首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孙忠林  王传宽 《生态学报》2014,34(15):4133-4141
可溶性碳(Dissolved carbon,DC)和颗粒碳(particulate carbon,PC)通量作为森林生态系统碳收支的重要组分,在森林固碳功能的评价和模型预测中具有重要意义,但常因认识不足、测定困难等而在森林碳汇研究中被忽略。综述了森林生态系统DC和PC的组成、作用、相关生态过程及其影响因子,并展望了该领域应该优先考虑的研究问题。森林生态系统DC和PC主要包括可溶性有机碳、可溶性无机碳和颗粒有机碳,主要来源于生态系统的净初级生产量。DC和PC是森林土壤的活性碳库,主要以大气沉降、穿透雨和凋落物的形式输入森林土壤系统,并通过土壤呼吸、侧向运输及渗透流失的方式输出生态系统。从局域尺度看,DC和PC通量受根系分泌、细根分解、微生物周转等生物过程的影响较大;从区域尺度看,它们受土壤和植被特性、生态过程耦联关系、气候因子以及全球变化的综合影响。该领域应该优先考虑:(1)探索不同时空尺度下森林生态系统DC和PC通量的控制因子及其耦联关系,揭示其中的驱动机理;(2)探索DC和PC与其它森林生态系统碳组分的相互关系及转化,阐明DC和PC通量与其它养分之间潜在的生态化学计量关系;(3)探索全球变化,特别是人类活动(如森林经营)和极端干扰事件(如林火、旱涝、冰冻、冻融交替等)对森林生态系统DC和PC通量的影响。  相似文献   

2.
土壤微生物生物量在森林生态系统中充当具有生物活性的养分积累和储存库。土壤微生物转化有机质为植物提供可利用养分, 与植物的相互作用维系着陆地生态系统的生态功能。同时, 土壤微生物也与植物争夺营养元素, 在季节交替过程和植物的生长周期中呈现出复杂的互利-竞争关系。综合全球数据对温带、亚热带和热带森林土壤微生物生物量碳(C)、氮(N)、磷(P)含量及其化学计量比值的季节动态进行分析, 发现温带和亚热带森林的土壤微生物生物量C、N、P含量均呈现夏季低、冬季高的格局。热带森林四季的土壤微生物生物量C、N、P含量都低于温带和亚热带森林, 且热带森林土壤微生物生物量C含量、N含量在秋季相对最低, 土壤微生物生物量P含量四季都相对恒定。温带森林的土壤微生物生物量C:N在春季显著高于其他两个森林类型; 热带森林的土壤微生物生物量C:N在秋季显著高于其他2个森林类型。温带森林土壤微生物生物量N:P和C:P在四季都保持相对恒定, 而热带森林土壤微生物生物量N:P和C:P在夏季高于其他3个季节。阔叶树的土壤微生物生物量C含量、N含量、N:P、C:P在四季都显著高于针叶树; 而针叶树的土壤微生物生物量P含量在四季都显著高于阔叶树。在春季和冬季时, 土壤微生物生物量C:N在阔叶树和针叶树之间都没有显著差异; 但是在夏季和秋季, 针叶树的土壤微生物生物量C:N显著高于阔叶树。对于土壤微生物生物量的变化来说, 森林类型是主要的显著影响因子, 季节不是显著影响因子, 暗示土壤微生物生物量的季节波动是随着植物其内在固有的周期变化而变化。植物和土壤微生物密切作用表现出来的对养分的不同步吸收是保留养分和维持生态功能的一种权衡机制。  相似文献   

3.
Net ecosystem productivity (NEP) was continuously measured using the eddy covariance (EC) technique from 2003 to 2005 at three forest sites of ChinaFLUX. The forests include Changbaishan temperate mixed forest (CBS), Qianyanzhou subtropical coniferous plantation (QYZ), and Dinghushan subtropical evergreen broad‐leaved forest (DHS). They span wide ranges of temperature and precipitation and are influenced by the eastern Asian monsoon climate to varying extent. In this study, we estimated ecosystem respiration (RE) and gross ecosystem productivity (GEP). Comparison of ecosystem carbon exchange among the three forests shows that RE was mainly determined by temperature, with the forest at CBS exhibiting the highest temperature sensitivity among the three ecosystems. The RE was highly dependent on GEP across the three forests, and the ratio of RE to GEP decreased along the North–South Transect of Eastern China (NSTEC) (i.e. from the CBS to the DHS), with an average of 0.77 ± 0.06. Daily GEP was mainly influenced by temperature at CBS, whereas photosynthetic photon flux density was the dominant factor affecting the daily GEP at both QYZ and DHS. Temperature mainly determined the pattern of the interannual variations of ecosystem carbon exchange at CBS. However, water availability primarily controlled the interannual variations of ecosystem carbon exchange at QYZ. At DHS, NEP attained the highest values at the beginning of the dry seasons (autumn) rather than the rainy seasons (summer), probably because insufficient radiation and frequent fog during the rainy seasons hindered canopy photosynthesis. All the three forest ecosystems acted as a carbon sink from 2003 to 2005. The annual average values of NEP at CBS, QYZ, and DHS were 259 ± 19, 354 ± 34, and 434 ± 66 g C m−2 yr−1, respectively. The slope of NEP that decreased with increasing latitude along the NSTEC was markedly different from that observed on the forest transect in the European continent. Long‐term flux measurements over more forest ecosystems along the NSTEC will further help verify such a difference between the European forest transect and the NSTEC and provide insights into the responses of ecosystem carbon exchange to climate change in China.  相似文献   

4.
The underground part of a tree is an important carbon sink in forest ecosystems. Understanding biomass allocation between the below‐ and aboveground parts (root:shoot ratios) is necessary for estimation of the underground biomass and carbon pool. Nevertheless, large‐scale biomass allocation patterns and their control mechanisms are not well identified. In this study, a large database of global forests at the community level was compiled to investigate the root:shoot ratios and their responses to environmental factors. The results indicated that both the aboveground biomass (AGB) and belowground biomass (BGB) of the forests in China (medians 73.0 Mg/ha and 17.0 Mg/ha, respectively) were lower than those worldwide (medians 120.3 Mg/ha and 27.7 Mg/ha, respectively). The root:shoot ratios of the forests in China (median = 0.23), however, were not significantly different from other forests worldwide (median = 0.24). In general, the allocation of biomass between the belowground and aboveground parts was determined mainly by the inherent allometry of the plant but also by environmental factors. In this study, most correlations between root:shoot ratios and environmental factors (development parameter, climate, altitude, and soil) were weak but significant (< .01). The allometric model agreed with the trends observed in this study and effectively estimated BGB based on AGB across the entire database.  相似文献   

5.
Soil carbon fluxes and stocks in a Great Lakes forest chronosequence   总被引:1,自引:0,他引:1  
We measured soil respiration and soil carbon stocks, as well as micrometeorological variables in a chronosequence of deciduous forests in Wisconsin and Michigan. The chronosequence consisted of (1) four recently disturbed stands, including a clearcut and repeatedly burned stand (burn), a blowdown and partial salvage stand (blowdown), a clearcut with sparse residual overstory (residual), and a regenerated stand from a complete clearcut (regenerated); (2) four young aspen ( Populus tremuloides ) stands in average age of 10 years; (3) four intermediate aspen stands in average age of 26 years; (4) four mature northern hardwood stands in average age of 73 years; and (5) an old-growth stand approximately 350-years old. We fitted site-based models and used continuous measurements of soil temperature to estimate cumulative soil respiration for the growing season of 2005 (days 133–295). Cumulative soil respiration in the growing season was estimated to be 513, 680, 747, 747, 794, 802, 690, and 571 g C m−2 in the burn, blowdown, residual, regenerated, young, intermediate, mature, and old-growth stands, respectively. The measured apparent temperature sensitivity of soil respiration was the highest in the regenerated stand, and declined from the young stands to the old-growth. Both, cumulative soil respiration and basal soil respiration at 10 °C, increased during stand establishment, peaked at intermediate age, and then decreased with age. Total soil carbon at 0–60 cm initially decreased after harvest, and increased after stands established. The old-growth stand accumulated carbon in deep layers of soils, but not in the surface soils. Our study suggests a complexity of long-term soil carbon dynamics, both in vertical depth and temporal scale.  相似文献   

6.
Ecologists have limited understanding of how geographic variation in forest biomass arises from differences in growth and mortality at continental to global scales. Using forest inventories from across North America, we partitioned continental‐scale variation in biomass growth and mortality rates of 49 tree species groups into (1) species‐independent spatial effects and (2) inherent differences in demographic performance among species. Spatial factors that were separable from species composition explained 83% and 51% of the respective variation in growth and mortality. Moderate additional variation in mortality (26%) was attributable to differences in species composition. Age‐dependent biomass models showed that variation in forest biomass can be explained primarily by spatial gradients in growth that were unrelated to species composition. Species‐dependent patterns of mortality explained additional variation in biomass, with forests supporting less biomass when dominated by species that are highly susceptible to competition (e.g. Populus spp.) or to biotic disturbances (e.g. Abies balsamea).  相似文献   

7.
Forest carbon is a large and uncertain component of the global carbon cycle. An important source of complexity is the spatial heterogeneity of vegetation vertical structure and extent, which results from variations in climate, soils, and disturbances and influences both contemporary carbon stocks and fluxes. Recent advances in remote sensing and ecosystem modeling have the potential to significantly improve the characterization of vegetation structure and its resulting influence on carbon. Here, we used novel remote sensing observations of tree canopy height collected by two NASA spaceborne lidar missions, Global Ecosystem Dynamics Investigation and ICE, Cloud, and Land Elevation Satellite 2, together with a newly developed global Ecosystem Demography model (v3.0) to characterize the spatial heterogeneity of global forest structure and quantify the corresponding implications for forest carbon stocks and fluxes. Multiple-scale evaluations suggested favorable results relative to other estimates including field inventory, remote sensing-based products, and national statistics. However, this approach utilized several orders of magnitude more data (3.77 billion lidar samples) on vegetation structure than used previously and enabled a qualitative increase in the spatial resolution of model estimates achievable (0.25° to 0.01°). At this resolution, process-based models are now able to capture detailed spatial patterns of forest structure previously unattainable, including patterns of natural and anthropogenic disturbance and recovery. Through the novel integration of new remote sensing data and ecosystem modeling, this study bridges the gap between existing empirically based remote sensing approaches and process-based modeling approaches. This study more generally demonstrates the promising value of spaceborne lidar observations for advancing carbon modeling at a global scale.  相似文献   

8.
Estimates of vegetation carbon pools and their turnover rates are central to understanding and modelling ecosystem responses to climate change and their feedbacks to climate. In the Arctic, a region containing globally important stores of soil carbon, and where the most rapid climate change is expected over the coming century, plant communities have on average sixfold more biomass below ground than above ground, but knowledge of the root carbon pool sizes and turnover rates is limited. Here, we show that across eight plant communities, there is a significant positive relationship between leaf and fine root turnover rates (r2 = 0.68, < 0.05), and that the turnover rates of both leaf (r2 = 0.63, < 0.05) and fine root (r2 = 0.55, < 0.05) pools are strongly correlated with leaf area index (LAI, leaf area per unit ground area). This coupling of root and leaf dynamics supports the theory of a whole‐plant economics spectrum. We also show that the size of the fine root carbon pool initially increases linearly with increasing LAI, and then levels off at LAI = 1 m2 m?2, suggesting a functional balance between investment in leaves and fine roots at the whole community scale. These ecological relationships not only demonstrate close links between above and below‐ground plant carbon dynamics but also allow plant carbon pool sizes and their turnover rates to be predicted from the single readily quantifiable (and remotely sensed) parameter of LAI, including the possibility of estimating root data from satellites.  相似文献   

9.
We used a spatially nested hierarchy of field and remote‐sensing observations and a process model, Biome‐BGC, to produce a carbon budget for the forested region of Oregon, and to determine the relative influence of differences in climate and disturbance among the ecoregions on carbon stocks and fluxes. The simulations suggest that annual net uptake (net ecosystem production (NEP)) for the whole forested region (8.2 million hectares) was 13.8 Tg C (168 g C m?2 yr?1), with the highest mean uptake in the Coast Range ecoregion (226 g C m?2 yr?1), and the lowest mean NEP in the East Cascades (EC) ecoregion (88 g C m?2 yr?1). Carbon stocks totaled 2765 Tg C (33 700 g C m?2), with wide variability among ecoregions in the mean stock and in the partitioning above‐ and belowground. The flux of carbon from the land to the atmosphere that is driven by wildfire was relatively low during the late 1990s (~0.1 Tg C yr?1), however, wildfires in 2002 generated a much larger C source (~4.1 Tg C). Annual harvest removals from the study area over the period 1995–2000 were ~5.5 Tg C yr?1. The removals were disproportionately from the Coast Range, which is heavily managed for timber production (approximately 50% of all of Oregon's forest land has been managed for timber in the past 5 years). The estimate for the annual increase in C stored in long‐lived forest products and land fills was 1.4 Tg C yr?1. Net biome production (NBP) on the land, the net effect of NEP, harvest removals, and wildfire emissions indicates that the study area was a sink (8.2 Tg C yr?1). NBP of the study area, which is the more heavily forested half of the state, compensated for ~52% of Oregon's fossil carbon dioxide emissions of 15.6 Tg C yr?1 in 2000. The Biscuit Fire in 2002 reduced NBP dramatically, exacerbating net emissions that year. The regional total reflects the strong east–west gradient in potential productivity associated with the climatic gradient, and a disturbance regime that has been dominated in recent decades by commercial forestry.  相似文献   

10.
In arctic and boreal ecosystems, ground bryophytes play an important role in regulating carbon (C) exchange between vast belowground C stores and the atmosphere. Climate is changing particularly fast in these high-latitude regions, but it is unclear how altered precipitation regimes will affect C dynamics in the bryosphere (i.e. the ground moss layer including senesced moss, litter and associated biota) and the closely associated upper humus layer, and how these effects will vary across contrasting environmental conditions. Here, we set up a greenhouse experiment in which mesocosms were assembled containing samples of the bryosphere, dominated by the feather moss Hylocomium splendens, and the upper humus layer, that were collected from across a boreal forest chronosequence in northern Sweden which varies strongly in nutrient availability, productivity and soil biota. We tested the effect of variation in precipitation volume and frequency on CO2 exchange and dissolved organic carbon (DOC) export, and on moss growth. As expected, reduced precipitation volume and frequency lowered net CO2 efflux, DOC export and moss growth. However, by regulating moisture, the lower bryosphere and humus layers often mediated how precipitation volume and frequency interacted to drive C dynamics. For example, less frequent precipitation reduced moss growth only when precipitation volume was low. When volume was high, high moisture content of the humus layer helped avoid moss desiccation. Variation in precipitation regime affected C cycling consistently in samples collected across the chronosequence, despite large environmental variation along the sequence. This suggests that the bryosphere exerts a strong buffering effect on environmental variation at the forest floor, which leads to similar responses of C cycling to external perturbations across highly contrasting ecosystems. As such, our study indicates that projected increases in droughts and ground evapotranspiration in high-latitude regions resulting from climate change will consistently reduce C losses from moss-dominated ecosystems.  相似文献   

11.
Climate extremes such as heat waves and droughts are projected to occur more frequently with increasing temperature and an intensified hydrological cycle. It is important to understand and quantify how forest carbon fluxes respond to heat and drought stress. In this study, we developed a series of daily indices of sensitivity to heat and drought stress as indicated by air temperature (Ta) and evaporative fraction (EF). Using normalized daily carbon fluxes from the FLUXNET Network for 34 forest sites in North America, the seasonal pattern of sensitivities of net ecosystem productivity (NEP), gross ecosystem productivity (GEP) and ecosystem respiration (RE) in response to Ta and EF anomalies were compared for different forest types. The results showed that warm temperatures in spring had a positive effect on NEP in conifer forests but a negative impact in deciduous forests. GEP in conifer forests increased with higher temperature anomalies in spring but decreased in summer. The drought‐induced decrease in NEP, which mostly occurred in the deciduous forests, was mostly driven by the reduction in GEP. In conifer forests, drought had a similar dampening effect on both GEP and RE, therefore leading to a neutral NEP response. The NEP sensitivity to Ta anomalies increased with increasing mean annual temperature. Drier sites were less sensitive to drought stress in summer. Natural forests with older stand age tended to be more resilient to the climate stresses compared to managed younger forests. The results of the Classification and Regression Tree analysis showed that seasons and ecosystem productivity were the most powerful variables in explaining the variation of forest sensitivity to heat and drought stress. Our results implied that the magnitude and direction of carbon flux changes in response to climate extremes are highly dependent on the seasonal dynamics of forests and the timing of the climate extremes.  相似文献   

12.
Understanding the dynamics and underlying mechanism of carbon exchange between terrestrial ecosystems and the atmosphere is one of the key issues in global change research. In this study, we quantified the carbon fluxes in different terrestrial ecosystems in China, and analyzed their spatial variation and environmental drivers based on the long‐term observation data of ChinaFLUX sites and the published data from other flux sites in China. The results indicate that gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem productivity (NEP) of terrestrial ecosystems in China showed a significantly latitudinal pattern, declining linearly with the increase of latitude. However, GEP, ER, and NEP did not present a clear longitudinal pattern. The carbon sink functional areas of terrestrial ecosystems in China were mainly located in the subtropical and temperate forests, coastal wetlands in eastern China, the temperate meadow steppe in the northeast China, and the alpine meadow in eastern edge of Qinghai‐Tibetan Plateau. The forest ecosystems had stronger carbon sink than grassland ecosystems. The spatial patterns of GEP and ER in China were mainly determined by mean annual precipitation (MAP) and mean annual temperature (MAT), whereas the spatial variation in NEP was largely explained by MAT. The combined effects of MAT and MAP explained 79%, 62%, and 66% of the spatial variations in GEP, ER, and NEP, respectively. The GEP, ER, and NEP in different ecosystems in China exhibited ‘positive coupling correlation’ in their spatial patterns. Both ER and NEP were significantly correlated with GEP, with 68% of the per‐unit GEP contributed to ER and 29% to NEP. MAT and MAP affected the spatial patterns of ER and NEP mainly by their direct effects on the spatial pattern of GEP.  相似文献   

13.
Aims The plasticity of ecosystem responses could buffer and postpone the effects of climates on ecosystem carbon fluxes, but this lagged effect is often ignored. In this study, we used carbon flux data collected from three typical grassland ecosystems in China, including a temperate semiarid steppe in Inner Mongolia (Neimeng site, NM), an alpine shrub-meadow in Qinghai (Haibei site, HB) and an alpine meadow steppe in Tibet (Dangxiong site, DX), to examine the time lagged effects of environmental factors on CO2 exchange.Methods Eddy covariance data were collected from three typical Chinese grasslands. In linking carbon fluxes with climatic factors, we used their averages or cumulative values within each 12-month period and we called them 'yearly' statistics in this study. To investigate the lagged effects of the climatic factors on the carbon fluxes, the climatic 'yearly' statistics were kept still and the 'yearly' statistics of the carbon fluxes were shifted backward 1 month at a time.Important findings Soil moisture and precipitation was the main factor driving the annual variations of carbon fluxes at the alpine HB and DX, respectively, while the NM site was under a synthetic impact of each climatic factor. The time lagged effect analysis showed that temperature had several months, even half a year lag effects on CO2 exchange at the three studied sites, while moisture's effects were mostly exhibited as an immediate manner, except at NM. In general, the lagged climatic effects were relatively weak for the alpine ecosystem. Our results implied that it might be months or even 1 year before the variations of ecosystem carbon fluxes are adjusted to the current climate, so such lag effects could be resistant to more frequent climate extremes and should be a critical component to be considered in evaluating ecosystem stability. An improved knowledge on the lag effects could advance our understanding on the driving mechanisms of climate change effects on ecosystem carbon fluxes.  相似文献   

14.
Continuous and direct measurements of ecosystem carbon dioxide and water vapour fluxes can improve our ability to close regional and global carbon and hydrological budgets. On this behalf, an international and multidisciplinary group of scientists (micrometeorologists, ecophysiologists and biogeochemists) assembled at La Thuile, Italy to convene a workshop on ‘Strategies for Monitoring and Modelling CO2 and Water Vapour Fluxes over Terrestrial Ecosystems’. Over the course of the week talks and discussions focused on: (i) the results from recent field studies on the annual cycle of carbon dioxide and water vapour fluxes over terrestrial ecosystems; (ii) the problems and pitfalls associated with making long-term flux measurements; (iii) alternative methods for assessing ecosystem carbon dioxide and water vapour fluxes; (iv) how direct and continuous carbon dioxide and water vapour flux measurements could be used by the ecological and biogeochemical modelling communities; and (v) if, how and where to proceed with establishing a network of long-term flux measurement sites. This report discusses the purpose of the meeting and summarizes the conclusions drawn from the discussions by the attending scientists. There was a consensus that recent advances in instrumentation and software make possible long-term measurements of carbon dioxide and water vapour fluxes over terrestrial ecosystems. At this writing, eight research teams have conducted long-term carbon dioxide and water vapour flux experiments and more long-term studies are anticipated. The participants advocated an experimental design that would make long-term flux measurement valuable to a wider community of modelers, biogeochemists and ecologists. A network of carbon dioxide and water vapour flux measurement stations should include ancillary measurements of meteorological, ecological and biological variables. To assess spatial representativeness of the long term and tower-based flux measurements, periodic aircraft-based flux experiments and satellite-based assessments of land cover were recommended. Occasional cuvette-based measurements of leaf-level carbon dioxide and water vapour fluxes were endorsed to provide information on the biological control of surface fluxes. They can also provide data to parameterize ecophysiological models. Flask sampling of stable carbon isotopes was advocated to extend the flux measurements to the global scale.  相似文献   

15.
Aim The controls of gross radiation use efficiency (RUE), the ratio between gross primary productivity (GPP) and the radiation intercepted by terrestrial vegetation, and its spatial and temporal variation are not yet fully understood. Our objectives were to analyse and synthesize the spatial variability of GPP and the spatial and temporal variability of RUE and its climatic controls for a wide range of vegetation types. Location A global range of sites from tundra to rain forest. Methods We analysed a global dataset on photosynthetic uptake and climatic variables from 35 eddy covariance (EC) flux sites spanning between 100 and 2200 mm mean annual rainfall and between ?13 and 26°C mean annual temperature. RUE was calculated from the data provided by EC flux sites and remote sensing (MODIS). Results Rainfall and actual evapotranspiration (AET) positively influenced the spatial variation of annual GPP, whereas temperature only influenced the GPP of forests. Annual and maximum RUE were also positively controlled primarily by annual rainfall. The main control parameters of the growth season variation of gross RUE varied for each ecosystem type. Overall, the ratio between actual and potential evapotranspiration and a surrogate for the energy balance explained a greater proportion of the seasonal variation of RUE than the vapour pressure deficit (VPD), AET and precipitation. Temperature was important for determining the intra‐annual variability of the RUE at the coldest energy‐limited sites. Main conclusions Our analysis supports the idea that the annual functioning of vegetation that is adapted to its local environment is more constrained by water availability than by temperature. The spatial variability of annual and maximum RUE can be largely explained by annual precipitation, more than by vegetation type. The intra‐annual variation of RUE was mainly linked to the energy balance and water availability along the climatic gradient. Furthermore, we showed that intra‐annual variation of gross RUE is only weakly influenced by VPD and temperature, contrary to what is frequently assumed. Our results provide a better understanding of the spatial and temporal controls of the RUE and thus could lead to a better estimation of ecosystem carbon fixation and better modelling.  相似文献   

16.
1981—2002年中国东北地区森林生态系统碳储量的模拟   总被引:3,自引:0,他引:3  
基于中国森林生态系统碳收支模型FORCCHN,对模型水分模块进行优化,加入了降雨截留、降雪截留以及下层植物和凋落物层截留,模拟了1981—2002年中国东北地区森林生态系统碳储量的时空分布格局.结果表明:1981—2002年间,中国东北地区森林生态系统起着碳“汇”的作用,总碳储量约12.37 Pg C·a-1,其中植被和土壤碳储量分别为4.01和8.36 Pg C·a-1;研究期间,植被碳储量和土壤碳储量均呈增长趋势,气温升高对该区森林生态系统碳储量增加的贡献大于降水的变化;研究区植被碳密度的空间分布具有东南高、西北低的特点,平均约10.45 kg C·m-2;东北各地区森林生态系统土壤有机碳密度普遍较高,最大值出现在大小兴安岭及长白山的部分地区,平均约21.78 kg C·m-2;中国东北地区森林碳库在全国森林碳库中占有重要位置,研究区有林地面积占全国森林的31.4%,其植被、土壤碳储量分别为全国森林的74.28%、63.88%,植被、土壤碳密度分别为全国森林的2.70和1.22倍.  相似文献   

17.
Forest biomass plays an important role in the global carbon cycle. Therefore, understanding the factors that control forest biomass stocks and dynamics is a key challenge in the context of global change. We analyzed data from 60 forest plots in the subtropical Andes (22–27.5° S and 300–2300 m asl) to describe patterns and identify drivers of aboveground biomass (AGB) stocks and dynamics. We found that AGB stocks remained roughly constant with elevation due to compensating changes in basal area (which increased with elevation) and plot‐mean wood specific gravity (which decreased with elevation). AGB gain and loss rates both decreased with elevation and were explained mainly by temperature and rainfall (positive effects on both AGB gains and losses). AGB gain was also correlated with forest‐use history and weakly correlated with forest structure. Mean annual temperature and rainfall showed minor effects on AGB stocks and AGB change (gains minus losses) over recent decades. Although AGB change was only weakly correlated with climate variables, increases in AGB gains and losses with increasing rainfall—together with observed increases in rainfall in the subtropical Andes—suggest that these forests may become increasingly dynamic in the future. Abstract in Spanish is available with online material  相似文献   

18.
五种温带森林土壤微生物生物量碳氮的时空格局   总被引:17,自引:1,他引:17  
刘爽  王传宽 《生态学报》2010,30(12):3135-3143
土壤微生物是森林生态系统中的重要分解者,在碳和氮循环中起着重要作用,同时也是对环境变化的敏感指示者。采用氯仿熏蒸浸提法测定了我国东北地区5种温带森林土壤微生物生物量碳(Cmic)和氮(Nmic)的季节动态及其在土壤中的垂直变化。结果表明:林型之间Cmic和Nmic差异显著(P0.01)。落叶松林、红松林、蒙古栎林、杨桦林、硬阔叶林的Cmic的变化范围依次为:278937mgkg-1、2181020mgkg-1、313891mgkg-1、5101092mgkg-1、4401911mgkg-1;其Nmic的变化范围依次为:1872mgkg-1、18103mgkg-1、2495mgkg-1、43125mgkg-1、40208mgkg-1。所有林型的Cmic和Nmic均随土壤深度的增加而下降。Cmic和Nmic基本上呈现出生长季开始之前下降、生长季结束时上升、其中出现12个峰值的季节变化格局,但峰值大小和出现时间随林型和土壤层次而变。010cm土层的Cmic和Nmic季节变化较大。Cmic和Nmic与凋落叶量、土壤有机碳含量和土壤总氮含量呈显著正相关。Cmic与土壤含水量呈正相关,而与土壤温度呈负相关。不同林型凋落物数量和组成、土壤理化性质的差异是导致其土壤微生物生物量时空格局差异的主要因素。  相似文献   

19.
为阐明安徽省不同林龄的森林生态系统的碳储量现状, 以及现有自然环境条件下顶极森林生态系统的固碳潜力, 采用野外样地调查和BIOME4模型方法对此进行研究。安徽省森林生态系统的现状总碳储量为714.5 Tg C, 其中植被碳402.1 Tg C、土壤碳312.4 Tg C。从幼龄林至过熟林的生长过程中, 森林生态系统的总碳密度和植被碳密度都呈现增长趋势。但土壤碳密度从幼龄林至近熟林阶段呈增加趋势, 近熟林以后出现减少趋势。安徽省幼龄林和中龄林占森林总面积的75%, 若幼、中龄林发展到近熟林阶段, 将增加125.4 Tg C。BIOME4模拟显示: 当森林发展到气候顶极森林时, 安徽省森林生态系统将增加245.7 Tg C, 即总固碳潜力包括植被固碳153.7 Tg C, 土壤固碳92.0 Tg C。  相似文献   

20.
Disturbance regimes and forests have changed over time in the eastern United States. We examined effects of historical disturbance (circa 1813 to 1850) compared to current disturbance (circa 2004 to 2008) on aboveground, live tree biomass (for trees with diameters ≥13 cm) and landscape variation of biomass in forests of the Ozarks and Plains landscapes in Missouri, USA. We simulated 10,000 one-hectare plots using random diameters generated from parameters of diameter distributions limited to diameters ≥13 cm and random densities generated from density estimates. Area-weighted mean biomass density (Mg/ha) for historical forests averaged 116 Mg/ha, ranging from 54 Mg/ha to 357 Mg/ha by small scale ecological subsections within Missouri landscapes. Area-weighted mean biomass density for current forests averaged 82 Mg/ha, ranging from 66 Mg/ha to 144 Mg/ha by ecological subsection for currently forested land. Biomass density of current forest was greater than historical biomass density for only 2 of 23 ecological subsections. Current carbon sequestration of 292 TgC on 7 million ha of forested land is less than half of the estimated historical total carbon sequestration of 693 TgC on 12 million ha. Cumulative tree cutting disturbances over time have produced forests that have less aboveground tree biomass and are uniform in biomass compared to estimates of historical biomass, which varied across Missouri landscapes. With continued relatively low rates of forest disturbance, current biomass per ha will likely increase to historical levels as the most competitive trees become larger in size and mean number of trees per ha decreases due to competition and self-thinning. Restoration of large diameter structure and forested extent of upland woodlands and floodplain forests could fulfill multiple conservation objectives, including carbon sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号