首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The development of a rapid, sensitive, and straightforward detection method of prostate‐specific antigen (PSA) is indispensable for the early diagnosis of prostate cancer (PCa). This work relates an electrochemical method using functionalized single‐stranded DNA aptamer to diagnose PCa and benign prostate hyperplasia. The sensing platform relies on PSA recognition by aptamer/Au/GO‐nanohybrid‐modified glassy carbon electrode. Besides ferrocyanide TiO2/carbon quantum dots (CQDs) probe is used to investigate the effect of nanoparticle‐containing electrolyte. Optimization of incubation time of aptamer/Au/GO‐nanohybrid and volume fraction of nafion were done using Design Expert 10 software reporting 42.4 h and 0.095% V/V, respectively. In ferrocyanide medium, PSA detection as low as 3, 2.96, and 0.85 ng mL−1 was achieved with a dynamic range from 0.5 to 7 ng ml−1, in accord with clinical values, using cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy, respectively. Moreover, this sensor exhibited conspicuous performance in TiO2/CQDs‐containing medium with different pH values of 5.4 and 8 to distinguish total PSA and free PSA, resulting in very low limit of detections, 0.028, and 0.007 ng ml−1, respectively. The results manifested the proposed system as a forthcoming sensor in a clinical and point of care analysis of PSA.  相似文献   

5.
MicroRNAs (miRNAs) have been recognized as significantly involved in prostate cancer (PCa). Since androgen receptor (AR) plays a central role in PCa carcinogenesis and progression, it is imperative to systematically elucidate the causal association between AR and miRNAs, focusing on the molecular mechanisms by which miRNAs mediate AR signalling. In this study, we performed a series of time-course microarrays to observe the dynamic genome-wide expressions of mRNAs and miRNAs in parallel in hormone-sensitive prostate cancer LNCaP cells stimulated by androgen. Accordingly, we introduced Response Score to identify AR target miRNAs, as well as Modulation Score to identify miRNA target mRNAs. Based on theoretical identification and experimental validation, novel mechanisms addressing cell viability in PCa were unravelled for 3 miRNAs newly recognized as AR targets. (1) miR-19a is directly up-regulated by AR, and represses SUZ12, RAB13, SC4MOL, PSAP and ABCA1, respectively. (2) miR-27a is directly up-regulated by AR, and represses ABCA1 and PDS5B. (3) miR-133b is directly up-regulated by AR, and represses CDC2L5, PTPRK, RB1CC1, and CPNE3, respectively. Moreover, we found miR-133b is essential to PCa cell survival. Our study gives certain clues on miRNAs mediated AR signalling to cell viability by influencing critical pathways, especially by breaking through androgen’s growth restriction effect on normal prostate tissue.  相似文献   

6.
7.
8.
9.
10.
Androgen receptor (AR) expression surveys found that normal prostate/prostate cancer (PCa) stem/progenitor cells, but not embryonic or mesenchymal stem cells, expressed little AR with high methylation in the AR promoter. Mechanism dissection revealed that the differential methylation pattern in the AR promoter could be due to differential expression of methyltransferases and binding of methylation binding protein to the AR promoter region. The low expression of AR in normal prostate/PCa stem/progenitor cells was reversed after adding 5-aza-2′-deoxycytidine, a demethylating agent, which could then lead to decreased stemness and drive cells into a more differentiated status, suggesting that the methylation in the AR promoter of prostate stem/progenitor cells is critical not only in maintaining the stemness but also critical in protection of cells from differentiation. Furthermore, induced AR expression, via alteration of its methylation pattern, led to suppression of the self-renewal/proliferation of prostate stem/progenitor cells and PCa tumorigenesis in both in vitro assays and in vivo orthotopic xenografted mouse studies. Taken together, these data prove the unique methylation pattern of AR promoter in normal prostate/PCa stem/progenitor cells and the influence of AR on their renewal/proliferation and differentiation. Targeting PCa stem/progenitor cells with alteration of methylated AR promoter status might provide a new potential therapeutic approach to battle PCa because the PCa stem/progenitor cells have high tumorigenicity.  相似文献   

11.
12.
13.
14.
15.
Tryptophyllins constitute a heterogeneous group of peptides that are one of the first classes of peptides identified from amphibian’s skin secretions. Here, we report the structural characterization and antioxidant properties of a novel tryptophyllin‐like peptide, named PpT‐2, isolated from the Iberian green frog Pelophylax perezi. The skin secretion of P. perezi was obtained by electrical stimulation and fractionated using RP‐HPLC. De novo peptide sequencing was conducted using MALDI MS/MS. The primary structure of PpT‐2 (FPWLLS‐NH2) was confirmed by Edman degradation and subsequently investigated using in silico tools. PpT‐2 shared physicochemical properties with other well‐known antioxidants. To test PpT‐2 for antioxidant activity in vitro, the peptide was synthesized by solid phase and assessed in the chemical‐based ABTS and DPPH scavenging assays. Then, a flow cytometry experiment was conducted to assess PpT‐2 antioxidant activity in oxidatively challenged murine microglial cells. As predicted by the in silico analyses, PpT‐2 scavenged free radicals in vitro and suppressed the generation of reactive species in PMA‐stimulated BV‐2 microglia cells. We further explored possible bioactivities of PpT‐2 against prostate cancer cells and bacteria, against which the peptide exerted a moderate antiproliferative effect and negligible antimicrobial activity. The biocompatibility of PpT‐2 was evaluated in cytotoxicity assays and in vivo toxicity with Galleria mellonella. No toxicity was detected in cells treated with up to 512 µg/ml and in G. mellonella treated with up to 40 mg/kg PpT‐2. This novel peptide, PpT‐2, stands as a promising peptide with potential therapeutic and biotechnological applications, mainly for the treatment/prevention of neurodegenerative disorders.  相似文献   

16.
Despite the fact that androgen deprivation therapy (ADT) can effectively reduce prostate cancer (PCa) size, its effect on PCa metastasis remains unclear. We examined the existing data on PCa patients treated with ADT plus anti-androgens to analyze ADT effects on primary tumor size, prostate-specific antigen (PSA) values, and metastatic incidence. We found that the current ADT with anti-androgens might lead to primary tumor reduction, with PSA decreased yet metastases increased in some PCa patients. Using in vitro and in vivo metastasis models with four human PCa cell lines, we evaluated the effects of the currently used anti-androgens, Casodex/bicalutamide and MDV3100/enzalutamide, and the newly developed anti-AR compounds, ASC-J9® and cryptotanshinone, on PCa cell growth and invasion. In vitro results showed that 10 μm Casodex or MDV3100 treatments suppressed PCa cell growth and reduced PSA level yet significantly enhanced PCa cell invasion. In vivo mice studies using an orthotopic xenograft mouse model also confirmed these results. In contrast, ASC-J9® led to suppressed PCa cell growth and cell invasion in in vitro and in vivo models. Mechanism dissection indicated these Casodex/MDV3100 treatments enhanced the TGF-β1/Smad3/MMP9 pathway, but ASC-J9® and cryptotanshinone showed promising anti-invasion effects via down-regulation of MMP9 expression. These findings suggest the potential risks of using anti-androgens and provide a potential new therapy using ASC-J9® to battle PCa metastasis at the castration-resistant stage.  相似文献   

17.
18.

Background  

Androgens and androgen receptors (AR) regulate normal prostate development and growth. They also are involved in pathological development of prostatic diseases, including benign prostatic hyperplasia (BPH) and prostate cancer (PCa). Antiandrogen therapy for PCa, in conjunction with chemical or surgical castration, offers initial positive responses and leads to massive prostate cell death. However, cancer cells later appear as androgen-independent PCa. To investigate the role of AR in prostate cell proliferation and survival, we introduced a vector-based small interfering RNA (siRNA). This siRNA targeted 5'-untranslated region of AR mRNA for extended suppression of AR expression in androgen-sensitive human prostate LNCaP cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号