.  相似文献   

2.
Amplification of DNA in vivo occurs in intracellular environments characterized by macromolecular crowding (MMC). In vitro Polymerase-chain-reaction (PCR), however, is non-crowded, requires thermal cycling for melting of DNA strands, primer-template hybridization and enzymatic primer-extension. The temperature-optima for primer-annealing and extension are strikingly disparate which predicts primers to dissociate from template during extension thereby compromising PCR efficiency. We hypothesized that MMC is not only important for the extension phase in vivo but also during PCR by stabilizing nucleotide hybrids. Novel atomistic Molecular Dynamics simulations elucidated that MMC stabilizes hydrogen-bonding between complementary nucleotides. Real-time PCR under MMC confirmed that melting-temperatures of complementary DNA–DNA and DNA–RNA hybrids increased by up to 8°C with high specificity and high duplex-preservation after extension (71% versus 37% non-crowded). MMC enhanced DNA hybrid-helicity, and drove specificity of duplex formation preferring matching versus mismatched sequences, including hair-pin-forming DNA- single-strands.  相似文献   

3.
T4 DNA ligase catalyzes the template-dependent ligation of DNA. Using T4 DNA ligase under specific experimental conditions, we demonstrate that each of the four canonical nucleosides, centrally located on a template molecule such that they flank the site of ligation, can direct the ligation of nucleic acids regardless of the identity of the terminal nucleosides being covalently joined. This universal templating capability extends to those positions adjacent to the ligation junction. This is the first report, irrespective of the ligation method used or the identity of the template nucleosides (including analogs), which shows that nucleosides can act essentially as universal templates at ligation junctions in vitro. The canonical nucleosides do, however, differ in their ability to template sequence- independent ligations, with thymidine and guanosine being equally effective, yet more effective than adenosine and cytidine. Results indicate that hybridization strength surrounding the ligation junction is an important factor. The implications of this previously undiscovered property of T4 DNA ligase with canonical nucleosides are discussed.  相似文献   

4.
We show that DNA molecules amplified by PCR from DNA extracted from animal bones and teeth that vary in age between 25 000 and over 50 000 years carry C→T and G→A substitutions. These substitutions can reach high proportions among the molecules amplified and are due to the occurrence of modified deoxycytidine residues in the template DNA. If the template DNA is treated with uracil N-glycosylase, these substitutions are dramatically reduced. They are thus likely to result from deamination of deoxycytidine residues. In addition, ‘jumping PCR’, i.e. the occurrence of template switching during PCR, may contribute to these substitutions. When DNA sequences are amplified from ancient DNA extracts where few template molecules initiate the PCR, precautions such as DNA sequence determination of multiple clones derived from more than one independent amplification are necessary in order to reduce the risk of determination of incorrect DNA sequences. When such precautionary measures are taken, errors induced by damage to the DNA template are unlikely to be more frequent than ~0.1% even under the unlikely scenario where each amplification starts from a single template molecule.  相似文献   

5.
Three different methods have been used to determine the rate at which an individual bacteriophage T4 DNA polymerase molecule moves when synthesizing DNA on a single-stranded DNA template chain. These methods agree in suggesting an in vitro rate for this enzyme of about 250 nucleotides per second at 37 °C. This rate is close to the rate at which bacteriophage T4 replication forks move in vivo (about 500 nucleotides per second). Comparison with the overall amount of DNA synthesis seen in in vitro reactions reveals that only a small fraction of the T4 DNA polymerase molecules present are synthesizing DNA at any one time. This is explicable in terms of the limited processivity of the enzyme in these reactions, along with its capacity for non-productive DNA binding to the DNA template molecules.  相似文献   

6.
Enzymatic Mechanisms of DNA Replication   总被引:4,自引:0,他引:4  
DNA polymerases purified from several sources are characterized by replication of the 3'-hydroxy-terminated strand of a helical template. Failure to achieve simultaneous replication of the 5'-strand leads to aberrations in the synthesized DNA, described as nondenaturability and branching. Aberrations in synthesized DNA were not observed when (a) the 5'-strand was destroyed by a specific nuclease during the course of replication or (b) a single-stranded (circular) phage (M13) DNA served as template. Replication of a single-stranded, circular DNA produced a helical product, but the nature of initiation of a new strand by the circular template remains to be explained. Hypothetical mechanisms for simultaneous replication of the 5'-strand are presented as is the possibility that the tertiary structure of the DNA, as for example, a circular form of the helix, is of prime importance in in vivo replication.  相似文献   

7.
One of the key points in the genome project is finding waysto reduce the running cost in DNA sequencing. One way is touse a highly-sensitive fluorescent DNA sequencer, where onlytrace amounts of template DNA and reagents are needed. An experimentalprotocol optimized for the trace amounts of DNA analysis wasestablished by using the hybridization reaction rate coefficientof primers on template DNA, which was estimated to be 7.5x105M–1 sec–1 at 37°C. One femtomole of templateDNA with 0.001 unit of modified T7 DNA polymerase (SequenaseVer. 2.0) and also 0.45 fmol of M13 template DNA with 0.01 unitof Taq DNA polymerase were enough to sequence DNA of up to 400bases.  相似文献   

8.
In rolling circle replication, a circular template of DNA is replicated as a long single-stranded DNA concatamer that spools off when a strand displacing polymerase traverses the circular template. The current view is that this type of replication can only produce single-stranded DNA, because the only 3′-ends available are the ones being replicated along the circular templates. In contrast to this view, we find that rolling circle replication in vitro generates large amounts of double stranded DNA and that the production of single-stranded DNA terminates after some time. These properties can be suppressed by adding single-stranded DNA-binding proteins to the reaction. We conclude that a model in which the polymerase switches templates to the already produced single-stranded DNA, with an exponential distribution of template switching, can explain the observed data. From this, we also provide an estimate value of the switching rate constant.  相似文献   

9.
10.
The mechanism of enzymatic elongation by Escherichia coli DNA polymerase II of a DNA primer, which is annealed to a unique position on the bacteriophage fd viral DNA, has been studied. The enzyme is found to dissociate from the substrate at specific positions on the genome which act as “barriers” to further primer extension. It is believed these are sites of secondary structure in the DNA. When the template is complexed with E. coli DNA binding protein many of these barriers are eliminated and the enzyme remains associated with the same primer-template molecule during extensive intervals of DNA synthesis. Despite the presence of E. coli DNA binding protein, at least one barrier on the fd genome remains rate-limiting to chain extension and disturbs the otherwise processive mechanism of DNA synthesis. This barrier is overcome by increasing the concentration of enzyme.In contrast, it is found that DNA polymerase I is not rate-limited by structural barriers in the template, however, it exhibits a non-processive mechanism of elongation.These findings provide a framework for understanding the necessity for participation of proteins other than a DNA polymerase in chain extension during chromosomal replication.  相似文献   

11.
Although mechanisms of single-nucleotide residue deletion have been investigated, processes involved in the loss of longer nucleotide sequences during DNA replication are poorly understood. Previous reports have shown that in vitro replication of a 3′-TGC TGC template sequence can result in the deletion of one 3′-TGC. We have used low-energy circular dichroism (CD) and fluorescence spectroscopy to investigate the conformations and stabilities of DNA models of the replication intermediates that may be implicated in this frameshift. Pyrrolocytosine or 2-aminopurine residues, site-specifically substituted for cytosine or adenine in the vicinity of extruded base sequences, were used as spectroscopic probes to examine local DNA conformations. An equilibrium mixture of four hybridization conformations was observed when template bases looped-out as a bulge, i.e. a structure flanked on both sides by duplex DNA. In contrast, a single-loop structure with an unusual unstacked DNA conformation at its downstream edge was observed when the extruded bases were positioned at the primer–template junction, showing that misalignments can be modified by neighboring DNA secondary structure. These results must be taken into account in considering the genetic and biochemical mechanisms of frameshift mutagenesis in polymerase-driven DNA replication.  相似文献   

12.
The recombinant Ca2+-activated photoprotein obelin was used as a reporter protein in a solid-phase bioluminescent hybridization DNA assay. Oligonucleotide probes were immobilized on the surface of polymer methacrylate beads or microbiological plates of different types. A 30-mer oligonucleotide or its derivative with the biotin residue on the 3′-terminus, as well as a denatured double-stranded PCR fragment of the hepatitis C virus with the sequence of the 30-mer oligonucleotide was used as a DNA template. The probe in the hybridization complex was labeled by the elongation of the chain using a Taq DNA polymerase in the presence of biotinylated deoxyuridine triphosphate. The results of the bioluminescent assay were compared with the results of colorimetric analysis obtained with alkaline phosphatase as a reporter protein. It was shown that the use of the bioluminescent obelin label substantially accelerates the DNA detection procedure, provides a high sensitivity of the assay (no less than 10?15 mol of DNA template), and ensures a quantitative determination of the amount of DNA template in the tested sample.  相似文献   

13.
We have characterized a soluble enzyme system from adenovirus-infected cells that is capable of replicating exogenously added adenovirus DNA in vitro. Maximal DNA synthesis is observed when DNA-protein complex, isolated from purified adenovirus virions, is added as template. Under these conditions DNA replication starts at or near either end of the template. Daughter strand synthesis then proceeds in the 5′ to 3′ direction displacing the parental strand of the same polarity. Thus, the r daughter strand is synthesized from right to left on the conventional map of the adenovirus genome, and the l daughter strand is synthesized from left to right. This course of events is the same as that which occurs during adenovirus DNA replication in vivo. In contrast, when deproteinized adenovirus DNA is added to the in vitro system, the limited DNA synthesis that is observed appears to be due to a repair-like reaction. In particular, synthesis can begin at many sites within the template, and the synthetic product consists largely of short DNA chains that are covalently linked to template DNA strands.  相似文献   

14.
Spontaneous damage to DNA as a result of deamination, oxidation and depurination is greatly accelerated at high temperatures. Hyperthermophilic microorganisms constantly exposed to temperatures exceeding 80°C are endowed with powerful DNA repair mechanisms to maintain genome stability. Of particular interest is the processing of DNA lesions during replication, which can result in fixed mutations. The hyperthermophilic crenarchaeon Sulfolobus solfataricus has two functional DNA polymerases, PolB1 and PolY1. We have found that the replicative DNA polymerase PolB1 specifically recognizes the presence of the deaminated bases hypoxanthine and uracil in the template by stalling DNA polymerization 3–4 bases upstream of these lesions and strongly associates with oligonucleotides containing them. PolB1 also stops at 8-oxoguanine and is unable to bypass an abasic site in the template. PolY1 belongs to the family of lesion bypass DNA polymerases and readily bypasses hypoxanthine, uracil and 8-oxoguanine, but not an abasic site, in the template. The specific recognition of deaminated bases by PolB1 may represent an initial step in their repair while PolY1 may be involved in damage tolerance at the replication fork. Additionally, we reveal that the deaminated bases can be introduced into DNA enzymatically, since both PolB1 and PolY1 are able to incorporate the aberrant DNA precursors dUTP and dITP.  相似文献   

15.
DNA in situ hybridization (DNA ISH) is a commonly used method for mapping sequences to specific chromosome regions. This approach is particularly effective at mapping highly repetitive sequences to heterochromatic regions, where computational approaches face prohibitive challenges. Here we describe a streamlined protocol for DNA ISH that circumvents formamide washes that are standard steps in other DNA ISH protocols. Our protocol is optimized for hybridization with short single strand DNA probes that carry fluorescent dyes, which effectively mark repetitive DNA sequences within heterochromatic chromosomal regions across a number of different insect tissue types. However, applications may be extended to use with larger probes and visualization of single copy (non-repetitive) DNA sequences. We demonstrate this method by mapping several different repetitive sequences to squashed chromosomes from Drosophila melanogaster neural cells and Nasonia vitripennis spermatocytes. We show hybridization patterns for both small, commercially synthesized probes and for a larger probe for comparison. This procedure uses simple laboratory supplies and reagents, and is ideal for investigators who have little experience with performing DNA ISH.  相似文献   

16.
Synthesis of ribosomal RNA in a cell-free system was achieved using purified Escherichia coli RNA polymerase and bacterial DNA templates from E. coli, Proteus mirabilis and E. coli/P. mirabilis hybrid strains carrying an E. coli DNA enriched for ribosomal RNA genes.Both direct and indirect competition hybridization revealed that from 5 to 15% of the in vitro product, depending on the template used, had sequences homologous to rRNA. The level of synthesis of sequences homologous to rRNA was related directly to the proportion of rRNA genes in the template. The use of heterologous DNA during competition hybridization ensured at least a 100-fold greater sensitivity for the detection of rRNA sequences than from any messenger RNA sequence.  相似文献   

17.
The cytosine analog 1,3-diaza-2-oxophenothiazine (tC) is a fluorescent nucleotide that forms Watson-Crick base pairs with dG. The Klenow fragment of DNA polymerase I (an A-family polymerase) can efficiently bypass tC on the template strand and incorporate deoxyribose-triphosphate-tC into the growing primer terminus. Y-family DNA polymerases are known for their ability to accommodate bulky lesions and modified bases and to replicate beyond such nonstandard DNA structures in a process known as translesion synthesis. We probed the ability of the Escherichia coli Y-family DNA polymerase DinB (Pol IV) to copy DNA containing tC and to incorporate tC into a growing DNA strand. DinB selectively adds dGTP across from tC in template DNA but cannot extend beyond the newly formed G:tC base pair. However, we find that DinB incorporates the tC deoxyribonucleotide triphosphate opposite template G and extends from tC. Therefore, DinB displays asymmetry in terms of its ability to discriminate against the modification of the DNA template compared to the incoming nucleotide. In addition, our finding that DinB (a lesion-bypass DNA polymerase) specifically discriminates against tC in the template strand may suggest that DinB discriminates against template modifications in the major groove of DNA.  相似文献   

18.
19.
Lesion bypass is an important mechanism to overcome replication blockage by DNA damage. Translesion synthesis requires a DNA polymerase (Pol). Human Pol ι encoded by the RAD30B gene is a recently identified DNA polymerase that shares sequence similarity to Pol η. To investigate whether human Pol ι plays a role in lesion bypass we examined the response of this polymerase to several types of DNA damage in vitro. Surprisingly, 8-oxoguanine significantly blocked human Pol ι. Nevertheless, translesion DNA synthesis opposite 8-oxoguanine was observed with increasing concentrations of purified human Pol ι, resulting in predominant C and less frequent A incorporation opposite the lesion. Opposite a template abasic site human Pol ι efficiently incorporated a G, less frequently a T and even less frequently an A. Opposite an AAF-adducted guanine, human Pol ι was able to incorporate predominantly a C. In both cases, however, further DNA synthesis was not observed. Purified human Pol ι responded to a template TT (6–4) photoproduct by inserting predominantly an A opposite the 3′ T of the lesion before aborting DNA synthesis. In contrast, human Pol ι was largely unresponsive to a template TT cis-syn cyclobutane dimer. These results suggest a role for human Pol ι in DNA lesion bypass.  相似文献   

20.
DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号