首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nef, a human immunodeficiency virus type 1 (HIV-1) accessory factor capable of interaction with a diverse array of host cell signaling molecules, is essential for high-titer HIV replication and AIDS progression. Previous biochemical and structural studies have suggested that Nef may form homodimers and higher-order oligomers in HIV-infected cells, which may be required for both immune and viral receptor downregulation as well as viral replication. Using bimolecular fluorescence complementation, we provide the first direct evidence for Nef dimers within HIV host cells and identify the structural requirements for dimerization in vivo. Bimolecular fluorescence complementation analysis shows that the multiple hydrophobic and electrostatic interactions found within the dimerization interface of the Nef X-ray crystal structure are essential for dimerization in cells. Nef dimers localized to the plasma membrane as well as the trans-Golgi network, two subcellular localizations essential for Nef function. Mutations in the Nef dimerization interface dramatically reduced both Nef-induced CD4 downregulation and HIV replication. Viruses expressing dimerization-defective Nef mutants were disabled to the same extent as HIV that fails to express Nef in terms of replication. These results identify the Nef dimerization region as a potential molecular target for antiretroviral drug discovery.  相似文献   

2.
3.
Since identification of the human immunodeficiency virus-1 (HIV-1), numerous studies suggest a link between neurological impairments, in particular dementia, with acquired immunodeficiency syndrome (AIDS) with alarming occurrence worldwide. Approximately, 60% of HIV-infected people show some form of neurological impairment, and neuropathological changes are found in 90% of autopsied cases. Approximately 30% of untreated HIV-infected persons may develop dementia. The mechanisms behind these pathological changes are still not understood. Mounting data obtained byin vivo andin vitro experiments suggest that neuronal apoptosis is a major feature of HIV associated dementia (HAD), which can occur in the absence of direct infection of neurons. The major pathway of neuronal apoptosis occurs indirectly through release of neurotoxins by activated cells in the central nervous system (CNS) involving the induction of excitotoxicity and oxidative stress. In addition a direct mechanism induced by viral proteins in the pathogenesis of HAD may also play a role. This review focuses on the molecular mechanisms of HIV-associated dementia and possible therapeutic strategies.  相似文献   

4.
An estimated 34 million people are living with HIV worldwide (UNAIDS, 2012), with the number of infected persons rising every year. Increases in HIV prevalence have resulted not only from new infections, but also from increases in the survival of HIV-infected persons produced by effective anti-retroviral therapies. Augmentation of anti-viral immune responses may be able to further increase the survival of HIV-infected persons. One strategy to augment these responses is to reinvigorate exhausted anti-HIV immune cells present in chronically infected persons. The PD-1-PD-L1 pathway has been implicated in the exhaustion of virus-specific T cells during chronic HIV infection. Inhibition of PD-1 signaling using blocking anti-PD-1 antibodies has been shown to reduce simian immunodeficiency virus (SIV) loads in monkeys. We now show that PD-1 blockade can improve control of HIV replication in vivo in an animal model. BLT (Bone marrow-Liver-Thymus) humanized mice chronically infected with HIV-1 were treated with an anti-PD-1 antibody over a 10-day period. The PD-1 blockade resulted in a very significant 45-fold reduction in HIV viral loads in humanized mice with high CD8+ T cell expression of PD-1, compared to controls at 4 weeks post-treatment. The anti-PD-1 antibody treatment also resulted in a significant increase in CD8+ T cells. PD-1 blockade did not affect T cell expression of other inhibitory receptors co-expressed with PD-1, including CD244, CD160 and LAG-3, and did not appear to affect virus-specific humoral immune responses. These data demonstrate that inhibiting PD-1 signaling can reduce HIV viral loads in vivo in the humanized BLT mouse model, suggesting that blockade of the PD-1-PD-L1 pathway may have therapeutic potential in the treatment of patients already infected with the AIDS virus.  相似文献   

5.
The importance of the Fas death pathway in human immunodeficiency virus (HIV) infection has been the subject of many studies. Missing from these studies is direct measurement of infected cell susceptibility to Fas-induced death. To address this question, we investigated whether T cells infected with HIV are more susceptible to Fas-induced death. We found that Fas cross-linking caused a decrease in the number of HIV-infected Jurkat T cells and CD4+ peripheral blood leukocytes (PBLs). We confirmed this finding by demonstrating that there were more apoptotic infected than uninfected cells after Fas ligation. The increase in sensitivity of HIV-infected cells to Fas killing mapped to vpu, while nef, vif, vpr, and second exon of tat did not appear to contribute. Furthermore, expression of Vpu in Jurkat T cells rendered them more susceptible to Fas-induced death. These results show that HIV-infected cells are more sensitive to Fas-induced death and that the Vpu protein of HIV contributes to this sensitivity. The increased sensitivity of HIV-infected cells to Fas-induced death might help explain why these cells have such a short in vivo half-life.  相似文献   

6.
The nef gene of the human and simian immunodeficiency viruses (HIV and SIV) is dispensable for viral replication in T-cell lines; however, it is essential for high virus loads and progression to simian AIDS (SAIDS) in SIV-infected adult rhesus macaques. Nef proteins from HIV type 1 (HIV-1), HIV-2, and SIV contain a proline-Xaa-Xaa-proline (PxxP) motif. The region of Nef with this motif is similar to the Src homology region 3 (SH3) ligand domain found in many cell signaling proteins. In virus-infected lymphoid cells, Nef interacts with a cellular serine/threonine kinase, designated Nef-associated kinase (NAK). In this study, analysis of viral clones containing point mutations in the nef gene of the pathogenic clone SIVmac239 revealed that several strictly conserved residues in the PxxP region were essential for Nef-NAK interaction. The results of this analysis of Nef mutations in in vitro kinase assays indicated that the PxxP region in SIV Nef was strikingly similar to the consensus sequence for SH3 ligand domains possessing the minus orientation. To test the significance of the PxxP motif of Nef for viral pathogenesis, each proline was mutated to an alanine to produce the viral clone SIVmac239-P104A/P107A. This clone, expressing Nef that does not associate with NAK, was inoculated into seven juvenile rhesus macaques. In vitro kinase assays were performed on virus recovered from each animal; the ability of Nef to associate with NAK was restored in five of these animals as early as 8 weeks after infection. Analysis of nef genes from these viruses revealed patterns of genotypic reversion in the mutated PxxP motif. These revertant genotypes, which included a second-site suppressor mutation, restored the ability of Nef to interact with NAK. Additionally, the proportion of revertant viruses increased progressively during the course of infection in these animals, and two of these animals developed fatal SAIDS. Taken together, these results demonstrated that in vivo selection for the ability of SIV Nef to associate with NAK was correlated with the induction of SAIDS. Accordingly, these studies implicate a role for the conserved SH3 ligand domain for Nef function in virally induced immunodeficiency.  相似文献   

7.

Background

The human mitochondrial genome includes only 13 coding genes while nuclear-encoded genes account for 99% of proteins responsible for mitochondrial morphology, redox regulation, and energetics. Mitochondrial pathogenesis occurs in HIV patients and genetically, mitochondrial DNA haplogroups with presumed functional differences have been associated with differential AIDS progression.

Methodology/Principal Findings

Here we explore whether single nucleotide polymorphisms (SNPs) within 904 of the estimated 1,500 genes that specify nuclear-encoded mitochondrial proteins (NEMPs) influence AIDS progression among HIV-1 infected patients. We examined NEMPs for association with the rate of AIDS progression using genotypes generated by an Affymetrix 6.0 genotyping array of 1,455 European American patients from five US AIDS cohorts. Successfully genotyped SNPs gave 50% or better haplotype coverage for 679 of known NEMP genes. With a Bonferroni adjustment for the number of genes and tests examined, multiple SNPs within two NEMP genes showed significant association with AIDS progression: acyl-CoA synthetase medium-chain family member 4 (ACSM4) on chromosome 12 and peroxisomal D3,D2-enoyl-CoA isomerase (PECI) on chromosome 6.

Conclusions

Our previous studies on mitochondrial DNA showed that European haplogroups with presumed functional differences were associated with AIDS progression and HAART mediated adverse events. The modest influences of nuclear-encoded mitochondrial genes found in the current study add support to the idea that mitochondrial function plays a role in AIDS pathogenesis.  相似文献   

8.
Two of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic inflammation via the modulation of adipose tissue-related pathways.  相似文献   

9.
The design of ‘hunter’ viruses aimed at destroying human immunodeficiency virus (HIV) infected cells is an active area of research that has produced promising results in vitro. Hunters are designed to target exposed viral envelope proteins in the membranes of infected cells, but there is evidence that the hunter may also target envelope proteins of free HIV, inducing virus-virus fusion. In order to predict the effects of this fusion on therapy outcomes and determine whether fusion ability is advantageous for hunter virus design, we have constructed a model to account for the possibility of hunter-HIV fusion. The study was based on a target cell-limited model of HIV infection and it examined the hunter therapeutic effect on recovering the HIV main target cells, the activated CD4+ T lymphocytes. These cells assist in setting up an immune response to opportunistic infections. The study analyzed the hunter dual mechanisms to control infection and because of diverse estimates for viral production and clearance of HIV, simulations were examined at rates spanning an order of magnitude. Results indicate that without hunter-HIV fusion ability, hunters that kill HIV-infected cells lead to a substantial recovery of healthy cell population at both low and high HIV turnover rates. When hunter-HIV fusion is included, cell recovery was particularly enhanced at lower HIV turnover rates. This study shows that the fusion ability, in addition to hunter infection ability, could be a favorable attribute for improving the efficacy of hunter-viral therapy. These results provide support for the potential use of engineered viruses to control HIV and other viral infections.  相似文献   

10.
Virus-specific CD8+ T-cell responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. Multiple studies on HIV-infected individuals and SIV-infected macaques have indicated association of several major histocompatibility complex class I (MHC-I) genotypes with lower viral loads and delayed AIDS progression. Understanding of the viral control mechanism associated with these MHC-I genotypes would contribute to the development of intervention strategy for HIV control. We have previously reported a rhesus MHC-I haplotype, 90-120-Ia, associated with lower viral loads after SIVmac239 infection. Gag206–216 and Gag241–249 epitope-specific CD8+ T-cell responses have been shown to play a central role in the reduction of viral loads, whereas the effect of Nef-specific CD8+ T-cell responses induced in all the 90-120-Ia+ macaques on SIV replication remains unknown. Here, we identified three CD8+ T-cell epitopes, Nef9–19, Nef89–97, and Nef193–203, associated with 90-120-Ia. Nef9–19 and Nef193–203 epitope-specific CD8+ T-cell responses frequently selected for mutations resulting in viral escape from recognition by these CD8+ T cells, indicating that these CD8+ T cells exert strong suppressive pressure on SIV replication. Results would be useful for elucidation of the viral control mechanism associated with 90-120-Ia.  相似文献   

11.

Background

Ricin is a type II ribosome-inactivating protein (RIP) that potently inactivates eukaryotic ribosomes by removing a specific adenine residue at the conserved α-sarcin/ricin loop of 28S ribosomal RNA (rRNA). Here, we try to increase the specificity of the enzymatically active ricin A chain (RTA) towards human immunodeficiency virus type 1 (HIV-1) by adding a loop with HIV protease recognition site to RTA.

Methods

HIV-specific RTA variants were constructed by inserting a peptide with HIV-protease recognition site either internally or at the C-terminal region of wild type RTA. Cleavability of variants by viral protease was tested in vitro and in HIV-infected cells. The production of viral p24 antigen and syncytium in the presence of C-terminal variants was measured to examine the anti-HIV activities of the variants.

Results

C-terminal RTA variants were specifically cleaved by HIV-1 protease both in vitro and in HIV-infected cells. Upon proteolysis, the processed variants showed enhanced antiviral effect with low cytotoxicity towards uninfected cells.

Conclusions

RTA variants with HIV protease recognition sequence engineered at the C-terminus were cleaved and the products mediated specific inhibitory effect towards HIV replication.

General significance

Current cocktail treatment of HIV infection fails to eradicate the virus from patients. Here we illustrate the feasibility of targeting an RIP towards HIV-infected cells by incorporation of HIV protease cleavage sequence. This approach may be generalized to other RIPs and is promising in drug design for combating HIV.  相似文献   

12.
Pulmonary hypertension associated with human immunodeficiency virus (HIV) infection also involves injury to the lung endothelium. However, the pathogenesis of HIV-induced pulmonary hypertension is not known; we hypothesized that HIV or secreted viral proteins could play a role in vascular injury and the increased frequency of pulmonary hypertension observed in HIV-infected patients. Here, we report that exposure of HIV-1 gp120 proteins to primary human lung microvascular endothelial cells causes apoptosis, as assessed by TUNEL assay, Annexin-V staining, and DNA laddering. Using ribonuclease protection assay and Western blotting we find that gp120-induced apoptosis of lung endothelial cells involves a down-regulation in Bcl-xl mRNA and proteins. In addition, gp120 significantly increases secretion of the potent vasoconstrictor endothelin-1 by human lung endothelial cells. These data suggest that secreted HIV gp120 proteins induce lung endothelial cell injury and could contribute to the development of HIV-associated pulmonary hypertension.  相似文献   

13.
14.
Cumulative studies on human immunodeficiency virus (HIV)-infected individuals have shown association of major histocompatibility complex class I (MHC-I) polymorphisms with lower viral load and delayed AIDS progression, suggesting that HIV replication can be controlled by potent CD8+ T-cell responses. We have previously established an AIDS model of simian immunodeficiency virus (SIV) infection in Burmese rhesus macaques and found a potent CD8+ T cell targeting the Mamu-A1*065:01-restricted Gag241-249 epitope, which is located in a region corresponding to the HIV Gag240-249 TW10 epitope restricted by a protective MHC-I allele, HLA-B*57. In the present study, we determined a T cell receptor (TCR) of this Gag241-249 epitope-specific CD8+ T cell. cDNA clones encoding TCR-α and TCR-β chains were obtained from a Gag241-249-specific CD8+ T-cell clone. Coexpression of these TCR-α and TCR-β cDNAs resulted in reconstitution of a functional TCR specifically detected by Gag241-249 epitope-Mamu-A1*065:01 tetramer. Two of three previously-reported CD8+ T-cell escape mutations reduced binding affinity of Gag241-249 peptide to Mamu-A1*065:01 but the remaining one not. This is consistent with the data obtained by molecular modeling of the epitope-MHC-I complex and TCR. These results would contribute to understanding how viral CD8+ T-cell escape mutations are selected under structural constraint of viral proteins.  相似文献   

15.

Background

Since the discovery of human immunodeficiency virus (HIV-1) twenty years ago, AIDS has become one of the most studied diseases. A number of viruses have subsequently been identified to contribute to the pathogenesis of HIV and its opportunistic infections and cancers. Therefore, a multi-virus array containing eight human viruses implicated in AIDS pathogenesis was developed and its efficacy in various applications was characterized.

Results

The amplified open reading frames (ORFs) of human immunodeficiency virus type 1, human T cell leukemia virus types 1 and 2, hepatitis C virus, Epstein-Barr virus, human herpesvirus 6A and 6B, and Kaposi's sarcoma-associated herpesvirus were spotted on glass slides and hybridized to DNA and RNA samples. Using a random priming method for labeling genomic DNA or cDNA probes, we show specific detection of genomic viral DNA from cells infected with the human herpesviruses, and effectively demonstrate the inhibitory effects of a cellular cyclin dependent kinase inhibitor on viral gene expression in HIV-1 and KSHV latently infected cells. In addition, we coupled chromatin immunoprecipitation with the virus chip (ChIP-chip) to study cellular protein and DNA binding.

Conclusions

An amplicon based virus chip representing eight human viruses was successfully used to identify each virus with little cross hybridization. Furthermore, the identity of both viruses was correctly determined in co-infected cells. The utility of the virus chip was demonstrated by a variety of expression studies. Additionally, this is the first demonstrated use of ChIP-chip analysis to show specific binding of proteins to viral DNA, which, importantly, did not require further amplification for detection.  相似文献   

16.
We have investigated the molecular evidence in favor of the transmission of human immunodeficiency virus (HIV) from an HIV-infected surgeon to one of his patients. After PCR amplification, the env and gag sequences from the viral genome were cloned and sequenced. Phylogenetic analysis revealed that the viral sequences derived from the surgeon and his patient are closely related, which strongly suggests that nosocomial transmission occurred. In addition, these viral sequences belong to group M of HIV type 1 but are divergent from the reference sequences of the known subtypes.  相似文献   

17.

Background

Whether seroresponse to a vaccine such as hepatitis B virus (HBV) vaccine can provide a measure of the functional immune status of HIV-infected persons is unknown.This study evaluated the relationship between HBV vaccine seroresponses and progression to clinical AIDS or death.

Methods and Findings

From a large HIV cohort, we evaluated those who received HBV vaccine only after HIV diagnosis and had anti-HBs determination 1–12 months after the last vaccine dose. Non-response and positive response were defined as anti-HBs <10 and ≥10 IU/L, respectively. Participants were followed from date of last vaccination to clinical AIDS, death, or last visit. Univariate and multivariable risk of progression to clinical AIDS or death were evaluated with Cox regression models. A total of 795 participants vaccinated from 1986–2010 were included, of which 41% were responders. During 3,872 person-years of observation, 122 AIDS or death events occurred (53% after 1995). Twenty-two percent of non-responders experienced clinical AIDS or death compared with 5% of responders (p<0.001). Non-response to HBV vaccine was associated with a greater than 2-fold increased risk of clinical AIDS or death (HR 2.47; 95% CI, 1.38–4.43) compared with a positive response, after adjusting for CD4 count, HIV viral load, HAART use, and delayed type hypersensitivity skin test responses (an in vivo marker of cell-mediated immunity). This association remained evident among those with CD4 count ≥500 cells/mm3 (HR 3.40; 95% CI, 1.39–8.32).

Conclusions

HBV vaccine responses may have utility in assessing functional immune status and risk stratificating HIV-infected individuals, including those with CD4 count ≥500 cells/mm3.  相似文献   

18.
19.
Studies have shown that interferon (IFN)-α has an inhibitory effect on human immunodeficiency virus type 1 (HIV-1) replication in the acute infection stage, but its role in chronic infection is still unclear. We previously established a nonpathogenic HIV-1 and pathogenic simian immunodeficiency virus (SIV) model in northern pig-tailed macaques (NPMs, Macaca leonina). In the current study, we detected viral RNA and DNA in various tissues (axillary lymph nodes (LNs), inguinal LNs, and spleen) in HIV-1NL4-3- and SIVmac239-infected NPM during the chronic stage of infection. Results indicated that the levels of viral DNA and RNA were higher in the tested tissues (LNs and spleen) of the SIVmac239-infected NPMs than in the HIV-1NL4-3 infected NPMs. Furthermore, IFN-α expression was higher in the HIV-infected tissues than in the SIV-infected controls. The HIV restriction factors induced by IFN-α (i.e., tetherin and MX2), as well as inflammatory factors IFN-γ, tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6), were analyzed using real-time polymerase chain reaction (PCR) and immunofluorescence staining assays. Results showed that their expression levels were much higher in the HIV-infected tissues than in the SIV-infected controls. These findings were confirmed by in vitro experiments on healthy NPM peripheral blood mononuclear cells infected with HIV-1NL4-3, which showed lower viral replication, higher IFN-α expression, and an antiviral status. This study demonstrated that HIV-1 infection, but not SIVmac239 infection, in NPMs caused higher expression of IFN-α and induced a higher antiviral status. This may be one of the reasons why HIV-1 cannot replicate at a high level or develop into AIDS in NPMs.  相似文献   

20.
The nef gene of primate immunodeficiency viruses is essential for high-titer virus replication and AIDS pathogenesis in vivo. In tissue culture, Nef is not required for human immunodeficiency virus (HIV) infection but enhances viral infectivity. We and others have shown that Nef is incorporated into HIV-1 particles and cleaved by the viral proteinase. To determine the signal for Nef incorporation and to analyze whether virion-associated Nef is responsible for enhancement of infectivity, we generated a panel of nef mutants and analyzed them for virion incorporation of Nef and for their relative infectivities. We report that N-terminal truncations of Nef abolished its incorporation into HIV particles. Incorporation was reconstituted by targeting the respective proteins to the plasma membrane by using a heterologous signal. Mutational analysis revealed that both myristoylation and an N-terminal cluster of basic amino acids were required for virion incorporation and for plasma membrane targeting of Nef. Grafting the N-terminal anchor domain of Nef onto the green fluorescent protein led to membrane targeting and virion incorporation of the resulting fusion protein. These results indicate that Nef incorporation into HIV-1 particles is mediated by plasma membrane targeting via an N-terminal bipartite signal which is reminiscent of a Src homology region 4. Virion incorporation of Nef correlated with enhanced infectivity of the respective viruses in a single-round replication assay. However, the phenotypes of HIV mutants with reduced Nef incorporation only partly correlated with their ability to replicate in primary lymphocytes, indicating that additional or different mechanisms may be involved in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号