首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
l-Methionine-enriched cells production of an ethionine-resistant mutant of Candida boidinii no. 2201 was greatly improved by the control of pH and by feeding of methanol and other medium components during cultivation in a jar fermentor. Under the optimal conditions, 38.5 g (as dry weight)_of cells abd 282 mg of pool methionine (intracellular pool of free l-methionine) per l of culture broth were obtained after 11 d of cultivation.The culture conditions for production of l-methionine-enriched cells in continuous culture were investigated. With limited methanol in continuous cultivation, pool methionine productivity reached a maximum value of 1.14 mg·l−1·h−1 at a dilution rate of 0.05·h−1. During methanol-limited growth in continuous cultivation, the pool methionine content of the mutant was about 20–35% higher than that in batch cultivation.  相似文献   

2.
A new method of continuous culture with selective bleeding of mycelia using 9-mesh screen was developed to improve the production rate of peroxidase (POD) by Arthromyces ramosus. At the dilution rate of 0.05 h−1 with the mycelium leakage rate of 60%, a high production rate (average value was 1.67 U·ml−1·h−1) was maintained for over 100 h: the rate was 3.2 times that in a glucose-fed batch culture. At the same dilution rate, the volumetric and specific production rates of POD in the continuous culture without the screen were lower than those in the first continuous culture and decreased gradually in the later phase of the culture. In the continuous culture with low mycelium leakage rate of 1.6%, the POD production rate was not improved further, although the mycelial concentration (43 g·l−1) increased 2.9 times. It is suggested that the high agitation rate required to meet the oxygen demand is unfavorable for the POD production.  相似文献   

3.
In order to produce l-arginine efficiently, continuous culture was attempted using an l-arginine producing strain of Corynebacterium acetoacidophilum, MC-13. l-Arginine production by strain MC-13 decreased after shifting from fed-batch culture to continuous culture because various strains with reduced or no l-arginine productivity, including l-arginine auxotrophs, appeared in addition to the original l-arginine producer. Strain SC-190, isolated from the continuous culture broth of strain MC-13, produced l-arginine on cultivation in a stable fashion for more than 250 h. It is suggested that strain SC-190 acquired a lower susceptibility to the inhibition of growth and l-arginine production by l-arginine than the parental strain MC-13 due to this stabilization.  相似文献   

4.
Repeated-batch fermentation by a flocculating fusant, Saccharomyces cerevisiae HA 2, was done in a molasses medium that contained 20% (w/v) total sugar, at 30°C in an automatically controlled fermentor, and the effects of ethanol concentration on the specific growth rate and the specific production rate of ethanol were studied. Both the specific growth rate and the specific production rate of ethanol fell with increase of ethanol concentration, and there was a linear correlation between each rate and the concentration of thanol. The maximum specific growth rate (μmax) and the maximum specific production rate of ethanol (qmax) were 0.12 h−1 and 0.1 g ethanol/109 cells·h, respectively. The specific growth rate and the specific production rate of ethanol fell to zero at ethanol concentration of 89 g/l and 95 g/l, respectively. The number of viable cells, calculated from the linear inhibition equation, was 1.3 × 109 cells/ml for production of 85 g/l ethanol at a dilution rate (D1) of 0.2 h−1. Based on this estimation, a laboratory-scale continuous fermentation, using two fermentors in series, was done. In the second fermentor, 85 g/l ethanol was produced at a dilution rate (D1) of 0.2 h−1 by the active feedig of the fermented mash from the first fermentor into the second fermentor by pumping (hereafter called active feeding). To maintain the number of viable cells above 109 cells/ml in the second fermentor, a active feeding ratio of more than 23% was required. Under these conditions, 81 g/l ethanol was produced in the second fermentor at a dilution rate (Dt) of 0.25 h−1, and the high ethanol productivity of 20.3 g/l·h could be achieved. A bench-scale continuous fermentation, using two fermentors in series, with a active feeding ratio of 25% was done. An ethanol concentration of 84 g/l in the second fermentor at a dilution rate (Dt) of 0.25 h−1 was achieved, just as it was in the laboratory-scale fermentation test.  相似文献   

5.
Several microorganisms that can use (S)-5-[(amino-iminomethyl) amino]-2-chloropentanoic acid (l-Cl-arginine) as a nitrogen source have been isolated, the most interesting of which is a spontaneous mutant of Pseudomonas aeruginosa PAO1 (DSM 10581). In a fermenter, this unique biocatalyst hydrolysed l-Cl-arginine to (S)-5-amino-2-chloropentanoic acid (l-Cl-ornithine), which spontaneously converted to d-proline with inversion of configuration at an apparent average rate of 0.12 mmol −l h−1 OD−1. The enzyme, for which we suggest the name Cl-arginine amidinohydrolase, was best induced by using the substrate l-Cl-arginine as inducer and l-arginine as nitrogen source. The results presented here describe a new route for the production of d-proline from l-arginine, involving a chemical step and a biocatalytic step followed by a spontaneous chemical cyclisation.  相似文献   

6.
Continuous ethanol production in a one-stage continuous stirred tank fermentor without recycle was carried out using a yeast strain Saccharomyces cerevisiae. Different dilution rates were used. Cell and ethanol concentrations in the culture medium decreased with increasing dilution rates, and the maximum value of 3.0 g l−1h−1was found at a dilution rate of 0.340 h−1. Specific ethanol productivities increased as dilution rates were increased, and the highest value appeared at about the same dilution rate as that for the maximum fermentor productivity. A material balance equation, which relates total amount of spent medium to cell synsthesis, ethanol production, and overall maintenance, was introduced. The cellular yield and overall maintenance coefficients increased with increasing dilution rates. The fraction of limiting substrate utilized for overall maintenance, which includes the limiting substrate spent for purposes other than cell synthesis and ethanol production, decreased with increasing dilution rates. The non-product associated substrate utilization can be minimized if correct dilution rate is chosen.  相似文献   

7.
Growth kinetics and ethanol production of Zymomonas mobilis in a bioreactor with cell recycle were modelled. High specific growth rates can be used to control excessive biomass accumulation in the system. Predicted peak productivity with a cell concentration of 80 g l−1, a dilution rate of 6.5 h−1, and a feed glucose concentration of 120 g l−1 is 350 g l−1 h−1. The design of a special recycle reactor using a filter which should permit the operating conditions required for the validation of the model is proposed.  相似文献   

8.
The continuous production of nisin, an antibiotic polypeptide, by Lactococcus lactis in a bioreactor system coupled to a microfiltration module is described. Nisin productivity with respect to both cultivation time (ND) and the quantity of glucose consumed (ND/Sf) in continuous production was enhanced by maintaining a low concentration of lactic acid in the broth. A maximum ND of 7.80 × 104l−1·h−1 and ND/Sf of 5.20 × 103 U·g−1·h−1 were obtained when the glucose concentration in the feed medium was 15 g/l. These values represent about 4.1- and 4.5-fold increases, respectively, over those obtained in batch culture.  相似文献   

9.
Continuous production of rifamycin B was studied using Nocardia mediterranei (ATCC 21789) immobilized in a dual hollow fibre bioreactor designed for cultivating aerobic cells. In the reactor operation the volumetric productivity based on the volume occupied by the immobilized cells was 108 mg l−1 h−1 when air was used for aeration and was 143 mg l−1 h−1 with pure oxygen. These corresponded to 22 and 30-fold increases over the productivity of the comparable batch system. These high productivities were due to the high cell mass density of 550 g l−1. However, the specific productivity of the cell was 30–40% of that in the shake flask culture. As the residence time of medium in the reactor increased, pH of effluent rose to an alkaline region that was outside its optimum condition (pH 6.5–7.0) and the yield and productivity decreased.  相似文献   

10.
To determine the most favorable conditions for the production of ethanol by Pachysolen tannophilus, this yeast was grown in batch cultures with various initial concentrations of two of the constituents of the culture medium: d-xylose (so), ranging from 1 g·l−1 to 200 g·l−1, and yeast extract (lo), ranging from 0 g·l−1 to 8 g·l−1. The most favorable conditions proved to be initial concentrations of So=25 g·l−1 and lo=4 g·l−1, which gave a maximum specific growth rate of 0.26 h−1, biomass productivity of 0.023 g·l−1·h−1, overall biomass yield of 0.094 g·g−1, specific xylose-uptake rate (qs) of 0.3 g·g−1·h−1 (for t=50 h), specific ethanol-production rate (qE) of 0.065 g·g−1·h−1 and overall ethanol yield of 0.34 g·g−1; qs values decreased after the exponential growth phase while qE remained practically constant.  相似文献   

11.
《Process Biochemistry》1999,34(4):355-366
The production of pigment-free pullulan by Aureobasidium pullulans in batch and fed-batch culture was investigated. Batch culture proved to be a better fermentation system for the production of pullulan than the fed-batch culture system. A maximum polysaccharide concentration (31.3 g l−1), polysaccharide productivity (4.5 g l−1 per day), and sugar utilization (100%) were obtained in batch culture. In fed-batch culture, feed medium composition influenced the kinetics of fermentation. For fed-batch culture, the highest values of pullulan concentration (24.5 g l−1) and pullulan productivity (3.5 g l−1 per day) were obtained in culture grown with feeding substrate containing 50 g l−1 sucrose and all nutrients. The molecular size of pullulan showed a decline as fermentation progressed for both fermentation systems. At the end of fermentation, the polysaccharide isolated from the fed-batch culture had a slightly higher molecular weight than that of batch culture. Structural characterization of pullulan samples (methylation and enzymic hydrolysis with pullulanase) revealed the presence of mainly α-(1→4) (∼66%) and α-(1→6) (∼31%) glucosidic linkages; however, a small amount (<3%) of triply linked (1,3,4-, 1,3,6-, 1,2,4- and 1,4,6-Glc p) residues were detected. The molecular homogeneity of the alcohol-precipitated polysaccharides from the fermentation broths as well as the structural features of pullulan were confirmed by 13C-NMR and pullulanase treatments followed by gel filtration chromatography of the debranched digests.  相似文献   

12.
《Journal of biotechnology》1999,67(2-3):159-171
Xylitol production from xylose was studied using recombinant Saccharomyces cerevisiae 2805 containing xylose reductase genes (XYL1) of Pichia stipitis at chromosomal δ-sequences. S. cerevisiae 2805-39-40, which contains about 40 copies of the XYL1 gene on the chromosome, was obtained by a sequential transformation using a dominant selection marker neor and an auxotrophic marker URA3. The multiple XYL1 genes were stably maintained on the chromosome even after 21 and 10 days in the non-selective sequential batch and chemostat cultures, respectively, whereas S. cerevisiae 2805:pVTXR, which harbors the episomal plasmid pVTXR having the XYL1 gene, showed mitotic plasmid instability and more than 95% of the cells lost the plasmid under the same culture conditions. In the first batch (3 days) of the sequential batch culture, volumetric xylitol productivity was 0.18 g l−1 h−1 for S. cerevisiae 2805-39-40, as compared to 0.21 g l−1 h−1 for S. cerevisiae 2805:pVTXR. However, the xylitol productivity of the latter started to decrease rapidly in the third batch and dropped to 0.04 g l−1 h−1 in the seventh batch, whereas the former maintained the stable xylitol productivity at 0.18 g l−1 h−1 through the entire sequential batch culture. The xylitol production level in the chemostat culture was about 8 g l−1 for S. cerevisiae 2805-39-40, as compared to 2.0 g l−1 for S. cerevisiae 2805:pVTXR after 10 days of cultures even though the xylitol production level of the latter was higher than that of the former for the first 5 days. The results of this experiment indicate that S. cerevisiae containing the multiple XYL1 genes on the chromosome is much more efficient for the xylitol production in the long-term non-selective culture than S. cerevisiae harboring the episomal plasmid containing the XYL1 gene.  相似文献   

13.
The effect of glucose feeding on bacitracin production was investigated by fed-batch culture of Bacillus licheniformis. In batch culture, bacitracin secretion was induced after the glucose initially contained in the medium was completely consumed. The concentration of bacitracin, however, increased to no more than 340 units·ml−1 in the batch cultivations. Therefore, additional glucose was supplied after exhaustion of the initial glucose. The effect of glucose feeding on bacitracin biosynthesss was investigated in two ways, the pH-stat modal feeding method and the CO2-dependent feeding method. A kinetic study of bacitracin production found that some glucose was necessary, even during the bacitracin production phase. Excessive feeding of glucose, however, caused a reduction in bacitracin biosynthetic activity. When 50 g·l−1 of defatted soy bean meal (SBM) was used, the bacitracin concentration reached 670 units·ml−1 with the pH-stat modal feeding method and 610 units·ml−1 with the CO2-dependent feeding method, respectively. The yield of bacitracin from consumed glucose was better for the pH-stat method. Using this control strategy, the highest concentration of bacitracin (940 units·ml−1) was obtained with 150 g·l−1 of SBM.  相似文献   

14.
Kinetics of 2,3-butanediol production by Klebsiella pneumoniae (NRRL B199) from glucose have been studied in a continuous bioreactor. The effect of oxygen supply rate and dilution rate on the product output rate and yield of 2,3-butanediol were investigated. For a feed glucose concentration of 100 g l−1, the optimum oxygen transfer rate is between 25.0–35.0 mmol l−1 h−1. Under these conditions, maximum product concentration obtained was 35 g l−1 at a dilution rate of 0.1 h−1 and the maximum product output rate obtained was 4.25 g l−1 h−1. The product yield based on the substrate utilized approached the theoretical value (50%) at low values of oxygen transfer rate but decreased with increasing oxygen transfer rate.  相似文献   

15.
Whey permeate was obtained by ultrafiltration of cottage cheese whey and supplemented with yeast extract. The lactose in the permeate was converted into lactic acid by Lactobacillus bulgaricus in a high-performance membrane bioreactor configured in the cell recycle mode. At a cell concentration of 10 g l−1, optimum productivity of lactic acid was 35 g l−1 h−1. Increasing the cell concentration to 30 g l−1 enabled the use of a dilution rate of 1 h−1 with complete substrate utilization. At 60 g l−1, productivity was over 80 g l−1 h−1 with complete substrte utilization; this is vastly superior to conventional batch fermentations.  相似文献   

16.
A special loop recycle reactor with capillary crossflow filters was designed to enhance ethanol productivity. The new set-up did not comprise a classical reaction vessel with a stirrer but the working volume consisted only of the void volumes of the filters and the peripheral equipment, however, it behaved as a well mixed CSTR. A circulating pump provided for both mixing and recirculation of the culture fluid. Degassing was accomplished with a cyclone type device. Even if the circulating pump destroyed cells and automated backflushing of the filters could not prevent membrane fouling, maximum biomass concentration reached 98 g l−1 at a dilution rate of 4 h−1 and the maximum ethanol productivity achieved was 224 g l−1 h−1. Using the loop recycle reactor, the ethanol production model proposed in Part I of this study (Nipkow et al. (1986) J. Biotechnol. 3, 35–47) extended with a variable rate accounting for mechanical destruction of cells was verified. It was demonstrated that the predicted productivity of 350 g l−1 h−1 — exploiting the biological potential of Zymomonas mobilis — should be attainable if improved mechanical equipment in a filter recycle system is employed.  相似文献   

17.
Amongst four carriers used, rice-straw was found to be superior in terms of ethanol production. The maximum productivity (17.84 gl−1 h−1) corresponded to a dilution rate of 0.39 h−1, the ethanol concentration being 45.80 gl−1. A multistage rhomboidal bioreactor was found to partially overcome the disruption effect caused by the generation of a large volume of carbon dioxide in the column. Increases in productivity of about 12.55% and 3.6%, respectively, were achieved using rhomboidal and tapered bioreactors as compared to the cylindrical bioreactor. It was observed that the generation time of cells, in both the immobilized and free states, was around 2.5 h. The ethanol yield (Yp/s) in the lower part of the reactor was less in comparison with other zones, where the substrate utilization efficiency was relatively higher.  相似文献   

18.
In a study of the control of metabolite formation, prodigiosin production by Serratia marcescens was used as a model. Specific production rates of prodigiosin formation were determined using batch culture technique. Sucrose as carbon source and NH4NO3 as nitrogen source resulted in a specific production rate of 0.476 mg prodigiosin (g cell dry weight)−1 h−1. Prodigiosin formation and productivity was inversely correlated to growth rate when the bacterium was grown under carbon limitation on a defined medium in a chemostat culture. The maximum specific growth rate (μmax) was 0.54 h−1 and prodigiosin was formed in amounts over 1 mg l−1 up to a growth rate (μ) of 0.3 h−1 at steady state conditions. At a dilution rate of 0.1 h−1 growth at steady state with carbon and phosphate limitation supported prodigiosin formation giving a similar specific yield [1.17 mg prodigiosin (g cell dry weight)−1 and 0.94 mg g−1, respectively], however, cells grown with nitrogen limitation [(NH4)2SO4] did not form prodigiosin. Productivity in batch culture was 1.33 mg l−1 h−1 as compared to 0.57 mg l−1 h−1 in the chemostat.  相似文献   

19.
Starch from wheat flour was enzymatically hydrolyzed and used for ethanol production by Zymmonas mobilis. The addition of a nitrogen source like ammonium sulfate was sufficient to obtain a complete fermentation of the hdyrolyzed strach. In batch culture a glucose concentration as high as 223 g/l could be fermented (conversion 99.5%) to 105 g/l of ethanol in 70 h with an ethanol yield of 0.47 g/g (92% of theoretical). In continuous culture the use of a flocculent strain and a fermentor with an internal settler resulted (D=1,4 h−1) in a high ethanol productivity of 70.7 g/l·h with: ethanol concentration 49.5 g/l, ethanol yield 0.50 g/g (98% of theoretical and substrate conversion 99%.  相似文献   

20.
The kinetics of continuous l-sorbose fermentation using Acetobacter suboxydans with and without cell recycle (100%) were investigated at dilution rates (D) of 0.05, 0.10, 0.15 and 0.3 h–1. The biomass and sorbose concentrations for continuous fermentation without recycle increased as the dilution rate was increased from 0.05 to 0.10 h–1. A maximum biomass concentration of 8.44 g l–1 and sorbose concentration of 176.90 g l–1 were obtained at D=0.10 h–1. The specific rate of sorbose production and volumetric sorbose productivity at this dilution rate were 2.09 g g–1 h–1 and 17.69 g l–1 h–1. However, on further increasing the dilution rate to 0.3 h–1, both biomass and sorbose concentrations decreased to 2.93 and 73.20 g l–1 respectively, mainly due to washout of the reactor contents. However, the specific rate of sorbose formation and volumetric sorbose productivity at this dilution rate increased to 7.49 g g–1 h–1 and 21.96 g l–1 h–1 respectively. Continuous fermentation with 100% cell recycle served to further enhance the concentration of biomass and sorbose to 28.27 and 184.32 g l–1 respectively (in the reactor at a dilution rate of 0.05 h–1). Even though, there was a decline in the biomass and sorbose concentrations to 6.8 and 83.40 g l–1 at a dilution rate of 0.3 h–1, the specific rates of sorbose formation and volumetric sorbose productivity increased to 3.67 g g–1h–1 and 25.02 g l–1 h–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号