首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite recent evidences suggesting that agents inducing endoplasmic reticulum (ER) stress could be exploited as potential antitumor drugs in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), the mechanisms of this anticancer action are not fully understood. Moreover, the effects of ER stress and TRAIL in nontransformed cells remain to be investigated. In this study we report that ER stress-inducing agents sensitizes both transformed and nontransformed cells to TRAIL-induced apoptosis. In addition, glucose-regulated protein of 78 kDa (GRP78) knockdown by RNA interference induces ER stress and facilitates apoptosis by TRAIL. We demonstrate that TRAIL death-inducing signaling complex (DISC) formation and early signaling are enhanced in ER stressed cells. ER stress alters the cellular levels of different apoptosis-related proteins including a decline in the levels of FLIP and Mcl-1 and the up-regulation of TRAIL-R2. Up-regulation of TRAIL-R2 following ER stress is dependent on the expression of PKR-like ER kinase (PERK) and independent of CAAT/enhancer binding protein homologous protein (CHOP) and Ire1α. Silencing of TRAIL-R2 expression by siRNA blocks the ER stress-mediated sensitization to TRAIL-induced apoptosis. Furthermore, simultaneous silencing of cFLIP and Mcl-1 expression by RNA interference results in a marked sensitization to TRAIL-induced apoptosis. Finally, in FLIP-overexpressing cells ER stress-induced sensitization to TRAIL-activated apoptosis is markedly reduced. In summary, our data reveal a pleiotropic mechanism involving both apoptotic and anti-apoptotic proteins for the sensitizing effect of ER stress on the regulation of TRAIL receptor-mediated apoptosis in both transformed and nontransformed cells.  相似文献   

2.
BACKGROUND: Most tumors express death receptors and their activation represents a potential selective approach in cancer treatment. The most promising candidate for tumor selective death receptor-activation is tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L, which activates the death receptors TRAIL-R1 and TRAIL-R2, and induces apoptosis preferentially in tumor cells but not in normal tissues. However, many cancer cells are not or only moderately sensitive towards TRAIL and require cotreatment with irradiation or chemotherapy to yield a therapeutically reasonable apoptotic response. Because chemotherapy can have a broad range of unwanted side effects, more specific means for sensitizing tumor cells for TRAIL are desirable. The expression of the cellular FLICE-like inhibitory protein (cFLIP) is regarded as a major cause of TRAIL resistance. We therefore analyzed the usefulness of targeting FLIP to sensitize tumor cells for TRAIL-induced apoptosis. MATERIALS AND METHODS: To selectively interfere with expression of cFLIP short double-stranded RNA oligonucleotides (small interfering RNAs [siRNAs]) were introduced in the human cell lines SV80 and KB by electroporation. Effects of siRNA on FLIP expression were analyzed by Western blotting and RNase protection assay and correlated with TRAIL sensitivity upon stimulation with recombinant soluble TRAIL and TRAIL-R1- and TRAIL-R2-specific agonistic antibodies. RESULTS: FLIP expression can be inhibited by RNA interference using siRNAs, evident from reduced levels of FLIP-mRNA and FLIP protein. Inhibition of cFLIP expression sensitizes cells for apoptosis induction by TRAIL and other death ligands. In accordance with the presumed function of FLIP as an inhibitor of death receptor-induced caspase-8 activation, down-regulation of FLIP by siRNAs enhanced TRAIL-induced caspase-8 activation. CONCLUSION: Inhibition of FLIP expression was sufficient to sensitize tumor cells for TRAIL-induced apoptosis. The combination of TRAIL and FLIP-targeting siRNA could therefore be a useful strategy to attack cancer cells, which are resistant to TRAIL alone.  相似文献   

3.
4.
NF-kappaB is critical for determining cellular sensitivity to apoptotic stimuli by regulating both mitochondrial and death receptor apoptotic pathways. The endoplasmic reticulum (ER) emerges as a new apoptotic signaling initiator. However, the mechanism by which ER stress activates NF-kappaB and its role in regulation of ER stress-induced cell death are largely unclear. Here, we report that, in response to ER stress, IKK forms a complex with IRE1alpha through the adapter protein TRAF2. ER stress-induced NF-kappaB activation is impaired in IRE1alpha knockdown cells and IRE1alpha(-/-) MEFs. We found, however, that inhibiting NF-kappaB significantly decreased ER stress-induced cell death in a caspase-8-dependent manner. Gene expression analysis revealed that ER stress-induced expression of tumor necrosis factor alpha (TNF-alpha) was IRE1alpha and NF-kappaB dependent. Blocking TNF receptor 1 signaling significantly inhibited ER stress-induced cell death. Further studies suggest that ER stress induces down-regulation of TRAF2 expression, which impairs TNF-alpha-induced activation of NF-kappaB and c-Jun N-terminal kinase and turns TNF-alpha from a weak to a powerful apoptosis inducer. Thus, ER stress induces two signals, namely TNF-alpha induction and TRAF2 down-regulation. They work in concert to amplify ER-initiated apoptotic signaling through the membrane death receptor.  相似文献   

5.
Although the prion protein is abundantly expressed in the CNS, its biological functions remain unclear. To determine the endogenous function of the cellular prion protein (PrP(c)), we compared the effects of oxidative stress and endoplasmic reticulum (ER) stress inducers on apoptotic signaling in PrP(c)-expressing and PrP(ko) (knockout) neural cells. H(2)O(2), brefeldin A (BFA), and tunicamycin (TUN) induced increases in caspase-9 and caspase-3, PKCdelta proteolytic activation, and DNA fragmentation in PrP(c) and PrP(ko) cells. Interestingly, ER stress-induced activation of caspases, PKCdelta, and apoptosis was significantly exacerbated in PrP(c) cells, whereas H(2)O(2)-induced proapoptotic changes were suppressed in PrP(c) compared to PrP(ko) cells. Additionally, caspase-12 and caspase-8 were activated only in the BFA and TUN treatments. Inhibitors of caspase-9, caspase-3, and PKCdelta significantly blocked H(2)O(2)-, BFA-, and TUN-induced apoptosis, whereas the caspase-8 inhibitor attenuated only BFA- and TUN-induced cell death, and the antioxidant MnTBAP blocked only H(2)O(2)-induced apoptosis. Overexpression of the kinase-inactive PKCdelta(K376R) or the cleavage site-resistant PKCdelta(D327A) mutant suppressed both ER and oxidative stress-induced apoptosis. Thus, PrP(c) plays a proapoptotic role during ER stress and an antiapoptotic role during oxidative stress-induced cell death. Together, these results suggest that cellular PrP enhances the susceptibility of neural cells to impairment of protein processing and trafficking, but decreases the vulnerability to oxidative insults, and that PKCdelta is a key downstream mediator of cellular stress-induced neuronal apoptosis.  相似文献   

6.
CCL2 and interleukin (IL)-6 are among the most prevalent cytokines in the tumor microenvironment, with expression generally correlating with tumor progression and metastasis. CCL2 and IL-6 induced expression of each other in CD11b+ cells isolated from human peripheral blood. It was demonstrated that both cytokines induce up-regulation of the antiapoptotic proteins cFLIPL (cellular caspase-8 (FLICE)-like inhibitory protein), Bcl-2, and Bcl-XL and inhibit the cleavage of caspase-8 and subsequent activation of the caspase-cascade, thus protecting cells from apoptosis under serum deprivation stress. Furthermore, both cytokines induced hyperactivation of autophagy in these cells. Upon CCL2 or IL-6 stimulation, CD11b+ cells demonstrated a significant increase in the mannose receptor (CD206) and the CD14+/CD206+ double-positive cells, suggesting a polarization of macrophages toward the CD206+ M2-type phenotype. Caspase-8 inhibitors mimicked the cytokine-induced up-regulation of autophagy and M2 polarization. Furthermore, E64D and leupeptin, which are able to function as inhibitors of autophagic degradation, reversed the effect of caspase-8 inhibitors in the M2-macrophage polarization, indicating a role of autophagy in this mechanism. Additionally, in patients with advanced castrate-resistant prostate cancer, metastatic lesions exhibited an increased CD14+/CD206+ double-positive cell population compared with normal tissues. Altogether, these findings suggest a role for CCL2 and IL-6 in the survival of myeloid monocytes recruited to the tumor microenvironment and their differentiation toward tumor-promoting M2-type macrophages via inhibition of caspase-8 cleavage and enhanced autophagy.  相似文献   

7.
Stress-induced apoptosis is mediated primarily through the intrinsic pathway that involves caspase-9. We previously reported that in caspase-9-deficient cells, a protein complex containing ATG5 and Fas-associated death domain (FADD) facilitated caspase-8 activation and cell death in response to endoplasmic reticulum (ER) stress. Here, we investigated whether this complex could be activated by other forms of cell stress. We show that diverse stress stimuli, including etoposide, brefeldin A and paclitaxel, as well as heat stress and gamma-irradiation, caused formation of a complex containing ATG5-ATG12, FADD and caspase-8 leading to activation of downstream caspases in caspase-9-deficient cells. We termed this complex the ‘stressosome’. However, in these cells, only ER stress and heat shock led to stressosome-dependent cell death. Using in silico molecular modelling, we propose the structure of the stressosome complex, with FADD acting as an adaptor protein, interacting with pro-caspase-8 through their respective death effector domains (DEDs) and interacting with ATG5-ATG12 through its death domain (DD). This suggests that the complex could be regulated by cellular FADD-like interleukin-1β-converting enzyme–inhibitory protein (cFLIPL), which was confirmed experimentally. This study provides strong evidence for an alternative mechanism of caspase-8 activation involving the stressosome complex.  相似文献   

8.
Human COLO 205 colon adenocarcinoma cells are immune to extrinsic apoptosis induced by immunomodulatory cytokines. Among the antiapoptotic mechanisms responsible for the immune escape, the overexpression of the cFLIP protein seems to be critical. cFLIP appears to inhibit the TNF-α-induced death receptor signal. The application of the metabolic inhibitor bisindolylmaleimide IX (Bis-IX), known as a potent PKC repressor, sensitized COLO 205 cells to TNF-α-mediated apoptosis. The Western-blot analysis revealed that the susceptibility of human COLO 205 cells to apoptogenic stimuli resulted from time-dependent reduction in cFLIPL and TRADD protein levels. At the same time, the level of FADD protein was up-regulated. Additionally, the combined TNF-α and Bis-IX treatment caused cleavages of Bid and procaspase-9, as well as cytochrome c release. Thus, the evidence of this study indicates that Bis-IX facilitates the death receptor signal mediated by TNF-R1. Moreover, Bis-IX alone initiated intrinsic apoptosis, which could be abolished by Bcl-2 delivery. It heralds the involvement of mitochondria in caspase-8-independent intrinsic apoptosis. In turn, the treatment with bisindolylmaleimide III (Bis-III) did not assist TNF-α-dependent apoptosis.  相似文献   

9.
Recent studies have revealed a role of endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) in the regulation of RPE cell activity and survival. Herein, we examined the mechanisms by which the UPR modulates apoptotic signaling in human RPE cells challenged with cigarette smoking extract (CSE). Our results show that CSE exposure induced a dose- and time-dependent increase in ER stress markers, enhanced reactive oxygen species (ROS), mitochondrial fragmentation, and apoptosis of RPE cells. These changes were prevented by the anti-oxidant NAC or chemical chaperone TMAO, suggesting a close interaction between oxidative and ER stress in CSE-induced apoptosis. To decipher the role of the UPR, overexpression or down-regulation of XBP1 and CHOP genes was manipulated by adenovirus or siRNA. Overexpressing XBP1 protected against CSE-induced apoptosis by reducing CHOP, p-p38, and caspase-3 activation. In contrast, XBP1 knockdown sensitized the cells to CSE-induced apoptosis, which is likely through a CHOP-independent pathway. Surprisingly, knockdown of CHOP reduced p-eIF2α and Nrf2 resulting in a marked increase in caspase-3 activation and apoptosis. Furthermore, Nrf2 inhibition increased ER stress and exacerbated cell apoptosis, while Nrf2 overexpression reduced CHOP and protected RPE cells. Our data suggest that although CHOP may function as a pro-apoptotic gene during ER stress, it is also required for Nrf2 up-regulation and RPE cell survival. In addition, enhancing Nrf2 and XBP1 activity may help reduce oxidative and ER stress and protect RPE cells from cigarette smoke-induced damage.  相似文献   

10.
Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) exhibits potent antitumour activity upon systemic administration in mice without showing the deleterious side effects observed with other apoptosis-inducing members of the TNF family such as TNF and CD95L. TRAIL may, thus, have great potential in the treatment of human cancer. However, about 60% of tumour cell lines are not sensitive to TRAIL. To evaluate the mechanisms of tumour resistance to TRAIL, we investigated hepatocellular carcinoma (HCC) cell lines that exhibit differential sensitivity to TRAIL. Pretreatment with chemotherapeutic drugs, for example, 5-fluorouracil (5-FU), rendered the TRAIL-resistant HCC cell lines sensitive to TRAIL-induced apoptosis. Analysis of the TRAIL death-inducing signalling complex (DISC) revealed upregulation of TRAIL-R2. Caspase-8 recruitment to and its activation at the DISC were substantially increased after 5-FU sensitisation, while FADD recruitment remained essentially unchanged. 5-FU pretreatment downregulated cellular FLICE-inhibitory protein (cFLIP) and specific cFLIP downregulation by small interfering RNA was sufficient to sensitise TRAIL-resistant HCC cell lines for TRAIL-induced apoptosis. Thus, a potential mechanism for TRAIL sensitisation by 5-FU is the increased effectiveness of caspase-8 recruitment to and activation at the DISC facilitated by the downregulation of cFLIP and the consequent shift in the ratio of caspase-8 to cFLIP at the DISC.  相似文献   

11.
12.
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/APO2L) is a member of the TNF gene superfamily that induces apoptosis upon engagement of cognate death receptors. While TRAIL is relatively non-toxic to normal cells, it selectively induces apoptosis in many transformed cells. Nevertheless, breast tumor cells are particularly resistant to the effects of TRAIL. Here we report that, in combination with the cyclin-dependent kinase inhibitor roscovitine, exposure to TRAIL induced marked apoptosis in the majority of TRAIL-resistant breast cancer cell lines examined. Roscovitine facilitated TRAIL death-inducing signaling complex formation and the activation of caspase-8. The cFLIP(L) and cFLIP(S) FLICE-inhibitory proteins were significantly down-regulated following exposure to roscovitine and, indeed, the knockdown of cFLIP isoforms by siRNA sensitized breast tumor cells to TRAIL-induced apoptosis. In addition, we demonstrate that roscovitine strongly suppressed Mcl-1 expression and up-regulated E2F1 protein levels in breast tumor cells. Significantly, the silencing of Mcl-1 by siRNA sensitized breast tumor cells to TRAIL-induced apoptosis. Furthermore, the knockdown of E2F1 protein by siRNA reduced the sensitizing effect of roscovitine in TRAIL-induced apoptosis. In summary, our results reveal a pleitropic mechanism for the pro-apoptotic influence of roscovitine, highlighting its potential as an antitumor agent in breast cancer in combination with TRAIL.  相似文献   

13.
Overexpression of the cellular FLICE-like inhibitory protein (cFLIP) has been reported in a number of tumor types. As an inactive procaspase-8 homologue, cFLIP is recruited to the intracellular assembly known as the Death Inducing Signaling Complex (DISC) where it inhibits apoptosis, leading to cancer cell proliferation. Here we characterize the molecular details of the interaction between cFLIPL and calmodulin, a ubiquitous calcium sensing protein. By expressing the individual domains of cFLIPL, we demonstrate that the interaction with calmodulin is mediated by the N-terminal death effector domain (DED1) of cFLIPL. Additionally, we mapped the interaction to a specific region of the C-terminus of DED1, referred to as DED1 R4. By designing DED1/DED2 chimeric constructs in which the homologous R4 regions of the two domains were swapped, calmodulin binding properties were transferred to DED2 and removed from DED1. Furthermore, we show that the isolated DED1 R4 peptide binds to calmodulin and solve the structure of the peptide-protein complex using NMR and computational refinement. Finally, we demonstrate an interaction between cFLIPL and calmodulin in cancer cell lysates. In summary, our data implicate calmodulin as a potential player in DISC-mediated apoptosis and provide evidence for a specific interaction with the DED1 of cFLIPL.  相似文献   

14.
15.
16.
Respiratory syncytial virus (RSV) infection induced programmed cell death or apoptosis in the cultured lung epithelial cell line, A549. The apoptotic cells underwent multiple changes, including fragmentation and degradation of genomic DNA, consistent with the activation of the DNA fragmentation factor or caspase-activated DNase (DFF or CAD). The infection led to activation of FasL; however, a transdominant mutant of FAS-downstream death domain protein, FADD, did not inhibit apoptosis. Similarly, modest activation of cytoplasmic apoptotic caspases, caspase-3 and -8, were observed; however, only a specific inhibitor of caspases-3 inhibited apoptosis, while an inhibitor of caspase-8 had little effect. No activation of caspase-9 and -10, indicators of the mitochondrial apoptotic pathway, was observed. In contrast, RSV infection strongly activated caspase-12, an endoplasmic reticulum (ER) stress response caspase. Activation of the ER stress response was further evidenced by upregulation of ER chaperones BiP and calnexin. Antisense-mediated inhibition of caspase-12 inhibited apoptosis. Inhibitors of NF-kappa B had no effect on apoptosis. Thus, RSV-induced apoptosis appears to occur through an ER stress response that activates caspase-12, and is uncoupled from NF-kappa B activation.  相似文献   

17.
Strong evidences support the inhibitory activity of cellular FLICE-inhibitory protein (FLIP) in the apoptotic signalling by death receptors in tumor cells. However, little is known about the role of FLIP in the regulation of apoptosis in non-transformed cells. In this report, we demonstrate that FLIPL plays an important role as a survival protein in non-transformed breast epithelial cells. Silencing of FLIPL by siRNA methodology enhances TRAIL-R2 expression and activates a caspase-dependent cell death process in breast epithelial cells. This cell death requires the expression of TRAIL, TRAIL-R2, FADD and procaspase-8 proteins. A mitochondria-operated apoptotic pathway is partially required for FLIPL siRNA-induced apoptosis. Interestingly, FLIPL silencing markedly abrogates formation of acinus-like structures in a three-dimensional basement membrane culture model (3D) of the human mammary MCF-10A cell line through a caspase-8 dependent process. Furthermore, over-expression of FLIPL in MCF-10A cells delayed lumen formation in 3D cultures. Our results highlight the central role of FLIP in maintaining breast epithelial cell viability and suggest that the mechanisms regulating FLIP levels should be finely controlled to prevent unwanted cell demise.  相似文献   

18.
Stress of the endoplasmic reticulum (ER stress) is caused by the accumulation of misfolded proteins, which occurs in many neurodegenerative diseases. ER stress can lead to adaptive responses or apoptosis, both of which follow activation of the unfolded protein response (UPR). Heat shock proteins (HSP) support the folding and function of many proteins, and are important components of the ER stress response, but little is known about the role of one of the major large HSPs, HSP105. We identified several new partners of HSP105, including glycogen synthase kinase-3 (GSK3), a promoter of ER stress-induced apoptosis, and GRP78, a key component of the UPR. Knockdown of HSP105 did not alter UPR signaling after ER stress, but blocked caspase-3 activation after ER stress. In contrast, caspase-3 activation induced by genotoxic stress was unaffected by knockdown of HSP105, suggesting ER stress-specificity in the apoptotic action of HSP105. However, knockdown of HSP105 did not alter cell survival after ER stress, but instead diverted signaling to a caspase-3-independent cell death pathway, indicating that HSP105 is necessary for apoptotic signaling after UPR activation by ER stress. Thus, HSP105 appears to chaperone the responses to ER stress through its interactions with GRP78 and GSK3, and without HSP105 cell death following ER stress proceeds by a non-caspase-3-dependent process.  相似文献   

19.
It has been shown that excess stress to the endoplasmic reticulum (ER) triggers apoptosis, but the mechanisms underlying these processes remain unclear. We and others have reported previously that DR5 expression is up-regulated in thapsigargin (THG)-treated human cancer cells. Here, we provide evidence that CHOP is involved in THG up-regulation of DR5, which is a critical step for ER stress-induced apoptosis in human cancer cells. In human colon cancer HCT116 cells, knockdown of DR5 by siRNA blocked THG-induced Bax conformational change along with caspase-3 activation and cell death. Moreover, inhibition of CHOP expression attenuated DR5 up-regulation and apoptosis induced by THG, whereas ectopic expression of DR5 restored the sensitivity of CHOP siRNA-transfected cells to THG-induced apoptosis. In addition to HCT116 cells, inhibition of CHOP or DR5 induction also attenuated THG-induced cell death in other cancer cell lines including LNCaP, A2780S, and DU145, indicating that CHOP and DR5 are critical for ER stress-mediated apoptosis in human carcinoma cells. Furthermore, we identified a potential CHOP-binding site in the 5'-flanking region of the DR5 gene. Mutation of this site abrogated the enhanced reporter activity in response to THG treatment. Together, our findings suggest that CHOP regulates ER stress-induced apoptosis, at least in part, through enhancing DR5 expression in some types of human cancer cells.  相似文献   

20.
Although endoplasmic reticulum (ER) stress-induced apoptosis has been associated with pathogenesis of neurodegenerative diseases, the cellular components involved have not been well delineated. The present study shows that matrix metalloproteinase (MMP)-3 plays a role in the ER stress-induced apoptosis. ER stress induced by brefeldin A (BFA) or tunicamycin (TM) increases gene expression of MMP-3, selectively among various MMP subtypes, and the active form of MMP-3 (actMMP-3) in the brain-derived CATH.a cells. Pharmacological inhibition of enzyme activity, small interference RNA-mediated gene knockdown, and gene knock-out of MMP-3 all provide protection against ER stress. MMP-3 acts downstream of caspase-12, because both pharmacological inhibition and gene knockdown of caspase-12 attenuate the actMMP-3 increase, but inhibition and knock-out of MMP-3 do not alter caspase-12. Furthermore, independently of the increase in the protein level, the catalytic activity of MMP-3 enzyme can be increased via lowering of its endogenous inhibitor protein TIMP-1. Caspase-12 causes liberation of MMP-3 enzyme activity by degrading TIMP-1 that is already bound to actMMP-3. TIMP-1 is decreased in response to ER stress, and TIMP-1 overexpression leads to cell protection and a decrease in MMP-3 activity. Taken together, actMMP-3 protein level and catalytic activity are increased following caspase-12 activation during ER stress, and this in turn plays a role in the downstream apoptotic signaling in neuronal cells. MMP-3 and TIMP-1 may therefore serve as cellular targets for therapy against neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号