首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The evergreen oak Quercus glauca often dominates secondary broadleaved forests in Western Japan. It is regarded as a mid-successional species, whose diameter and height growth fall between those of early- and late-successional species. Despite the ecological importance of this evergreen oak in the secondary succession of the evergreen broadleaved forest zone in Japan, tree-felling data that allow estimations of tree mass and leaf area from non-destructive measurements are lacking. This paper provides stem growth data, read from tree rings on disks sampled from 13 Q. glauca stems, and their allometric data. The samples were collected in 1994 from the Ginkakuji-san National Forest, Kyoto City, Japan. Allometric data comprised data on stem age, diameter at breast height, diameter at 10% height, tree height, height of the lowest living branch, height of the lowest living leaf in the crown, volume of the main stem, squared stem diameter just below the lowest living branch, total leaf area of the stem, dry weight of the total leaves, dry weight of all branches, dry weight of the main stem, total aboveground dry weight, mean relative photosynthetic photon flux density (PPFD) above the crown, mean relative PPFD below the crown, crown projection area, and specific leaf area. These data can be helpful for estimating the biomass and leaf area index of a Q. glauca stand by enabling the derivation of allometric relationships between non-destructive measurements (such as stem diameter at breast height, and tree height) and tree mass or leaf area. Diameters (including bark thickness) at ground height and above (at 0.5- or 1-m intervals) for each stem are also provided. Stem growth data were based on tree-ring reads from disks taken from heights of 0.0 and 0.3 m, and at 0.5-m (stem height <7 m) or 1.0-m (stem height ≥7 m) intervals above that. Stem volume growth derived from these tree-ring data can be converted into stem mass growth if combined with an analysis of the allometric data, which may serve as a useful resource for the estimation of carbon fixation by evergreen oaks in relation to global climate change.  相似文献   

2.
Regeneration mechanisms of vegetation and the role of tree bark resistance to frequent fire were studied in savanna woodlands and grasslands in Gambella, Western Ethiopia. Data were collected from four sites, each with three replicate plots. The variation between sites in species composition and biomass correlated with the differences in fire intensity. Foliar cover was recorded for individual plant species regenerating by sprouting from older parts of plants that had survived fire or by seedlings; records were made during the dry season and at the beginning of the wet season. Data on bark thickness and tree diameters of 12 dominant tree species were also recorded. Both facultative and obligate sprouters significantly contributed to post‐fire recovery, comprising 98.5 % of total vegetation cover. The contribution of seedlings to cover and abundance immediately following fire was negligible, but seedling density increased in the beginning of the rainy season, 4 to 5 months after fire. The importance of the sprouting and seeding strategies varied between the different plant growth forms. The highest contribution to cover and frequency was made by the most abundant grass species, which reproduced in both ways. Facultative sprouters made up 67.3 % of the vegetation cover, out of which 54 % consisted of grasses. Broad‐leaved herbs and trees/shrubs regenerating mainly by sprouting made up 31.3 % of the vegetation cover. Adaptations to fire in tree species seemed to include the development of a thick bark, once the tree has passed seedling stages. Tree bark thickness and tree diameter at breast height were strongly correlated with the time taken for cambium to reach an assumed lethal temperature of 60°C when exposed to fire, which indicated that mature trees with thick barks might resist stronger fire better than, e.g., small or young trees and trees with thin bark. However, for a given bark thickness the cambium resistance to heat varied three‐fold among species. Hence, site differences in fire intensity seemed to influence the distribution of trees depending on their bark characteristics and resistance to fire.  相似文献   

3.
We investigated the fire resistance conferred by bark of seven common tree species in north Australian tropical savannas. We estimated bark thermal conductance and examined the relative importance of bark thickness, density and moisture content for protecting the cambium from lethal fire temperatures. Eucalypt and non-eucalypt species were contrasted, including the fire-sensitive conifer Callitris intratropica. Cambial temperature responses to bark surface heating were measured using a modified wick-fire technique, which simulated a heat pulse comparable to surface fires of moderate intensity. Bark thickness was a better predictor of resistance to cambial injury from fires than either bark moisture or density, accounting for 68% of the deviance in maximum temperature of the cambium. The duration of heating required to kill the cambium of a tree (τc) was directly proportional to bark thickness squared. Although species did not differ significantly in their bark thermal conductance (k), the thinner barked eucalypts nevertheless achieved similar or only slightly lower levels of fire resistance than much thicker barked non-eucalypts. Bark thickness alone cannot account for the latter and we suggest that lower bark moisture content among the eucalypts also contributes to their apparent fire resistance. Unique eucalypt meristem anatomy and epicormic structures, combined with their bark traits, probably facilitate resprouting after fire and ensure the dominance of eucalypts in fire-prone savannas. This study emphasises the need to take into account both the thermal properties of bark and the mechanism of bud protection in characterising the resprouting ability of savanna trees.  相似文献   

4.
The frequency of fire has increased in savannas yet few studies have assessed how plants persist when subjected to long‐term disturbance by fire. We investigated the contributions of bark thickness and resprouting to the persistence of woody plants in two fire trials that were started in 1948 and 1949. The number of resprouts per individual, bark thickness, basal diameter and height of woody plants were measured in unburnt plots and those burnt annually, triennially and quinquennially during the late dry season. Changes in tree density, number of resprouts and individuals in different height classes between 1963 and 2002 were assessed. Bark thickness varied among species and also increased with increases in basal diameter. Generally, plants with thick bark survived fire more than those with thin bark. Resprouting was the major fire survival strategy for most species. The number of resprouts produced per plant ranged from 4 ± 3 (Acacia rehmanniana) to 14 ± 9 (Pseudolachnostylis maprouneifolia). Fire reduced species richness in plots burnt annually and triennially by 47% and 6% respectively. Species richness increased in unburnt plots (5%) and those burnt quinquennially (16%). Most woody species survived fire through a combination of traits.  相似文献   

5.
Climent  José  Tapias  Raúl  Pardos  José A.  Gil  Luis 《Plant Ecology》2004,171(1-2):185-196
A wide set of phenotypic characteristics related to life history were studied in mature stands of Pinus canariensis throughout its natural range of distribution in the Canary archipelago. Natural forests ranging from those located in xeric areas through to the sub-tropical cloud forests and high mountain stands were classified into eight ecological regions according to their main climatic features. The recent history of forest fires (covering the last 30 years) was taken into account using a categorical factor with three levels. The phenotypic variables studied included those related to seed dispersal (cone size, number of seed scales, seed and wing size and percentage of serotinous trees) and stem growth both on the breast height section (bark thickness, radial growth at various ages and sapwood and heartwood sizes) and on the entire stem (height growth related to age). The average percentage of serotinous trees present in the ecological regions studied varied from 3 to 35%. Average bark thickness in adult trees ranged from 22 to 49 mm and was found to be unrelated to age or diameter. Growth both in height and diameter was found to decline after an average of 25 years, although clear trends in relation to this could not be established across the ecological regions. A high correlation was found to exist between annual rainfall, fire frequency, serotiny and bark thickness at a regional level. Sapwood area per hectare proved to be a valuable indirect site-quality index for the objectives of this paper. Favourable sites (characterised by a high sapwood area per hectare) displayed the highest levels of both bark thickness and serotiny. These particular areas are those, which have suffered more frequent and intense fires over the last decades. The evolutionary implications of this trend and of other general traits of the species, such as vegetative resprouting, are discussed here in relation to the role of understorey vegetation in fire regimes, competition and volcanic history of the islands.  相似文献   

6.
Savanna tree communities occurring in confluence zones with other biomes likely experience different environmental pressures, resulting in shifts in the selection of individual traits, the combinations of such traits, and species composition. In seasonally dry fire-prone environments, plant survival is presumably associated with adaptive changes in bark properties related to fire protection and water storage. Here, we integrated the multiple functions of the bark to investigate whether different selective pressures could influence patterns of variation in bark structure and allocation across species in a broad geographical range. We measured thickness, density, and water content of the inner and outer bark in branches and the main stem of the 51 most abundant species in three savanna communities differing in climatic aridity, one located at the core region of Cerrado in Central Brazil and the other two at its periphery, in the transition zones with Amazonia and Atlantic forest biomes. We found no difference in outer bark thickness but markedly difference in inner bark thickness between the three plant communities. In the central region, where dry season is long and fire is frequent, branches and main stem showed thicker inner bark. Contrastingly, in the south periphery region, where dry season is short, species showed thinner inner bark in both branches and main stem. Species from the north periphery region, where mean annual precipitation is higher, but fire is frequent and the dry season is also long, showed similar main stem inner bark thickness, but thinner branch inner bark compared to core region species. Our findings support the idea that investing in inner bark thickness and bark moisture may be the most advantageous strategy in plant communities that suffer from high evaporative demand during a long period and are at a high risk of fire.  相似文献   

7.
Abstract. Many Mediterranean species have evolved strategies that allow them to survive periodic wildfires. Quercus suber trees resprout after fire, some from stem buds and others from basal buds only. In the former case the canopy recovers quickly. In the latter case the stem dies but the tree survives and regrows from basal sprouts. The probability of stem death and the degree of height recovery were studied after a fire in a Q. suber forest in NE Spain using logistic regression analysis. The results suggest that most trees survive after fire; the probability of stem death is negatively related to tree diameter; and recovery is positively related to tree diameter and to bark thickness. Implication for management and conservation of cork-oak forests are discussed.  相似文献   

8.
The radial, axial and inter-specific variations in concentrations and contents of non-structural carbohydrates (NSC) in stems were investigated for 12 Chinese temperate tree species. These species had contrasting leaf phenology (evergreen and deciduous) and wood types (non-, ring- and diffuse-porous wood). For each species, we sampled bark (periderm and phloem), outer wood (light-colored) and inner wood (dark-colored) at four heights along the stem (stump, breast height, crown base and mid-crown). Concentrations of total NSC (TNC, sum of sugars and starch), sugars and starch were much higher in bark than those in wood. On average, contents of sugars and starch accounted for 48 and 52 % of the TNC, respectively, and contents of TNC in bark, outer wood, and inner wood accounted for 34, 38, and 28 % of the stem total, respectively. Bark was the major pool of sugars in the stem (accounting for 50 % of the stem total on average), while outer wood was the major pool of starch (41 %). The concentration of sugars varied axially for all the conifers but did not for the broadleaved species. Mean concentrations of TNC, sugars and starch in stem varied by more than twofold among the species. However, there were no significant differences in these values for the species groups with different leaf phenology or wood types. Ignoring the radial, axial and inter-specific variations in NSC in stem would introduce large bias in estimating NSC storage at tree or ecosystem levels.  相似文献   

9.
Sclerocarya birrea ssp. caffra (marula), a typical savanna tree, is vulnerable to the effects of fire, herbivory and their combination. This paper investigated the relative importance of these agents of disturbance, at the level of the individual stem, by specifically focusing on the following questions: (i) What is the greatest cause of mortality in adult marula stems in conservation areas with both elephants and fire? (ii) Does fire interact with bark stripping to cause adult stem mortality and if so what is the dominant mechanism? (iii) At what stem diameter are marulas resistant to fire? Field surveys quantified the extent of damage in marula individuals in the Kruger National Park, South Africa, highlighting the high levels of extreme herbivory such as toppling (7%) and pollarding (8%), relative to bark stripping (only 6% with more than 50% of the circumference stripped). In addition to extreme herbivory, the progression from bark stripping through to invasion of the soft, exposed heartwood by wood borers, often facilitated by fire, through to toppling of the weakened stem after successive fires, appears to be the dominant mechanism by which fire interacts with herbivory to cause adult stem death. Bark stripping and fire manipulation experiments indicated that bark stripping failed to increase the vulnerability of stems to fire directly through transport tissue damage. However, the combination of bark stripping and fire reduced the ability of the stem to regrow bark, increasing the vulnerability of the exposed stem to boring insects and future fires. Fire manipulation experiments were used to identify the minimum stem diameter of resistance to fire. Marula resisted stem death when greater than 3.4 cm in basal diameter. This paper emphasizes the importance of both fire and herbivory in the development of woody plant population structure and by extension, the relative proportion of trees and grasses in savanna landscapes.  相似文献   

10.
FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes.  相似文献   

11.
Ken C. Hodgkinson 《Oecologia》1998,115(1-2):64-72
The sprouting success of co-occurring populations of shrub species in a temperate woodland of semi-arid Australia was investigated and related to population survival strategies. Straw was added to 21 × 15 m plots in the woodland, burnt and the pre-fire characteristics of shrubs were used to determine the basis for sprouting success. Species differed widely (4–94%) in sprouting success; a high percentage of established seedlings of all species were killed by fire but survival increased with height reaching a maximum at 25–60 cm (depending on the species). Thickness of bark at stem bases increased with height growth but sprouting success was not related to bark thickness; sprouting success of shrubs at similar thickness varied greatly between species. All species were able to initiate sprouts after cutting through their basal stems, so lack of active meristems was not a limitation. Species differed in the height at which shrubs began flowering but this was always after maximum sprouting success was reached. It is proposed that differences between individual shrubs in supply of nutrients, carbohydrates, and/or water to activated meristems would account for patterns of in ter- and intra-specific sprouting success. The data are consistent with recognised fire survival strategies. `Sprouters', the species relying more on sprouting than recruitment for population persistence, maintained maximum sprouting success with height growth and gained sprouting ability along stems once they reached 1 m in height. In contrast, `non-sprouters', the species largely relying on recruitment from seed to maintain populations, were either not able to sprout after seedling establishment or steadily lost the ability to maintain sprouts with growth beyond 60 cm and did not develop axillary buds along stems at any height. Received: 19 July 1997 / Accepted: 8 February 1998  相似文献   

12.
Trees may survive fire through persistence of above or below ground structures. Investment in bark aids in above-ground survival while investment in carbohydrate storage aids in recovery through resprouting and is especially important following above-ground tissue loss. We investigated bark allocation and carbohydrate investment in eight common oak (Quercus) species of Sky Island mountain ranges in west Texas. We hypothesized that relative investment in bark and carbohydrates changes with tree age and with fire regime: We predicted delayed investment in bark (positive allometry) and early investment in carbohydrates (negative allometry) under lower frequency, high severity fire regimes found in wetter microclimates. Common oaks of the Texas Trans-Pecos region (Quercus emoryi, Q. gambelii, Q. gravesii, Q. grisea, Q. hypoleucoides, Q. muehlenbergii, and Q. pungens) were sampled in three mountain ranges with historically mixed fire regimes: the Chisos Mountains, the Davis Mountains and the Guadalupe Mountains. Bark thickness was measured on individuals representing the full span of sizes found. Carbohydrate concentration in taproots was measured after initial leaf flush. Bark thickness was compared to bole diameter and allometries were analyzed using major axis regression on log-transformed measurements. We found that bark allocation strategies varied among species that can co-occur but have different habitat preferences. Investment patterns in bark were related to soil moisture preference and drought tolerance and, by proxy, to expected fire regime. Dry site species had shallower allometries with allometric coefficients ranging from less than one (negative allometry) to near one (isometric investment). Wet site species, on the other hand, had larger allometric coefficients, indicating delayed investment to defense. Contrary to our expectation, root carbohydrate concentrations were similar across all species and sizes, suggesting that any differences in below ground storage are likely to be in total volume of storage tissue rather than in carbohydrate concentration.  相似文献   

13.
1 The emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) is a serious exotic pest of ash trees (Fraxinus spp.) in North America, and is responsible for the deaths of millions of trees in Ontario and Michigan. One of the greatest challenges facing the successful management of the pest is the ability to accurately detect its presence in a tree. 2 Observations were made on A. planipennis larval feeding galleries found within 65 young, green‐ash trees cut from plantations in Essex County, Ontario, Canada. The within‐tree distributions of feeding galleries were described in relation to height‐above‐ground, stem diameter, bark thickness and stem aspect. 3 Galleries were not distributed randomly or evenly; minimum boundaries of stem diameter and bark thickness and a maximum boundary of height‐above‐ground were detected. Indications of maximum boundaries for stem diameter and bark thickness were also observed. Galleries were found most often on the south‐west side of the tree. 4 Using the technique of upper boundary regression, we were able to identify significant quadratic relationships between A. planipennis gallery density and stem diameter and bark thickness, as well as a significant negative linear relationship between gallery density and height‐above‐ground. 5 Agrilus planipennis gallery density in newly‐infested trees was lower than in previously‐infested trees, and was observed to peak at smaller stem diameters and bark thicknesses than in previously‐infested trees. 6 Survey teams would increase their probability of detecting new A. planipennis infestations by initiating searches for exit holes and feeding galleries in trunk sections and branches of approximately 7 cm in diameter.  相似文献   

14.
Large‐scale wildfires are expected to accelerate forest dieback in Amazônia, but the fire vulnerability of tree species remains uncertain, in part due to the lack of studies relating fire‐induced mortality to both fire behavior and plant traits. To address this gap, we established two sets of experiments in southern Amazonia. First, we tested which bark traits best predict heat transfer rates (R) through bark during experimental bole heating. Second, using data from a large‐scale fire experiment, we tested the effects of tree wood density (WD), size, and estimated R (inverse of cambium insulation) on tree mortality after one to five fires. In the first experiment, bark thickness explained 82% of the variance in R, while the presence of water in the bark reduced the difference in temperature between the heat source and the vascular cambium, perhaps because of high latent heat of vaporization. This novel finding provides an important insight for improving mechanistic models of fire‐induced cambium damage from tropical to temperate regions. In the second experiment, tree mortality increased with increasing fire intensity (i.e. as indicated by bark char height on tree boles), which was higher along the forest edge, during the 2007 drought, and when the fire return interval was 3 years instead of one. Contrary to other tropical studies, the relationship between mortality and fire intensity was strongest in the year following the fires, but continued for 3 years afterwards. Tree mortality was low (≤20%) for thick‐barked individuals (≥18 mm) subjected to medium‐intensity fires, and significantly decreased as a function of increasing tree diameter, height and wood density. Hence, fire‐induced tree mortality was influenced not only by cambium insulation but also by other traits that reduce the indirect effects of fire. These results can be used to improve assessments of fire vulnerability of tropical forests.  相似文献   

15.
Alternative fire resistance strategies in savanna trees   总被引:9,自引:0,他引:9  
Bark properties (mainly thickness) are usually presented as the main explanation for tree survival in intense fires. Savanna fires are mild, frequent, and supposed to affect tree recruitment rather than adult survival: trunk profile and growth rate of young trees between two successive fires can also affect survival. These factors and fire severity were measured on a sample of 20 trees near the recruitment stage of two savanna species chosen for their contrasted fire resistance strategies (Crossopteryx febrifuga and Piliostigma thonningii). Crossopteryx has a higher intrinsic resistance to fire (bark properties) than Piliostigma: a 20-mm-diameter stem of Crossopteryx survives exposure to 650°C, while Piliostigma needs a diameter of at least 40 mm to survive. Crossopteryx has a thicker trunk than Piliostigma: for two trees of the same height, the basal diameter of Crossopteryx will be 1.6 times greater. Piliostigma grows 2.26 times faster than Crossopteryx between two successive fires. The two species have different fire resistance strategies: one relies on resistance of aboveground structures to fire, while the other relies on its ability to quickly re-build aboveground structures. Crossopteryx is able to recruit in almost any fire conditions while Piliostigma needs locally or temporarily milder fire conditions. In savannas, fire resistance is a complex property which cannot be assessed simply by measuring only one of its components, such as bark thickness. Bark properties, trunk profile and growth rate define strategies of fire resistance. Fire resistance may interact with competition: we suggest that differences in fire resistance strategies have important effects on the structure and dynamics of savanna ecosystems. Received: 16 August 1996 / Accepted: 4 January 1997  相似文献   

16.
The invasive species Eupatorium adenophorum is known to influence stand structure and wildfire the hazard in forests. In the current work, we quantitatively examined fire effects in invaded and uninvaded plots in southwestern Sichuan Province, China, with five different forest sites that had different types of dominant species: Pinus yunnanensis, P. yunnanensisQuercus spp., Keteleeria fortunei, K. fortuneiQuercus spp., and Eucalyptus robusta. We compared the fuel chemistry (moisture, ash, heat value, and ignition point) and fire severity (flame length, fire intensity) under three burning conditions between the invaded and uninvaded plots in each forest sites, and then analyzed the results using multivariate response permutation procedures (MRPP). The burning conditions included: low (fine fuel moisture of 15 % and 5 km/h windspeed), moderate (fine fuel moisture of 10 % and 15 km/h windspeed), and extreme (fine fuel moisture of 5 % and 30 km/h windspeed). With all five sites, the fire severity and fuel loads were clearly significantly higher at the invaded sites. Fire severity was also intensified in the invaded coniferous sites compared to their mixed forest sites. These results indicate that biological invasions may increase the surface fire severity, perhaps through an increase in the heat value, and fuel loads, while reducing the moisture, ash, and ignition point of the understory herbaceous.  相似文献   

17.
Japanese red maple, Acer pycnanthum, is an endangered species having a limited distribution of central Honshu, Japan. Sprouting is an important part of its natural history, and many remnant populations contain high number of multiple-stem clones. However, knowledge of sprout formation and growth is lacking, which has hampered understanding of the reestablishment process after major disturbance. My research objectives were to characterize the formation and growth of basal sprouts in the juvenile stage and determine the effects of light intensity and stump diameter on these characteristics. Twenty sprouting clones were investigated at a natural site in Nagano Prefecture during a four-year period after cutting. Japanese red maple exhibited abundant and vigorous sprouting from the root collar of cut trees. Many sprouts arose immediately after cutting. Average number of sprouts per stump was 12.2. Number of sprouts per stump was negatively correlated with relative light intensity. The two dominant sprouts (sprouts 1 and 2) of each clone were selected to analyze their growth. The average extension growth of sprout 1 (i.e., the tallest and most vigorous) was 173.3 cm at the end of first growing season. At the end of fourth growing season, average height and diameter at breast height (dbh) of sprout 1 were 377 and 2.1 cm, respectively. Relative light intensity and stump diameter significantly and positively affected D2H (diameter at breast height squared × height) of sprout 1. Because the growth rate of sprouts is much faster than that of seedlings, regeneration by sprouting is more significant than seedling regeneration to maintain populations after disturbances.  相似文献   

18.
Antimicrobial and antiviral activities of the fractions from Scutia buxifolia stem bark and leaves were evaluated. Best antimicrobial results occurred with the ethyl acetate (EA) and n-butanolic (NB) fractions from the leaves against Micrococcus sp. (minimal inhibitory concentration—MIC = 62.5 μg/ml), and NB fraction from stem bark and leaves against Klebsiella pneumoniae and Enterococcus faecalis (MIC = 62.5 μg/ml). The most active fractions were selected and fractioned into silica column to perform an in vitro antibiofilm assay, which evidenced subfractions EA2 and EA3 as the more active against Candida albicans (biofilm inhibitory concentration—BIC = 582 ± 0.01 μg/ml) and Staphylococcus aureus (BIC = 360 ± 0.007 μg/ml), respectively. The NB (selectivity index—SI = 25.78) and the EA (SI = 15.97) fractions from the stem bark, and the EA (SI = 14.13) fraction from the leaves exhibited a potential antiviral activity towards Herpes Simplex Virus type 1 whereas EA2 and EA3 subfractions from leaves (SI = 12.59 and 10.06, respectively), and NB2 subfraction from stem bark (SI = 12.34) maintained this good activity. Phenolic acids and flavonoids (gallic acid, chlorogenic acid, caffeic acid, rutin, isoquercitrin, quercitrin and quercetin) were identified by HPLC and may be partially responsible for the antimicrobial and antiherpes activities observed. The results obtained in this study showed that Scutia buxifolia has antibiofilm and anti-herpetic activities and that these properties are reported for the first time for this species.  相似文献   

19.
Research related to the allometric relationships of tree height and projected tree crown area to diameter at breast height was conducted to look at the biological suitability and timber production potential of Douglas fir under the conditions present in central Europe. The dependence of allometric relationships on soil nutrient conditions were described in forest stands of Douglas fir and Norway spruce. The studied sites were climatically similar but differed in soil nutrient availability. A significant difference was found in the allometric relationships of Norway spruce trees from the nutrient poor and nutrient rich site. In contrast to the Norway spruce, there was no significant effect of site fertility on allometric relationships for Douglas fir suggesting that its allocation patterns were less sensitive to site nutrient conditions. Stem growth increment, which was measured weekly during two consecutive seasons for both species, was related to the weather conditions and available soil moisture. Stem growth of Douglas fir began about 2 weeks earlier than in the Norway spruce at both sites. At the nutrient rich site, most of the stem growth of both species occurred at the beginning of the season, while growth at the other site was more evenly distributed throughout the season. Data obtained in this study will be useful for modeling stem growth and analysis of water use efficiency of these two tree species.  相似文献   

20.
Fire is central to the ecology of Mediterranean‐type climate ecosystems, but little is known about the fire ecology of succulent plants therein. This study investigated the fire ecology of an arborescent succulent monocot, Kumara plicatilis (L.) G. D. Rowley (Asphodelaceae), a Cape fynbos endemic. Habitat suitability was assessed to determine whether the species tolerates or ‘avoids’ fire, and fire survival traits (bark thickness and tissue water content) were measured. The population size structure and density of three K. plicatilis populations were assessed after natural fires, and resprouting potential was investigated. Kumara plicatilis adopts a dual fire survival strategy, occupying rocky sites to ‘avoid’ fire and possessing morphological features that afford fire tolerance, e.g. well‐protected apical meristems and thick corky bark. Bark thickness of burned individuals in situ was similar to unburned plants, suggesting that K. plicatilis bark provides effective insulation against fire. Mortality rates were 64%, 40% and 11%, and decreased as rock cover at the population level increased. All three populations showed reduced plant density post‐fire, with greater density reductions associated with lower rock cover. Small plants appear most vulnerable to fire damage due to lower absolute bark thickness and plant heights within the flame zone. Kumara plicatilis is an apical sprouter, recovering after fire or mechanical stem damage by onward growth from surviving stem apices, rather than resprouting. Post‐fire population recovery therefore likely depends on inter‐fire recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号