首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.

Key message

Branch, crown vertical leaf area distribution models were developed for naturally regenerated hardwood species and planted hybrid poplar clones. Species-specific differences were found at all levels of investigation.

Abstract

Coexistence in mixed-species stands is strongly influenced by species differences in leaf area production and distribution. The majority of leaf area models in the literature are focused on conifer species, which have substantially different crown forms than hardwood species. Therefore, the goal of this investigation was to develop branch, crown, and vertical leaf area distribution models for various hardwood species that accounted for their greater crown complexity. A nonlinear model including branch diameter, branch tip height, and height to the start of the foliage was the best fit for branch leaf area. Branch leaf area ranged from 0.05 to 0.37 m2 for Populus grandidentata and Betula populifolia for an averaged sized branch, respectively. The best fit model for crown leaf area was a nonlinear form accounting for stem diameter and crown length. Crown leaf area ranged from 3.26 to 9.85 m2 for Populus tremuloides and Betula populifolia for an averaged sized tree, respectively. Vertical leaf area distribution was best fit by a right-truncated Weibull distribution and showed a peak in the middle third of the crown for most of species. In addition, leaf area production varied among four hybrid poplar clones in plantations, suggesting a strong genetic control over crown form. Overall, leaf area varied among species at all levels of investigation, suggesting that coexistence of hardwood saplings in this investigation was strongly influenced both by inherent species-specific leaf area production and vertical distribution.  相似文献   

2.

Key message

The specific leaf area of European larch depends on branch height and canopy depth, indicating that both, the effect of hydraulic limitations and low water potentials in greater branch heights, and light availability affect specific leaf area.

Abstract

Specific leaf area (SLA) is defined as the ratio between projected leaf area and needle dry mass. It often serves as parameter in ecosystem modelling as well as indicator for potential growth rate. We explore the SLA of European larch (Larix decidua) and the most important factors which have an influence on it. Data were collected from eight stands in Styria, Austria. The stands varied in age, elevation and species mixture. Four stands were pure larch stands with only minor proportions of Norway spruce (Picea abies), whereas the other four were mixed stands of larch and spruce. In each stand 15 representative sample trees were felled. The crown of each sample tree was divided into three sections of equal length and in each section a random sample of needles was taken for determining projected leaf area and dry mass of 50 needles. The mean SLA of larch was established to be 117 cm2 g?1 with a standard deviation of ±27.9 cm2 g?1. SLA varies within the crown, but neither between different mixtures nor years of observation nor social position of the trees. A mixed-effects model, with the plots as random effect, revealed that SLA of larch decreased with increasing branch height (p = 0.0012) and increased with increasing canopy depth (p = 0.029). We conclude that both the hydraulic limitations due to low water potentials in greater branch heights and light availability affect specific leaf area.
  相似文献   

3.

Context

In acidic forest soils, aluminium can alter tree health due to its potential toxicity. Aluminium phytotoxicity is mainly influenced by its chemical form and its availability.

Methods

As physical-chemical indicators of Al toxicity in soil, Al speciation in soil solutions and in the exchange complex was measured in the rhizosphere and the bulk soil of two tree species (Norway spruce (Picea abies (L.) Karst.) and European Beech (Fagus sylvatica L.) in an acidic soil and in 4 months (November, February, May and August) representing the four seasons in a year.

Results

In the bulk soil, Al toxicity was generally higher under Norway spruce than under beech. Furthermore, temporal changes in Al behaviour were identified under Norway spruce but not under beech. The monomeric Al in the soil solutions and the exchangeable Al in the solid soil increased significantly in February under Norway spruce and were positively correlated with nitrate concentration, suggesting that nitrate influence Al speciation and mobility under Norway spruce. In the rhizosphere, Al toxicity was restricted through Al complexation by organic compounds and by nutrient contents independently from the season. The ecological importance of the rhizosphere in Al detoxification is discussed.

Conclusions

This study suggests that plant specific differences as well as seasonal changes in plant physiology, microbial activity and microclimatology influence aluminum toxicity in acid forest soils.  相似文献   

4.

Background and aims

Replacement of beech by spruce is associated with changes in soil acidity, soil structure and humus form, which are commonly ascribed to the recalcitrance of spruce needles. It is of practical relevance to know how much beech must be admixed to pure spruce stands in order to increase litter decomposition and associated nutrient cycling. We addressed the impact of tree species mixture within forest stands and within litter on mass loss and nutritional release from litter.

Methods

Litter decomposition was measured in three adjacent stands of pure spruce (Picea abies), mixed beech-spruce and pure beech (Fagus sylvatica) on three nutrient-rich sites and three nutrient-poor sites over a three-year period using the litterbag method (single species and mixed species bags).

Results

Mass loss of beech litter was not higher than mass loss of spruce litter. Mass loss and nutrient release were not affected by litter mixing. Litter decay indicated non-additive patterns, since similar remaining masses under pure beech (47%) and mixed beech-spruce (48%) were significantly lower than under pure spruce stands (67%). Release of the main components of the organic substance (Corg, Ntot, P, S, lignin) and associated K were related to mass loss, while release of other nutrients was not related to mass loss.

Conclusions

In contradiction to the widely held assumption of slow decomposition of spruce needles, we conclude that accumulation of litter in spruce stands is not caused by recalcitrance of spruce needles to decay; rather adverse environmental conditions in spruce stands retard decomposition. Mixed beech-spruce stands appear to be as effective as pure beech stands in counteracting these adverse conditions.  相似文献   

5.
A. latifolia grown in the Borimalan forest block in Prasad range (24°11′N and 73°42′ E) exerts clear positive correlations between CBH (circumference breast height)and number of growth rings of bole and branches, tree height, total biomass and leaf area. The net above-ground biomass is 3.95 × 104 kg ha-1. The average increment in non-photosynthetic (trunk + branch) biomass shows two peaks, the lower peak at 11–16 growth ring period, and the higher one at 34–36 growth ring period. The ratio of leaf dry weight/leaf area is16.3 to 34.8 mg cm-2, the ratios between shoot net production: leaf weight and leaf area are1.5 g per g and 212 g m-2 respectively.  相似文献   

6.
Currently, foliage biomass is estimated based on stem diameter or basal area. However, it is questionable whether the relations between foliage and stem observed from plantations of a single tree species can be applied to stands of different structure or species composition. In this paper, a procedure is presented to simulate foliage and branch biomass of tree crowns relative to crown size and light competition. Crowns are divided into layers and segments and each segment is divided into a foliated and an unfoliated fraction. Depending on the competitive status of the segment, leaf area density, specific leaf area and foliated branch fraction are determined. Based on this information, foliage biomass is calculated. The procedure requires a crown shape function and a measure to characterise competition for light and space of each individual segment within the canopy. Simple solutions are suggested for both requirements to enable an application with data that can be measured non-destructively in the field; these were stem position, tree height, crown base height, crown radii and some general crown shape information. The model was parameterised from single trees of Norway spruce and European beech and partly evaluated with independent data close to the investigation plot. Evaluations showed that the model can attribute the ecology of the different crown forms. Modelled foliage distribution for beech and spruce as well as total needle biomass of spruce agreed well with measurements but foliage biomass of beech was underestimated. The results are discussed in the context of a general model application in structured forests.  相似文献   

7.
How tree morphology develops in mixed-species stands is essential for understanding and modelling mixed-stand dynamics. However, research so far focused on the morphological variation between tree species and neglected the variation within a species depending on intra- and interspecific competition. Our study, in contrast, addresses crown properties of nine mature Norway spruces (Picea abies [L.] Karst.) of a pure stand and compares them with ten spruces growing in mixture with European beech (Fagus sylvatica [L.]). The same was done with 11 pure stand beeches and 12 beeches growing in mixture with spruce. Through application of a terrestrial laser scanner and a new skeletonization approach, we deal with both species’-specific morphological traits such as branch angle, branch length, branch bending, crown volume and space occupation of branches within the crown, some of which were hardly accessible so far. Special attention is paid to distinct differences between trees growing in mixed and pure stands: for spruce, our study reveals significantly longer branches and greater crown volumes in the mixed stand when compared to the pure stand. In case of European beech, individuals growing in mixture show flatter branch angles, more distinct ramification, greater crown volumes and a lower share of a single branch’s space occupation in the total crown volume. The results show that the presented methods yield detailed information on the morphological traits analyzed in this study and that interspecific competition on its own may have a significant impact on crown structures. Implications for production ecology and stand dynamics of mixed-species forests are discussed.  相似文献   

8.
Red spruce (Picea rubens Sarg.) trees are uniquely vulnerable to foliar freezing injury during the cold season (fall and winter), but are also capable of photosynthetic activity if temperatures moderate. To evaluate the influence of calcium (Ca) addition on the physiology of red spruce during the cold season, we measured concentrations of foliar polyamines and free amino acids (putative stress-protection compounds), chlorophyll (a key photosystem component), and sapwood area (a proxy for foliar biomass), for trees in Ca-addition (CaSiO3 added) and Ca-depleted (reference) watersheds at the Hubbard Brook Experimental Forest (NH, USA). Ca-addition increased concentrations of the amino acids alanine and γ-aminobutyric acid (GABA) and the polyamines putrescine (Put) and spermidine (Spd) in November, and Put in February relative to foliage from the reference watershed. Consistent with increased stress protection, foliage from the Ca-addition watershed had higher total chlorophyll and chlorophyll a concentrations in February than foliage from the reference watershed. In contrast, foliage from the reference watershed had significantly lower glutamic acid (Glu) and higher alanine (Ala) concentrations in February than foliage from the Ca-addition watershed. Imbalances in Ala:Glu have been attributed to cold sensitivity or damage in other species. In addition to concentration-based differences in foliar compounds, trees from the Ca-addition watershed had higher estimated levels of foliar biomass than trees from the reference watershed. Our findings suggest that Ca-addition increased the stress tolerance and productive capacity of red spruce foliage during the cold season, and resulted in greater crown mass compared to trees growing on untreated soils.  相似文献   

9.
The paper describes isolation and partial characterization of the tissue culture of the common spruce (Picea excelsa Link). The tissue culture was grown on the medium ofHarvey (1967) modified by increasing the concentration of 2,4-dichlorophenoxyacetic acid (2,4-D) to l mg l?1 and by omitting the tyrosine. By selective 10-month subculturing the tissue culture was obtained possessing relatively stable properties and giving good yields of biomass. The tissue of the callus was of yellowish colour, compact and homogenous. The obtained tissue culture was characterized by its growth curve and by following the O2 consumption during the growth.  相似文献   

10.

Background and Aims

The aim was to assess the amounts of macro- (N, P, K, Ca and Mg) and micro-elements (Fe, Mn, Cu and Zn) lost by peach trees (Prunus persica L. Batsch) in all the nutrient removal events (pruning, flower abscission, fruit thinning, fruit harvest and leaf fall), as well as those stored in the permanent structures of the tree (roots, trunk and main branches).

Methods

Three peach cultivars were used. The biomass and nutrient composition of materials lost by trees at the different events were measured during 3 years. The biomass and nutrient composition of permanent tree structures were also measured after full tree excavation.

Results

Winter pruning and leaf fall were the events where most nutrients were removed. Nutrient losses and total requirements are given as amounts of nutrients needed per tree and also as amounts necessary to produce a t of fresh fruit.

Conclusions

The allocation of all nutrients analyzed in the different plant parts was similar in different types of peach trees, with each element having a typical “fingerprint” allocation pattern. Peach tree materials removed at tree pruning and leaf fall include substantial amounts of nutrients that could be recycled to improve soil fertility and tree nutrition. Poorly known tree materials such as flowers and fruit stones contain measurable amounts of nutrients.  相似文献   

11.

Key message

After 3 years of CO 2 treatments, A stimulation from ambient to elevated CO 2 was strongly related to the total dry mass change (%), supporting the sink demand A hypothesis.

Abstract

Adaptations related to gas exchange are important fitness traits in plants and have significant growth and ecological implications. Assimilation (A) and assimilation to internal CO2 (AC i ) response curve parameters were quantified from a red spruce (RS) (Picea rubens Sarg.)—black spruce (BS) [P. mariana (Mill.) B.S.P.] controlled-cross hybrid complex grown under ambient and elevated CO2 conditions. Under ambient conditions, maximum A (A max), maximum rate of carboxylation by rubisco (V cmax), maximum rate of electron transport (J max), and carboxylation efficiency (CE) generally increased with increasing BS content; however, under elevated CO2 conditions, hybrid index 50 (hybrid index number is the percentage of RS, balance BS) often had greater values than the other indices. There were significant hybrid index, CO2, and hybrid index × CO2 effects for A growth at 360 ppm (A 360) and 720 ppm (A 720). The net A stimulation (A stim), from ambient to elevated CO2 treatment after 3 years was 10.8, 57.8, 74.1, 69.8, and 58.7 %, for hybrid indices 0 (BS), 25, 50, 75, and 100 (RS), respectively. Why does BS have the least A stim, hybrid index 50 the most, and RS a moderate level? There was a significant relationship between A 360 and ambient total biomass among indices (P = 0.096), but none was found between A 720 and elevated total biomass. However, A stim (%) was strongly related to the change in total dry mass (%) in response to elevated CO2 (R 2 = 0.931, P = 0.008), supporting the hypothesis that sink demand drives A. Traits A max, V cmax and J max were correlated to total chlorophyll concentration. Moreover, A max V cmax and J max also showed a significant underlying male effect, particularly under ambient conditions consistent with the paternal inheritance of the chloroplast genome.  相似文献   

12.
Reliable and objective estimations of specific leaf area (SLA) and leaf area index (LAI) are essential for accurate estimates of the canopy carbon gain of trees. The variation in SLA with needle age and position in the crown was investigated for a 73-year-old Scots pine (Pinus sylvestris L.) stand in the Belgian Campine region. Allometric equations describing the projected needle area of the entire crown were developed, and used to estimate stand needle area. SLA (cm2 g−1) as significantly influenced by the position in the crown and by needle age (current-year versus 1-year-old needles). SLA increased significantly from the top to the bottom of the crown, and was significantly higher near the interior of the crown as compared to the crown edge. SLA of current-year needles was significantly higher than that of 1-year-old needles. Allometric relationships of projected needle area with different tree characteristics showed that stem diameter at breast height (DBH), tree height and crown depth were reliable predictors of projected needle area at the tree level. The allometric relationships between DBH and projected needle area at the tree level were used to predict stand-level needle area and estimate LAI. The LAI was 1.06 (m2 m−2) for current-year needles and 0.47 for 1-year-old needles, yielding a total stand LAI of 1.53.  相似文献   

13.
Black spruce ( Picea mariana ), white spruce ( Picea glauca ) and jack pine ( Pinus banksiana ) were inoculated with Suillus tomentosus and subjected to potassium fluoride (1 m M KF and 5 m M KF) in the presence and absence of 60 m M NaCl. The NaCl and KF treatments reduced total dry weights in jack pine and black spruce seedlings, but they did not affect total dry weights in white spruce seedlings. The addition of 60 m M NaCl to KF treatment solutions alleviated fluoride-induced needle injury in ectomycorrhizal (ECM) black spruce and white spruce, but had little effect in jack pine seedlings. Both KF and 60 m M NaCl treatments reduced E values compared with non-treated control seedlings. However, with the exception of small reductions of Kr by NaCl treatments in black spruce, the applied KF and NaCl treatments had little effect on Kr in ECM plants. Chloride tissue concentrations in NaCl-treated plants were not affected by the presence of KF in treatment solutions. However, shoot F concentrations in ECM black spruce and white spruce treated with 5 m M KF + 60 m M NaCl were significantly reduced compared with the 5 m M KF treatment. The results point to a possible competitive inhibition of F transport by Cl. We also suggest that the possibility that aquaporins may be involved in the transmembrane transport of F should be further investigated.  相似文献   

14.

Key Message

Secondary chemistry of P. abies peaks early in shoot development. Condensed tannins accumulate already in late buds while piperidine alkaloid biosynthesis take place in early stage shoots.

Abstract

Plants protect new vegetative parts with defensive secondary metabolite compounds. We investigated how concentrations of piperidine alkaloids and condensed tannins change during bud burst and shoot growth in adult Picea abies. We detected 12 individual piperidine compounds, of which epipinidinone and 1,2-dehydropinidinone and two tentatively identified 1,6-imines are reported for the first time in P. abies. In addition three piperidine alkaloid compounds remain partly identified. We found that concentrations of both total piperidine alkaloids and condensed tannins were highest immediately after bud burst. While concentrations of condensed tannins started to increase during bud opening, the dilution effect decreased concentrations in the developing needles of mature branches. By contrast, the decrease of total alkaloid concentrations in mature shoots was not due to the dilution effect, but was connected to the disappearance of precursor components of biosynthesis. The concentrations of major alkaloid components remain stable from dormant buds to mature needles and twigs, underlining their importance for P. abies, although their real ecological significance is yet to be solved. Based on the structural features and timing of appearance of individual compounds, we also propose a hypothetical biosynthesis route for trans-substituted coniferous piperidine alkaloids.  相似文献   

15.
Summary Chloroplast DNA (cpDNA) restriction analysis was used to classify five reforestation seedlots as to species. The material included two Sitka spruce (Picea sitchensis (Bong.) Carr.), one white spruce (P. glauca (Moench) Voss) from interior British Columbia, and two putative hybrid seedlots from the coast-interior introgression zone in British Columbia. The cpDNA patterns generated by Bam-HI and Bc1-I from individual trees of Sitka spruce, white spruce, western white spruce (P. glauca var. albertiana (S. Brown)), and Engelmann spruce (P. engelmanni (Parry)) were species-specific. They were used as reference patterns for comparisons. In addition, two controlled crosses between white and Sitka spruce were analyzed to demonstrate the paternal inheritance of cpDNA in spruces. The cpDNA restriction patterns for the five seedlots were obtained from composite samples of seedlings from each lot and compared to the typical cpDNA patterns of each species. Restriction patterns for the two Sitka spruce seedlots agreed with those from the Sitka spruce tree, while patterns for the white spruce seedlots from British Columbia agreed with those from the white spruce tree, lacking evidence of any Engelmann spruce component in the sample. On the other hand, one putative hybrid seedlot showed cpDNA patterns similar to white spruce while the other showed fragments unique to both Sitka and white spruce, indicating that this was a hybrid seedlot. The analysis of cpDNA restriction polymorphism has proven to be an effective tool for classifying seedlots in regions of introgression. To our knowledge, these results provide the first demonstration of the use of cpDNA analysis for solving practical forestry problems.  相似文献   

16.
A detailed biometrical study of the exotic understorey invader Prunus serotina (Ehrh.) was carried out in a mixed coniferous forest stand in northern Belgium. Based on detailed destructive measurements of eight selected model trees, allometric relations of tree height, crown projected area, woody and leaf dry mass and leaf area on tree diameter at breast height (DBH) were derived. The scaling-up procedure from the tree to the stand level was done using the frequency distribution of DBH obtained at the selected experimental plot. The vertical and radial distributions of the tree foliage were estimated by the “cloud” technique. The vertical profile of leaf area showed a bimodal distribution pattern with maxima at heights of 4 and 6 m above the ground. The leaf area index (LAI) of the understorey Prunus serotina as estimated by the described up-scaling procedure (5.1) was significantly higher than the LAI (2.6) as measured by a plant canopy analyser and was also significantly higher than the LAI of the overstorey species Scots pine (1.5–3.0). The LAI of a neighbouring Rhododendron understorey reached only 1.25. This study emphasises the importance of an exotic understorey species in the total leaf area of mixed coniferous forests which might have important implications for the energy and mass exchanges of the entire forest.  相似文献   

17.
18.
Frequent bark beetle outbreaks cause biome-scale impacts in boreal and temperate forests worldwide. Despite frequent interceptions at ports of entry, the most aggressive bark beetle species of Ips and Dendroctonus in North America and Eurasia have failed to establish outside their original home continents. Our experiments showed that Ips typographus can breed in six North American spruce species: Engelmann spruce, white spruce¸ Sitka spruce, Lutz spruce, black spruce and red spruce. This suggests that differences between the Eurasian historical host and North American spruce species are not an insurmountable barrier to establishment of this tree-killing species in North America. However, slightly diminished quality of offspring beetles emerged from the North American spruces could reduce the chance of establishment through an Allee effect. The probabilistic nature of invasion dynamics suggests that successful establishments can occur when the import practice allows frequent arrivals of non-indigenous bark beetles (increased propagule load). Model simulations of hypothetical interactions of Dendroctonus rufipennis and I. typographus indicated that inter-species facilitations could result in more frequent and severe outbreaks than those caused by I. typographus alone. The potential effects of such new dynamics on coniferous ecosystems may be dramatic and extensive, including major shifts in forest structure and species composition, increased carbon emissions and stream flow, direct and indirect impacts on wildlife and invertebrate communities, and loss of biodiversity.  相似文献   

19.
Summary The relationship of leaf biomass and leaf area to the conductive area of stems and branches was investigated in Picea abies. A total of 30 trees were harvested to determine if these relationships were different in different crown zones and in trees growing with and without competition for light. Two methods were compared. In the first, data were accumulated from crown zones situated at the top of trees to the bottom; in the second, data were used from individual crown zones. The results indicated that the latter method is much more sensitive in detecting differences in the relationship of leaf biomass or leaf area to conductive area. The analysis also indicated that ratios such as leaf area/sapwood area are frequently size-dependent. This size-dependency can in some cases result in the differences being abscured, but more often leads to the false impression that the relationship between the variables changes. The relationship between leaf biomass and leaf area and conductive area of stems or branches was different in different crown zones and under different growth conditions. The slopes of these regressions appear to increase with decreasing transpirational demand and decrease with increasing hydraulic conductivity. The intercepts are probably related to the amount of identified sapwood actually involved in water conductance.  相似文献   

20.

Aim

The fine roots of trees may show plastic responses to their resource environment. Several, contrasting hypotheses exist on this plasticity, but empirical evidence for these hypotheses is scattered. This study aims to enhance our understanding of tree root plasticity by examining intra-specific variation in fine-root mass and morphology, fine-root growth and decomposition, and associated mycorrhizal interactions in beech (Fagus sylvatica L.) and spruce (Picea abies (L.) Karst.) forests on soils that differ in resource availability.

Methods

We measured the mass and morphological traits of fine roots (i.e. ≤ 2 mm diameter) sampled to 50 cm depth. Fine-root growth was measured with ingrowth cores, and fine-root decomposition with litter bags. Mycorrhizal fungal biomass was determined using ingrowth mesh bags.

Results

Both tree species showed more than three times higher fine-root mass, and a ten-fold higher fine-root growth rate on sand than on clay, but no or marginal differences in overall fine-root morphology. Within the fine-root category however, beech stands had relatively more root length of their finest roots on clay than on sand. In the spruce stands, ectomycorrhizal mycelium biomass was larger on sand than on clay.

Conclusions

In temperate beech and spruce forests, fine-root mass and mycorrhizal fungal biomass, rather than fine-root morphology, are changed to ensure uptake under different soil resource conditions. Yet enhancing our mechanistic understanding of fine-root trait plasticity and how it affects tree growth requires more attention to fine-root dynamics, the functional diversity within the fine-roots, and mycorrhizal symbiosis as an important belowground uptake strategy.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号