首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultured endothelial cells have been shown to possess two mechanisms of intercellular adhesion: Ca2(+)-dependent and Ca2(+)-independent. We report here that growth of bovine aortic endothelial cells (BAEC) in complete medium containing purified basic fibroblast growth factor (bFGF, 6 ng/ml) results in loss of Ca2(+)-dependent intercellular adhesion. In the presence of heparin (90 micrograms/ml), this effect is reproduced upon treatment with acidic fibroblast growth factor (aFGF, 6 ng/ml) or endothelial cell growth supplement (ECGS, 100 micrograms/ml), in both human umbilical vein endothelial cells (HUVEC) and BAEC. Treatment at these doses with aFGF in the absence of heparin or with heparin alone is without significant effect. Loss of Ca2(+)-dependent adhesion following treatment of cells with heparin-binding growth factors (HBGFs) is prevented by pre-treatment of cell layers with cycloheximide. The Ca2(+)-independent adhesion mechanism is unaffected by HBGF treatment. Exposure of endothelial cells to HBGFs, moreover, prevents the eventual establishment of quiescence in growing cultures and restimulates replication in confluent cultures that have reached a final density-inhibited state. Addition of bFGF alone or aFGF + heparin at these doses results in a 4-fold increase in DNA synthesis over untreated control cultures at saturation density as reflected by thymidine index. A single addition of bFGF (6 ng/ml) to untreated quiescent confluent BAEC monolayers results in an increase in 3H-TdR incorporation reaching a peak at 22 hours with a parallel loss of Ca2(+)-dependent adhesiveness. Fluorescent staining with rhodamine-phalloidin demonstrates an altered distribution of polymerized F-actin in the bFGF-treated monolayers, marked by disruption of the dense peripheral microfilament bands retained by untreated confluent monolayers. Together, these results indicate that the mitogenic effect of HBGFs in cultured endothelial cells is associated with a "morphogenic" set of responses, perhaps dependent on breakdown of calcium-dependent cell-cell contacts.  相似文献   

2.
We isolated a mouse monoclonal antibody that disrupts Ca2+-dependent cell-cell adhesion of amphibian (Xenopus laevis) cells. When added to culture medium, the monoclonal antibody completely disrupted cell-cell adhesion of amphibian cells in monolayer culture and specifically inhibited Ca2+-dependent cell-cell adhesion of dissociated cells in reaggregation experiments. The monoclonal antibody recognized a 140 kDa cell surface glycoprotein antigenically different from the previously reported Ca2+-dependent cell-cell adhesion molecules (cadherins).  相似文献   

3.
We investigated the role of the cadherins 5 and 13 in the solute barrier formed by aortic endothelial cells in vitro. In confluent monolayers of bovine aortic endothelial cells, immunofluorescence with antibodies to the external domain of cadherin 5 (Mab 9H7) or to cadherin 13 (Mab Ec6C10) found staining for both cadherins at endothelial cell borders. Western blotting with an antibody to the characteristic cadherin cytoplasmic tail or with an antibody to the extracellular domain of cadherin 5 revealed a single 125 kD protein band. A second larger band was found at 130 kD with the anti-cadherin 13 Mab which was not recognized by an antibody to the cadherin cytoplasmic tail. A calcium switch strategy was used to investigate the involvement of these cadherins in the endothelial barrier. Changes in the permeability of small solutes in an endothelial cell column produced by a decrease in calcium concentration followed by a return to normal calcium, with or without antibody, were recorded. We found that anti-cadherin 5 IgG (10 μg/ml) interfered with the reforming of interendothelial junctions after restoration of calcium at every time point tested for a total of 45 min after restoration of calcium. The anti-cadherin 13 IgG (10 μg/ml) did not block reforming of the endothelial barrier in a similar manner. The presence of this antibody delayed only by 15 min the restoration of the normal barrier. Without calcium switch, addition of either monoclonal antibody (10 μg/ml) to the endothelial cell column had no effect on solute permeability. These results suggest that cadherin 5 in bovine aortic endothelial cells has a major functional role in forming the calcium-sensitive endothelial junction in vitro and may play an important role in the normal structure and function of the in vivo barrier. J. Cell. Physiol. 171:243–251, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
The molecular nature of the Ca2+-dependent cell-cell adhesion system in mouse teratocarcinoma (t-CDS) was studied using a monoclonal antibody recognizing t-CDS. We isolated a hybridoma clone producing a monoclonal antibody (ECCD-1) able to disrupt cell-cell adhesion when added to monolayer cultures of teratocarcinoma cells. This antibody bound to the cells with intact t-CDS, resulting in an inhibition of their aggregation, but did not bind to cells from which t-CDS was removed by trypsin treatment in the absence of Ca2+. The binding of ECCD-1 to cell surfaces required Ca2+ but not other ions. Western blot analysis showed that ECCD-1 recognizes multiple cell surface proteins, the major one of which is a component with a molecular weight of 124,000. The binding of ECCD-1 to these antigens was Ca2+-dependent even in cell-free systems, suggesting that the molecules involved in t-CDS undergo conformational changes by binding with Ca2+, leading to conversion of their molecular structure into an active form. ECCD-1 also reacted with 8-cell stage mouse embryos and with certain types of epithelial cells (excluding fibroblastic cells) in various differentiated tissues collected from mouse fetuses, again affecting their cell-cell adhesion. We also showed that a monoclonal antibody (DE1) raised against gp84 (F. Hyafil et al., 1981, Cell 26, 447-454) recognizes the same antigens as ECCD-1.  相似文献   

5.
The formation of multinucleate skeletal muscle cells (myotubes) is a Ca2(+)-dependent process involving the interaction and fusion of mononucleate muscle cells (myoblasts). Specific cell-cell adhesion precedes lipid bilayer union during myoblast fusion and has been shown to involve both Ca2(+)-independent (CI)2 and Ca2(+)-dependent (CD) mechanisms. In this paper we present evidence that CD myoblast adhesion involves a molecule similar or identical to two known CD adhesion glycoproteins, N-cadherin and A-CAM. These molecules were previously identified by other laboratories in brain and cardiac muscle, respectively, and are postulated to be the same molecule. Antibodies to N-cadherin and A-CAM immunoblotted a similar band with a molecular weight of approximately 125,000 in extracts of brain, heart, and pectoral muscle isolated from chick embryos and in extracts of muscle cells grown in vitro at Ca2+ concentrations that either promoted or inhibited myotube formation. In assays designed to measure the interaction of fusion-competent myoblasts in suspension, both polyclonal and monoclonal anti-N-cadherin antibodies inhibited CD myoblast aggregation, suggesting that N-cadherin mediates the CD aspect of myoblast adhesion. Anti-N-cadherin also had a partial inhibitory effect on myotube formation likely due to the effect on myoblast-myoblast adhesion. The results indicate that N-cadherin/A-CAM plays a role in myoblast recognition and adhesion during skeletal myogenesis.  相似文献   

6.
Specifically expressed at intercellular adherens junctions of endothelial cells, VE-cadherin is a receptor that exhibits particular self-association properties. Indeed, in vitro studies demonstrated that the extracellular part of VE-cadherin elaborates Ca(++)-dependent hexameric structures. We hypothesized that this assembly could be at the basis of a new cadherin-mediated cell-cell adhesion mechanism. To verify this assumption, we first demonstrated that VE-cadherin can elaborate hexamers at the cell surface of confluent endothelial cells. Second, mutations were introduced within the extracellular part of VE-cadherin to destabilize the hexamer. Following an in vitro screening, three mutants were selected, among which, one is able to elaborate only dimers. The selected mutations were expressed as C-terminal green fluorescent protein fusions in CHO cells. Despite their capacity to elaborate nascent cell-cell contacts, the mutants seem to be rapidly degraded and/or internalized. Altogether, our results suggest that the formation of VE-cadherin hexamers protects this receptor and might allow the elaboration of mature endothelial cell-cell junctions.  相似文献   

7.
The molecules involved in Ca2+-dependent cell-cell adhesion systems (CDS) in mouse hepatocytes were characterized and compared with those in teratocarcinoma cells. Fab fragments of antibody raised against liver tissues (anti-liver) inhibited Ca2+-dependent aggregation of both liver and teratocarcinoma cells. A monoclonal antibody raised against teratocarcinoma CDS (ECCD-1) also inhibited the Ca2+-dependent aggregation of these two cell types equally. These antibodies induced disruption of cell-cell adhesion in monolayers of hepatocytes. Thus, CDS in these two cell types are not immunologically distinctive. Immunochemical analyses with these antibodies showed that CDS in both hepatocytes and teratocarcinoma cells involved at least two classes of cell surface proteins with molecular weights of 124,000 and 104,000. ECCD-1 selectively bound to hepatocytes but not to fibroblastic cells in liver cell cultures. Thus, the molecular constitution of CDS in hepatocytes and teratocarcinoma stem cells is identical. As ECCD-1 reacts with other classes of embryonic and fetal cells, the molecules identified here could have a major role in cell-cell adhesion in various tissues at any developmental stage of animals.  相似文献   

8.
E-cadherin is a Ca2+-dependent cell-cell adhesion molecule identified as a glycoprotein with a molecular weight (MW) of 124,000. To study the role of the sugar moieties of this adhesion molecule, we tested the effect of tunicamycin on aggregation mediated by E-cadherin of teratocarcinoma cells. Immunoblot analysis using a monoclonal antibody to E-cadherin showed that in cells treated with tunicamycin this adhesion molecule is converted into two forms with MW of 118,000 and 131,000. The smaller one was exposed on the cell surface and showed a trypsin sensitivity characteristic to E-cadherin, suggesting that this is the peptide moiety of E-cadherin whose glycosylation with N-linked oligosaccharides was blocked by tunicamycin. The larger one was not removed by trypsin treatment of cells, suggesting an intracellular location. These tunicamycin-treated cells aggregated in a Ca2+-dependent manner, and the aggregation was inhibited by a monoclonal antibody to E-cadherin. These results suggested that N-linked oligosaccharides are not involved in the functional sites of this adhesion molecule.  相似文献   

9.
It has recently been appreciated that thrombin induces the retraction of endothelial cells resulting in an alteration of the integrity of the monolayers. We studied thrombin-induced changes in cytosolic calcium concentration (Ca2+i) using microfluorometry of fura-2-loaded single cells, cell topography (scanning electron microscopy), and cytoskeleton (rhodamine phalloidin) in endothelial cells. Thrombin caused an initial and sustained phase of an increase in Ca2+i. Pretreatment with pertussis toxin abolished both phases of Ca2+i response. Sustained phase of thrombin effect required extracellular calcium. Pretreatment of endothelial cells with indomethacin protracted the sustained phase, whereas a lipoxygenase inhibitor, nordihydroguaiaretic acid curtailed it. Thrombin caused a marked retraction of confluent endothelial cells coincident with the sustained phase of Ca2+i response. This was paralleled by the formation of gaps in F-actin distribution at the periphery of the cells. Pretreatment of endothelial cells with nordihydroguaiaretic acid blunted the thrombin-induced cell retraction. Microinjection of various putative messengers into the endothelial cells showed that initial Ca2+ mobilization is not sufficient to account for sustained elevation of Ca2+i. The sustained response required microinjection of phospholipase A2 or co-injection of phospholipase A2 with phosphatidylinositol 4,5-bisphosphate-specific phospholipase C, phosphatidylinositol 1,4,5-trisphosphate, or CaCl2, further implying that thrombin receptor(s) can be coupled to both phospholipases C and A2. Sustained elevation of Ca2+i was a necessary prerequisite for the thrombin-induced changes in endothelial cell topography.  相似文献   

10.
Anti-CD9 mAb are known agonists of platelet aggregation, but have not been implicated in cell-cell adhesion. We show here in an experimental system that the anti-CD9 mAb 50H.19, ALB6, and BA-2 can induce rapid, and irreversible, homotypic aggregation of the CD9-positive pre-B lymphoblastoid cell lines NALM-6 and HOON, but not of the CD9-negative B cell line Raji. The specificity of the response is indicated by the failure to effect aggregation with mAb directed to CD24, or to HLA class I Ag. The initiation of strong homotypic aggregates of lymphoid cells is a property ascribed to lymphocyte function-associated Ag-1 (LFA-1), a member of the beta 2 subfamily of leukocyte integrins. We show that CD9-induced aggregation is an active process which proceeds at 37 degrees C, but not at 4 degrees C, requires the expenditure of metabolic energy, and a functioning cytoskeleton, and is not inhibited by Arg-Gly-Asp-Ser peptide. These are properties described for LFA-1-mediated aggregation. However, because beta 2-integrins are not expressed on NALM-6 or HOON cells, they are not the mediators of CD9-induced aggregation. In contrast to LFA-1-mediated adhesion which is Mg2+ dependent, CD9-induced adhesion has an absolute requirement for Ca2+, but not Mg2+, indicating that a Ca2(+)-dependent event is sufficient for adhesion. However, Mg2+ enhances adhesion even at optimal concentrations of Ca2+, implicating an additional Mg2(+)-dependent event which requires Ca2+ to be effective. These findings suggest that CD9 Ag regulates a novel mechanism for promoting tight cell-cell adhesion which requires both Ca2+ and Mg2+ for optimal expression.  相似文献   

11.
GMP-140, a receptor for myeloid cells that is expressed on surfaces of thrombin-activated platelets and endothelial cells, is a member of the selectin family of adhesion molecules that regulate leukocyte interactions with the blood vessel wall. Each selectin contains an N-terminal domain homologous to Ca(2+)-dependent lectins and mediates cell-cell contact by binding to oligosaccharide ligands in a Ca(2+)-dependent manner. The mechanisms by which Ca2+ promotes selectin-dependent cellular interactions have not been defined. We demonstrate that purified GMP-140 contains two high affinity binding sites for Ca2+ as measured by equilibrium dialysis (Kd = 22 +/- 2 microM). Occupancy of these sites by Ca2+ alters the conformation of the protein as detected by a reduction in intrinsic fluorescence emission intensity (Kd = 4.8 +/- 0.2 microM). This Ca(2+)-dependent conformational change exposes an epitope spanning residues 19-34 of the lectin domain that is recognized by a monoclonal antibody capable of blocking neutrophil adhesion to GMP-140 (half-maximal antibody binding at approximately 20 microM Ca2+). Furthermore, a synthetic peptide encoding this epitope, CQNRYTDLVAIQNKNE, inhibits neutrophil binding to GMP-140. Mg2+ also alters the conformation of the protein, but not in a manner that will support leukocyte recognition in the absence of Ca2+. There is a strong correlation between the Ca2+ levels required for neutrophil adhesion to GMP-140, for occupancy of the two Ca(2+)-binding sites, for the fluorescence-detected conformational change, and for exposure of the antibody epitope in the lectin domain. We conclude that binding of Ca2+ to high affinity sites on GMP-140 modulates the conformation of the lectin domain in a manner that is essential for leukocyte recognition.  相似文献   

12.
We have examined the expression, localization, and function of beta 1 integrins on cultured human epidermal keratinocytes using polyclonal and monoclonal antibodies against the beta 1, alpha 2, alpha 3, and alpha 5 integrin subunits. The beta 1 polypeptide, common to all class 1 integrins, was localized primarily in areas of cell-cell contacts of cultured keratinocytes, as were alpha 2 and alpha 3 polypeptides, suggesting a possible role in cell-cell adhesion for these integrin polypeptides. In contrast, the fibronectin receptor alpha 5 subunit showed no such accumulations in regions of cell-cell contact but was more diffusely distributed in the keratinocyte plasma membrane, consistent with the absence of fibronectin at cell-cell contact sites. Colonies of cultured keratinocytes could be dissociated by treatment with monoclonal antibody specific to the beta 1 polypeptide. Such dissociation of cell-cell contacts also occurred under conditions where the monoclonal antibody had no effect on cell-substrate adhesion. Therefore, beta 1 integrin-dependent cell-cell adhesion can be inhibited without affecting other cell-adhesive interactions. Antibody treatment of keratinocytes maintained in either low (0.15 mM) or high (1.2 mM) CaCl2 also resulted in the loss of organization of intracellular F-actin filaments and beta 1 integrins, even when the anti-beta 1 monoclonal antibody had no dissociating effect on keratinocyte colonies at the higher calcium concentration. Our results indicate that beta 1 integrins play roles in the maintenance of cell-cell contacts between keratinocytes and in the organization of intracellular microfilaments. They suggest that in epithelial cells integrins can function in cell-cell interactions as well as in cell-substrate adhesion.  相似文献   

13.
Heterotypic and homotypic cell-cell adhesion molecules in endothelial cells   总被引:1,自引:0,他引:1  
Sickle red blood cells display an abnormal propensity to adhere to cultured bovine aortic endothelial cells when compared to normal red blood cells. The adherence was potentiated three-fold by endothelial cell derived conditioned medium, enriched in multimers of von Willebrand factor. Such adherence was ablated by 80% by either the synthetic peptide (RGDS) or antibody to GPIIb/IIIa, indicating the presence of RGD peptide recognition domain/receptor in either endothelial cells or sickle cells or both. The adherence was also inhibited by 70% by phosphatidylserine, but not by other phospholipids, indicating the presence of putative receptors for this phospholipid in endothelial cells. The labeling of cultured bovine aortic endothelial cells with monoclonal antibodies revealed the localization of MAB D2 to regions of cell-cell contact. The antigen on endothelial cells which cross-reacts with this antibody has a Mr of 130,000. The addition of such an antibody during the plating of endothelial cells disrupted monolayer formation. It appears that a 130-kDa polypeptide antigen in endothelial cells which is recognized by MAB D2, may be a cell-cell adhesion molecule.  相似文献   

14.
Flow cytometry was used to investigate two functional parameters of human natural-killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC): (i) the frequency of NK cells which formed conjugates (NKC) with autologous monoclonal antibody (mAb)-coated lymphocyte target cells, a measure of the avidity of CD16-dependent cell-cell adhesion, and (ii) the rise in the intracellular concentration of ionized calcium ([Ca2+]i) elicited in NKC by contact with target cells, a measure of CD16-dependent NK cell activation. For each of four rat IgG2b mAb directed against target cell antigens CDw52, CD5, CD45, and class I HLA, there existed quantitatively similar relationships between ADCC and rise in NKC[Ca2+]i but significant inter-mAb differences with respect to the ADCC vs the NKC frequency relationship. Cytolytic efficiencies of mAb appeared to be determined at the level of the NK cell, dependent upon CD16 and LFA-1, but restricted with respect to quantitative levels of NKC[Ca2+]i. In concert with this notion, targets coated with an IgG1 isotype-switch variant alpha CDw52 mAb promoted significant conjugate formation but failed to elicit a rise in NKC[Ca2+]i or ADCC. Thus, Fc regions of antibodies make contacts with NK cell CD16 which may strengthen cell-cell adhesion without eliciting an activation stimulus, a finding which supports a complexity of CD16 functional regulation of probable significance in the clinical consequences of antibody responses or therapeutic mAb manipulations.  相似文献   

15.
The major part of mast cell actin is Triton-soluble and behaves as a monomer in the DNase I inhibition assay. Thus, actin exists predominantly in monomeric or short filament form, through filamentous actin is clearly apparent in the cortical region after rhodamine-phalloidin (RP) staining. The minimum actin content is estimated to be approximately 2.5 micrograms/10(6) cells (cytosolic concentration approximately 110 microM. After permeabilization of mast cells by the bacterial cytolysin streptolysin-O, approximately 60% of the Triton-soluble actin leaks out within 10 min. However, the staining of the cortical region by RP remains undiminished, and the cells are still capable of exocytosis when stimulated by GTP-gamma-S together with Ca2+. In the presence of cytochalasin E the requirement for Ca2+ is decreased, indicating that disassembly of the cytoskeleton may be a prerequisite for exocytosis. This disassembly is likely to be controlled by Ca2(+)-dependent actin regulatory proteins; their presence is indicated by a Ca2(+)-dependent inhibition of polymerization of extraneous pyrene-G-actin by a Triton extract of mast cells. The effect of cytochalasin E on secretion is similar to that of phorbol myristate acetate, an activator of protein kinase C; both agents enhance the apparent affinity for Ca2+ and cause variable extents of Ca2(+)-independent secretion. Exposing the permeabilized cells to increasing concentrations of Ca2+ caused a progressive decrease in F-actin levels as measured by flow cytometry of RP-stained cells. In this respect, both cytochalasin E and phorbol ester mimicked the effects of calcium. GTP-gamma-S was not required for the Ca2(+)-dependent cortical disassembly. Thus, since conditions have not yet been identified where secretion can occur in its absence, cortical disassembly may be essential (though it is not sufficient) for exocytosis to occur.  相似文献   

16.
To determine how histamine regulates endothelial barrier function through an integrative cytoskeletal network, we mathematically modeled the resistance across an endothelial cell-covered electrode as a function of cell-cell, cell-matrix, and transcellular resistances. Based on this approach, histamine initiated a rapid decrease in transendothelial resistance predominantly through decreases in cell-cell resistance in confluent cultured human umbilical vein endothelial cells (HUVECs). Restoration of resistance was characterized by initially increasing cell-matrix resistance, with later increases in cell-cell resistance. Thus histamine disrupts barrier function by specifically disrupting cell-cell adhesion and restores barrier function in part through direct effects on cell-matrix adhesion. To validate the precision of our technique, histamine increased the resistance in subconfluent HUVECs in which there was no cell-cell contact. Exposure of confluent monolayers to an antibody against cadherin-5 caused a predominant decrease in cell-cell resistance, whereas the resistance was unaffected by the antibody to cadherin-5 in subconfluent cells. Furthermore, we observed an increase predominantly in cell-cell resistance in ECV304 cells that were transfected with a plasmid containing a glucocorticoid-inducible promoter controlling expression of E-cadherin. Transmission electron microscopy confirmed tens of nanometer displacements between adjacent cells at a time point in which histamine maximally decreased cell-cell resistance.  相似文献   

17.
We have analyzed the development of Na(+)-dependent hexose transport during differentiation and during polarization of LLC-PK1, an established cell line with characteristics of the proximal tubule. When cell-cell contact was disturbed by a low extracellular Ca2+ concentration or by a phorbol myristate acetate (PMA) treatment, the development of Na(+)-dependent hexose transport was completely inhibited. The effect of PMA on the development of hexose transport could be uncoupled from its effect on the tight junctions. The PMA concentration needed for the latter effect was approx. 10-fold higher than for the former. As the primary cause of the PMA effect, an influence on the cytoskeleton is suggested. In contrast to PMA, the concentration dependence of both phenomena on the extracellular Ca2+ concentration was almost the same. Moreover, the incorporation of hexose carriers in the plasma membrane could be induced by changing the extracellular CA2+ concentration from low to normal. We conclude that there is a relation between the formation of tight junctions and the development of the Na(+)-dependent hexose carrier, possibly because Ca(2+)-dependent cell adhesion molecules play a role in both phenomena. However, a direct relation between Ca(2+)-dependent elements of the tight junctions and the insertion of the hexose carrier can not be excluded. The Ca(2+)-dependent development seems to be a common characteristic of apical membrane proteins in contrast to the development of the basolateral membrane protein, (Na(+)+K+)-ATPase.  相似文献   

18.
E-cadherin is a Ca(2+)-dependent cell-cell adhesion molecule at adherens junctions (AJs) of epithelial cells. A fragment of N-cadherin lacking its extracellular region serves as a dominant negative mutant (DN) and inhibits cell-cell adhesion activity of E-cadherin, but its mode of action remains to be elucidated. Nectin is a Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecule at AJs and is associated with E-cadherin through their respective peripheral membrane proteins, afadin and catenins, which connect nectin and cadherin to the actin cytoskeleton, respectively. We showed here that overexpression of nectin capable of binding afadin, but not a mutant incapable of binding afadin, reduced the inhibitory effect of N-cadherin DN on the cell-cell adhesion activity of E-cadherin in keratinocytes. Overexpressed nectin recruited N-cadherin DN to the nectin-based cell-cell adhesion sites in an afadin-dependent manner. Moreover, overexpression of nectin enhanced the E-cadherin-based cell-cell adhesion activity. These results suggest that N-cadherin DN competitively inhibits the association of the endogenous nectin-afadin system with the endogenous E-cadherin-catenin system and thereby reduces the cell-cell adhesion activity of E-cadherin. Thus, nectin plays a role in the formation of E-cadherin-based AJs in keratinocytes.  相似文献   

19.
Rabbit polyclonal antibodies raised to gp90, a fragment of the embryonic chick neural retina Ca2+-dependent adhesive molecule, gp130, recognize gp130 and inhibit Ca2+-dependent cell-cell adhesion. When tested against a panel of 10-day embryonic tissues, one of these antisera recognizes a component with a molecular weight identical to that of gp130 in embryonic chick cerebrum, optic lobe, hind brain, spinal cord and neural retina only; the second antiserum recognizes a similar component in all of the embryonic chick tissues tested. These data imply the existence of an extended family of closely related cell surface components with immunologically distinct subgroups each of which may mediate Ca2+-dependent cell-cell adhesion. As the term CAM, or cell adhesion molecule, has become common usage we propose to refer to these molecules as calCAMs, reflecting their calcium dependence. Analysis of fragments and endoglycosidase digests of NcalCAM have allowed a comparison of its structure with similar molecules from different tissues and species that have been implicated in Ca2+-dependent cell-cell adhesion.  相似文献   

20.
Recent evidence suggests the expression of a Na(+)/Ca(2+) exchanger (NCX) in vascular endothelial cells. To elucidate the functional role of endothelial NCX, we studied Ca(2+) signaling and Ca(2+)-dependent activation of endothelial nitric-oxide synthase (eNOS) at normal, physiological Na(+) gradients and after loading of endothelial cells with Na(+) ions using the ionophore monensin. Monensin-induced Na(+) loading markedly reduced Ca(2+) entry and, thus, steady-state levels of intracellular free Ca(2+) ([Ca(2+)](i)) in thapsigargin-stimulated endothelial cells due to membrane depolarization. Despite this reduction of overall [Ca(2+)](i), Ca(2+)-dependent activation of eNOS was facilitated as indicated by a pronounced leftward shift of the Ca(2+) concentration response curve in monensin-treated cells. This facilitation of Ca(2+)-dependent activation of eNOS was strictly dependent on the presence of Na(+) ions during treatment of the cells with monensin. Na(+)-induced facilitation of eNOS activation was not due to a direct effect of Na(+) ions on the Ca(2+) sensitivity of the enzyme. Moreover, the effect of Na(+) was not related to Na(+) entry-induced membrane depolarization or suppression of Ca(2+) entry, since neither elevation of extracellular K(+) nor the Ca(2+) entry blocker 1-(beta-[3-(4-methoxyphenyl)-propoxy]-4-methoxyphenethyl)-1H-imidazol e hydrochloride (SK&F 96365) mimicked the effects of Na(+) loading. The effects of monensin were completely blocked by 3', 4'-dichlorobenzamil, a potent and selective inhibitor of NCX, whereas the structural analog amiloride, which barely affects Na(+)/Ca(2+) exchange, was ineffective. Consistent with a pivotal role of Na(+)/Ca(2+) exchange in Ca(2+)-dependent activation of eNOS, an NCX protein was detected in caveolin-rich membrane fractions containing both eNOS and caveolin-1. These results demonstrate for the first time a crucial role of cellular Na(+) gradients in regulation of eNOS activity and suggest that a tight functional interaction between endothelial NCX and eNOS may take place in caveolae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号