共查询到20条相似文献,搜索用时 15 毫秒
1.
《Protein science : a publication of the Protein Society》2021,30(11):2206
Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2) is a pathogenic coronavirus causing COVID‐19 infection. The interaction between the SARS‐CoV‐2 spike protein and the human receptor angiotensin‐converting enzyme 2, both of which contain several cysteine residues, is impacted by the disulfide‐thiol balance in the host cell. The host cell redox status is affected by oxidative stress due to the imbalance between the reactive oxygen/nitrogen species and antioxidants. Recent studies have shown that Vitamin D supplementation could reduce oxidative stress. It has also been proposed that vitamin D at physiological concentration has preventive effects on many viral infections, including COVID‐19. However, the molecular‐level picture of the interplay of vitamin D deficiency, oxidative stress, and the severity of COVID‐19 has remained unclear. Herein, we present a thorough review focusing on the possible molecular mechanism by which vitamin D could alter host cell redox status and block viral entry, thereby preventing COVID‐19 infection or reducing the severity of the disease. 相似文献
2.
Luiz A. R. Freitas Lilian V. S. Carvalho Jonathan L. M. Fontes Cassiana S. Souza Reginaldo B. Santos Jr. Lara T. Cardoso Claudio P. Figueira Milton S. Fonseca Neto Rafael C. M. F. Dias Manuela S. Solc Marilda S. Gonalves Setondji C. M. A. Yahouedehou Ceuci L. X. Nunes Geraldo G. S. Oliveira Washington L. C. dosSantos 《Journal of cellular and molecular medicine》2021,25(21):10318
3.
Hoi Wa Ngai Dae Hong Kim Mohamed Hammad Margarita Gutova Karen Aboody Christopher D. Cox 《Journal of cellular and molecular medicine》2022,26(9):2483
As the number of confirmed cases and resulting death toll of the COVID‐19 pandemic continue to increase around the globe ‐ especially with the emergence of new mutations of the SARS‐CoV‐2 virus in addition to the known alpha, beta, gamma, delta and omicron variants ‐ tremendous efforts continue to be dedicated to the development of interventive therapeutics to mitigate infective symptoms or post‐viral sequelae in individuals for which vaccines are not accessible, viable or effective in the prevention of illness. Many of these investigations aim to target the associated acute respiratory distress syndrome, or ARDS, which induces damage to lung epithelia and other physiologic systems and is associated with progression in severe cases. Recently, stem cell‐based therapies have demonstrated preliminary efficacy against ARDS based on a number of preclinical and preliminary human safety studies, and based on promising outcomes are now being evaluated in phase II clinical trials for ARDS. A number of candidate stem cell therapies have been found to exhibit low immunogenicity, coupled with inherent tropism to injury sites. In recent studies, these have demonstrated the ability to modulate suppression of pro‐inflammatory cytokine signals such as those characterizing COVID‐19‐associated ARDS. Present translational studies are aiming to optimize the safety, efficacy and delivery to fully validate stem cell‐based strategies targeting COVID‐19 associated ARDS for viable clinical application. 相似文献
4.
YanMei Chen Yuanting Zheng Ying Yu Yunzhi Wang Qingxia Huang Feng Qian Lei Sun ZhiGang Song Ziyin Chen Jinwen Feng Yanpeng An Jingcheng Yang Zhenqiang Su Shanyue Sun Fahui Dai Qinsheng Chen Qinwei Lu Pengcheng Li Yun Ling Zhong Yang Huiru Tang Leming Shi Li Jin Edward C Holmes Chen Ding TongYu Zhu YongZhen Zhang 《The EMBO journal》2020,39(24)
5.
Elias Hellou Jameel Mohsin Ameer Elemy Fahed Hakim Mona MustafaHellou Shadi Hamoud 《Journal of cellular and molecular medicine》2022,26(11):3281
Despite intensive efforts, there is no effective remedy for COVID‐19. Moreover, vaccination efficacy declines over time and may be compromised against new SARS‐CoV‐2 lineages. Therefore, there remains an unmet need for simple, accessible, low‐cost and effective pharmacological anti‐SARS‐CoV‐2 agents. ArtemiC is a medical product comprising artemisinin, curcumin, frankincense and vitamin C, all of which possess anti‐inflammatory and anti‐oxidant properties. The present Phase II placebo‐controlled, double‐blinded, multi‐centred, prospective study evaluated the efficacy and safety of ArtemiC in patients with COVID‐19. The study included 50 hospitalized symptomatic COVID‐19 patients randomized (2:1) to receive ArtemiC or placebo oral spray, twice daily on Days 1 and 2, beside standard care. A physical examination was performed, and vital signs and blood tests were monitored daily until hospital discharge (or Day 15). A PCR assessment of SARS‐CoV‐2 carriage was performed at screening and on last visit. ArtemiC improved NEWS2 in 91% of patients and shortened durations of abnormal SpO2 levels, oxygen supplementation and fever. No treatment‐related adverse events were reported. These findings suggest that ArtemiC curbed deterioration, possibly by limiting cytokine storm of COVID‐19, thus bearing great promise for COVID‐19 patients, particularly those with comorbidities. 相似文献
6.
Aysa Rezabakhsh SeyyedReza SadatEbrahimi Alireza Ala Seyed Mohammad Nabavi Maciej Banach Samad Ghaffari 《Journal of cellular and molecular medicine》2022,26(2):274
Based on the recent reports, cardiovascular events encompass a large portion of the mortality caused by the COVID‐19 pandemic, which drawn cardiologists into the management of the admitted ill patients. Given that common laboratory values may provide key insights into the illness caused by the life‐threatening SARS‐CoV‐2 virus, it would be more helpful for screening, clinical management and on‐time therapeutic strategies. Commensurate with these issues, this review article aimed to discuss the dynamic changes of the common laboratory parameters during COVID‐19 and their association with cardiovascular diseases. Besides, the values that changed in the early stage of the disease were considered and monitored during the recovery process. The time required for returning biomarkers to basal levels was also discussed. Finally, of particular interest, we tended to abridge the latest updates regarding the cardiovascular biomarkers as prognostic and diagnostic criteria to determine the severity of COVID‐19. 相似文献
7.
Cristiana Iosef Claudio M. Martin Marat Slessarev Carolina GillioMeina Gediminas Cepinskas Victor K. M. Han Douglas D. Fraser 《Journal of cellular and molecular medicine》2023,27(1):141
Coronavirus disease 2019 (COVID‐19) is a systemic inflammatory condition with high mortality that may benefit from personalized medicine and high‐precision approaches. COVID‐19 patient plasma was analysed with targeted proteomics of 1161 proteins. Patients were monitored from Days 1 to 10 of their intensive care unit (ICU) stay. Age‐ and gender‐matched COVID‐19‐negative sepsis ICU patients and healthy subjects were examined as controls. Proteomic data were resolved using both cell‐specific annotation and deep‐analysis for functional enrichment. COVID‐19 caused extensive remodelling of the plasma microenvironment associated with a relative immunosuppressive milieu between ICU Days 3–7, and characterized by extensive organ damage. COVID‐19 resulted in (1) reduced antigen presentation and B/T‐cell function, (2) increased repurposed neutrophils and M1‐type macrophages, (3) relatively immature or disrupted endothelia and fibroblasts with a defined secretome, and (4) reactive myeloid lines. Extracellular matrix changes identified in COVID‐19 plasma could represent impaired immune cell homing and programmed cell death. The major functional modules disrupted in COVID‐19 were exaggerated in patients with fatal outcome. Taken together, these findings provide systems‐level insight into the mechanisms of COVID‐19 inflammation and identify potential prognostic biomarkers. Therapeutic strategies could be tailored to the immune response of severely ill patients. 相似文献
8.
《Journal of cellular and molecular medicine》2022,26(9):2520
Although numerous patient‐specific co‐factors have been shown to be associated with worse outcomes in COVID‐19, the prognostic value of thalassaemic syndromes in COVID‐19 patients remains poorly understood. We studied the outcomes of 137 COVID‐19 patients with a history of transfusion‐dependent thalassaemia (TDT) and transfusion independent thalassaemia (TIT) extracted from a large international cohort and compared them with the outcomes from a matched cohort of COVID‐19 patients with no history of thalassaemia. The mean age of thalassaemia patients included in our study was 41 ± 16 years (48.9% male). Almost 81% of these patients suffered from TDT requiring blood transfusions on a regular basis. 38.7% of patients were blood group O. Cardiac iron overload was documented in 6.8% of study patients, whereas liver iron overload was documented in 35% of study patients. 40% of thalassaemia patients had a history of splenectomy. 27.7% of study patients required hospitalization due to COVID‐19 infection. Amongst the hospitalized patients, one patient died (0.7%) and one patient required intubation. Continuous positive airway pressure (CPAP) was required in almost 5% of study patients. After adjustment for age‐, sex‐ and other known risk factors (cardiac disease, kidney disease and pulmonary disease), the rate of in‐hospital complications (supplemental oxygen use, admission to an intensive care unit for CPAP therapy or intubation) and all‐cause mortality was significantly lower in the thalassaemia group compared to the matched cohort with no history of thalassaemia. Amongst thalassaemia patients in general, the TIT group exhibited a higher rate of hospitalization compared to the TDT group (p = 0.001). In addition, the rate of complications such as acute kidney injury and need for supplemental oxygen was significantly higher in the TIT group compared to the TDT group. In the multivariable logistic regression analysis, age and history of heart or kidney disease were all found to be independent risk factors for increased in‐hospital, all‐cause mortality, whereas the presence of thalassaemia (either TDT or TIT) was found to be independently associated with reduced all‐cause mortality. The presence of thalassaemia in COVID‐19 patients was independently associated with lower in‐hospital, all‐cause mortality and few in‐hospital complications in our study. The pathophysiology of this is unclear and needs to be studied in vitro and in animal models. 相似文献
9.
Yuan Hou Yadi Zhou Lara Jehi Yuan Luo Michaela U. Gack Timothy
A. Chan Haiyuan Yu Charis Eng Andrew A. Pieper Feixiong Cheng 《Aging cell》2022,21(2)
Coronavirus disease 2019 (COVID‐19) is especially severe in aged patients, defined as 65 years or older, for reasons that are currently unknown. To investigate the underlying basis for this vulnerability, we performed multimodal data analyses on immunity, inflammation, and COVID‐19 incidence and severity as a function of age. Our analysis leveraged age‐specific COVID‐19 mortality and laboratory testing from a large COVID‐19 registry, along with epidemiological data of ~3.4 million individuals, large‐scale deep immune cell profiling data, and single‐cell RNA‐sequencing data from aged COVID‐19 patients across diverse populations. We found that decreased lymphocyte count and elevated inflammatory markers (C‐reactive protein, D‐dimer, and neutrophil–lymphocyte ratio) are significantly associated with age‐specific COVID‐19 severities. We identified the reduced abundance of naïve CD8 T cells with decreased expression of antiviral defense genes (i.e., IFITM3 and TRIM22) in aged severe COVID‐19 patients. Older individuals with severe COVID‐19 displayed type I and II interferon deficiencies, which is correlated with SARS‐CoV‐2 viral load. Elevated expression of SARS‐CoV‐2 entry factors and reduced expression of antiviral defense genes (LY6E and IFNAR1) in the secretory cells are associated with critical COVID‐19 in aged individuals. Mechanistically, we identified strong TGF‐beta‐mediated immune–epithelial cell interactions (i.e., secretory‐non‐resident macrophages) in aged individuals with critical COVID‐19. Taken together, our findings point to immuno‐inflammatory factors that could be targeted therapeutically to reduce morbidity and mortality in aged COVID‐19 patients. 相似文献
10.
Hao Wu Shujie Liao Yiming Wang Ming Guo Xingguang Lin Jianli Wu Renjie Wang Dan Lv Di Wu Mengzhou He Bai Hu Rui Long Jing Peng Hui Yang Heng Yin Xin Wang Zhixiang Huang Ke Lan Yanbin Zhou Wei Zhang Zhenyu Xiao Yun Zhao Dongrui Deng Hongmei Wang 《Cell proliferation》2021,54(9)
ObjectivesRecent studies have shown the presence of SARS‐CoV‐2 in the tissues of clinically recovered patients and persistent immune symptoms in discharged patients for up to several months. Pregnant patients were shown to be a high‐risk group for COVID‐19. Based on these findings, we assessed SARS‐CoV‐2 nucleic acid and protein retention in the placentas of pregnant women who had fully recovered from COVID‐19 and cytokine fluctuations in maternal and foetal tissues.Materials and MethodsRemnant SARS‐CoV‐2 in the term placenta was detected using nucleic acid amplification and immunohistochemical staining of the SARS‐CoV‐2 protein. The infiltration of CD14+ macrophages into the placental villi was detected by immunostaining. The cytokines in the placenta, maternal plasma, neonatal umbilical cord, cord blood and amniotic fluid specimens at delivery were profiled using the Luminex assay.ResultsResidual SARS‐CoV‐2 nucleic acid and protein were detected in the term placentas of recovered pregnant women. The infiltration of CD14+ macrophages into the placental villi of the recovered pregnant women was higher than that in the controls. Furthermore, the cytokine levels in the placenta, maternal plasma, neonatal umbilical cord, cord blood and amniotic fluid specimens fluctuated significantly.ConclusionsOur study showed that SARS‐CoV‐2 nucleic acid (in one patient) and protein (in five patients) were present in the placentas of clinically recovered pregnant patients for more than 3 months after diagnosis. The immune responses induced by the virus may lead to prolonged and persistent symptoms in the maternal plasma, placenta, umbilical cord, cord blood and amniotic fluid. 相似文献
11.
《Journal of cellular and molecular medicine》2022,26(5):1445
There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease‐19 (COVID‐19). We aimed to a) identify complement‐related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement‐related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID‐19. Through targeted next‐generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH‐related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID‐19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID‐19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID‐19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype. 相似文献
12.
Andrea Latini Chiara Vancheri Francesca Amati Elena Morini Sandro Grelli Matteucci Claudia Petrone Vita Vito Luigi Colona Michela Murdocca Massimo Andreoni Vincenzo Malagnino Massimiliano Raponi Dario Cocciadiferro Antonio Novelli Paola Borgiani Giuseppe Novelli 《Journal of cellular and molecular medicine》2022,26(19):4940
13.
Lin Yan Bei Cai Yi Li MinJin Wang YunFei An Rong Deng DongDong Li LiChun Wang Huan Xu XueDan Gao LanLan Wang 《Journal of cellular and molecular medicine》2020,24(24):14270
Recent studies have demonstrated a marked decrease in peripheral lymphocyte levels in patients with coronavirus disease 2019 (COVID‐19) caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). Few studies have focused on the changes of NK, T‐ and B‐cell subsets, inflammatory cytokines and virus‐specific antibodies in patients with moderate COVID‐19. A total of 11 RT‐PCR‐confirmed convalescent patients with COVID‐19 and 11 patients with non‐SARS‐CoV‐2 pneumonia (control patients) were enrolled in this study. NK, CD8+ T, CD4+ T, Tfh‐like and B‐cell subsets were analysed using flow cytometry. Cytokines and SARS‐CoV‐2‐specific antibodies were analysed using an electrochemiluminescence immunoassay. NK cell counts were significantly higher in patients with COVID‐19 than in control patients (P = 0.017). Effector memory CD8+ T‐cell counts significantly increased in patients with COVID‐19 during a convalescent period of 1 week (P = 0.041). TIM‐3+ Tfh‐like cell and CD226+ Tfh‐like cell counts significantly increased (P = 0.027) and decreased (P = 0.022), respectively, during the same period. Moreover, ICOS+ Tfh‐like cell counts tended to decrease (P = 0.074). No abnormal increase in cytokine levels was observed. The high expression of NK cells is important in innate immune response against SARS‐CoV‐2. The increase in effector memory CD8+ T‐cell counts, the up‐regulation of inhibitory molecules and the down‐regulation of active molecules on CD4+ T cells and Tfh‐like cells in patients with COVID‐19 would benefit the maintenance of balanced cellular and humoural immune responses, may prevent the development of severe cases and contribute to the recovery of patients with COVID‐19. 相似文献
14.
15.
Meetali Singh Maxime Chazal Piergiuseppe Quarato Loan Bourdon Christophe Malabat Thomas Vallet Marco Vignuzzi Sylvie van der Werf Sylvie Behillil Flora Donati Nathalie Sauvonnet Giulia Nigro Maryline Bourgine Nolwenn Jouvenet Germano Cecere 《EMBO reports》2022,23(2)
SARS‐CoV‐2 infection results in impaired interferon response in patients with severe COVID‐19. However, how SARS‐CoV‐2 interferes with host immune responses is incompletely understood. Here, we sequence small RNAs from SARS‐CoV‐2‐infected human cells and identify a microRNA (miRNA) derived from a recently evolved region of the viral genome. We show that the virus‐derived miRNA produces two miRNA isoforms in infected cells by the enzyme Dicer, which are loaded into Argonaute proteins. Moreover, the predominant miRNA isoform targets the 3′UTR of interferon‐stimulated genes and represses their expression in a miRNA‐like fashion. Finally, the two viral miRNA isoforms were detected in nasopharyngeal swabs from COVID‐19 patients. We propose that SARS‐CoV‐2 can potentially employ a virus‐derived miRNA to hijack the host miRNA machinery, which could help to evade the interferon‐mediated immune response. 相似文献
16.
Jingsi Chen Lili Du Feiyang Wang Xuan Shao Xiaoyi Wang Wenzhe Yu Shilei Bi Dexiong Chen Xingfei Pan Shanshan Zeng Lijun Huang Yingyu Liang Yulian Li Rufang Chen Fengwu Xue Xiuying Li Shouping Wang Manli Zhuang Mingxing Liu Lin Lin Hao Yan Fang He Lin Yu Qingping Jiang Zhongtang Xiong Lizi Zhang Bin Cao YanLing Wang Dunjin Chen 《Cell proliferation》2022,55(4)
ObjectivesThe impacts of the current COVID‐19 pandemic on maternal and foetal health are enormous and of serious concern. However, the influence of SARS‐CoV‐2 infection at early‐to‐mid gestation on maternal and foetal health remains unclear.Materials and methodsHere, we report the follow‐up study of a pregnant woman of her whole infective course of SARS‐CoV‐2, from asymptomatic infection at gestational week 20 to mild and then severe illness state, and finally cured at Week 24. Following caesarean section due to incomplete uterine rupture at Week 28, histological examinations on the placenta and foetal tissues as well as single‐cell RNA sequencing (scRNA‐seq) for the placenta were performed.ResultsCompared with the gestational age‐matched control placentas, the placenta from this COVID‐19 case exhibited more syncytial knots and lowered expression of syncytiotrophoblast‐related genes. The scRNA‐seq analysis demonstrated impaired trophoblast differentiation, activation of antiviral and inflammatory CD8 T cells, as well as the tight association of increased inflammatory responses in the placenta with complement over‐activation in macrophages. In addition, levels of several inflammatory factors increased in the placenta and foetal blood.ConclusionThese findings illustrate a systematic cellular and molecular signature of placental insufficiency and immune activation at the maternal–foetal interface that may be attributed to SARS‐CoV‐2 infection at the midgestation stage, which highly suggests the extensive care for maternal and foetal outcomes in pregnant women suffering from COVID‐19. 相似文献
17.
During the Spring Semester of 2020, an outbreak of a novel coronavirus (SARS‐CoV‐2) and the illnesses it caused (COVID‐19) led to widespread cancelling of on‐campus instruction at colleges and universities in the United States and other countries around the world. Response to the pandemic in university settings included a rapid and unexpected shift to online learning for faculty and students. The transition to teaching and learning online posed many challenges, and the experiences of students during this crisis may inform future planning for distance learning experiences during the ongoing pandemic and beyond. Herein, we discuss the experiences of first‐ and second‐year university students enrolled in a biology seminar course as their classes migrated to online environments. Drawing on reported student experiences and prior research and resources, we discuss the ways we will adjust our own teaching for future iterations of the course while offering recommendations for instructors tasked with teaching in online environments. 相似文献
18.
Shanice Van Haeften Andelija Milic Beth AddisonSmith Christopher Butcher Janet Mary Davies 《Ecology and evolution》2021,11(8):3488
The coronavirus disease of 2019 (COVID‐19) pandemic has impacted educational systems worldwide during 2020, including primary and secondary schooling. To enable students of a local secondary school in Brisbane, Queensland, to continue with their practical agricultural science learning and facilitate online learning, a “Grass Gazers” citizen science scoping project was designed and rapidly implemented as a collaboration between the school and a multidisciplinary university research group focused on pollen allergy. Here, we reflect on the process of developing and implementing this project from the perspective of the school and the university. A learning package including modules on pollen identification, tracking grass species, measuring field greenness, using a citizen science data entry platform, forensic palynology, as well as video guides, risk assessment and feedback forms were generated. Junior agriculture science students participated in the learning via online lessons and independent data collection in their own local neighborhood and/or school grounds situated within urban environments. The university research group and school coordinator, operating in their own distributed work environments, had to develop, source, adopt, and/or adapt material rapidly to meet the unique requirements of the project. The experience allowed two‐way knowledge exchange between the secondary and tertiary education sectors. Participating students were introduced to real‐world research and were able to engage in outdoor learning during a time when online, indoor, desk‐based learning dominated their studies. The unique context of restrictions imposed by the social isolation policies, as well as government Public Health and Department of Education directives, allowed the team to respond by adapting teaching and research activity to develop and trial learning modules and citizen science tools. The project provided a focus to motivate and connect teachers, academic staff, and school students during a difficult circumstance. Extension of this citizen project for the purposes of research and secondary school learning has the potential to offer ongoing benefits for grassland ecology data acquisition and student exposure to real‐world science. 相似文献
19.
Thomas Güttler Metin Aksu Antje Dickmanns Kim M. Stegmann Kathrin Gregor Renate Rees Waltraud Taxer Oleh Rymarenko Jürgen Schünemann Christian Dienemann Philip Gunkel Bianka Mussil Jens Krull Ulrike Teichmann Uwe Groß Volker C Cordes Matthias Dobbelstein Dirk Grlich 《The EMBO journal》2021,40(19)
Monoclonal anti‐SARS‐CoV‐2 immunoglobulins represent a treatment option for COVID‐19. However, their production in mammalian cells is not scalable to meet the global demand. Single‐domain (VHH) antibodies (also called nanobodies) provide an alternative suitable for microbial production. Using alpaca immune libraries against the receptor‐binding domain (RBD) of the SARS‐CoV‐2 Spike protein, we isolated 45 infection‐blocking VHH antibodies. These include nanobodies that can withstand 95°C. The most effective VHH antibody neutralizes SARS‐CoV‐2 at 17–50 pM concentration (0.2–0.7 µg per liter), binds the open and closed states of the Spike, and shows a tight RBD interaction in the X‐ray and cryo‐EM structures. The best VHH trimers neutralize even at 40 ng per liter. We constructed nanobody tandems and identified nanobody monomers that tolerate the K417N/T, E484K, N501Y, and L452R immune‐escape mutations found in the Alpha, Beta, Gamma, Epsilon, Iota, and Delta/Kappa lineages. We also demonstrate neutralization of the Beta strain at low‐picomolar VHH concentrations. We further discovered VHH antibodies that enforce native folding of the RBD in the E. coli cytosol, where its folding normally fails. Such “fold‐promoting” nanobodies may allow for simplified production of vaccines and their adaptation to viral escape‐mutations. 相似文献
20.
Valter Bergant Shintaro Yamada Vincent Grass Yuta Tsukamoto Teresa Lavacca Karsten Krey MariaTeresa Mühlhofer Sabine Wittmann Armin Ensser Alexandra Herrmann Anja vom Hemdt Yuriko Tomita Shutoku Matsuyama Takatsugu Hirokawa Yiqi Huang Antonio Piras Constanze A Jakwerth Madlen Oelsner Susanne Thieme Alexander Graf Stefan Krebs Helmut Blum Beate M Kümmerer Alexey Stukalov Carsten B SchmidtWeber Manabu Igarashi Thomas Gramberg Andreas Pichlmair Hiroki Kato 《The EMBO journal》2022,41(17)
The SARS‐CoV‐2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2''‐O‐ribose cap needed for viral immune escape. We find that the host cap 2''‐O‐ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS‐CoV‐2 replication. Using in silico target‐based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti‐SARS‐CoV‐2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co‐substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID‐19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection‐induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID‐19. 相似文献