首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, we showed that expression of a dominant-negative form of the transforming growth factor beta (TGF-beta) type II receptor in skeletal tissue resulted in increased hypertrophic differentiation in growth plate and articular chondrocytes, suggesting a role for TGF-beta in limiting terminal differentiation in vivo. Parathyroid hormone-related peptide (PTHrP) has also been demonstrated to regulate chondrocyte differentiation in vivo. Mice with targeted deletion of the PTHrP gene demonstrate increased endochondral bone formation, and misexpression of PTHrP in cartilage results in delayed bone formation due to slowed conversion of proliferative chondrocytes into hypertrophic chondrocytes. Since the development of skeletal elements requires the coordination of signals from several sources, this report tests the hypothesis that TGF-beta and PTHrP act in a common signal cascade to regulate endochondral bone formation. Mouse embryonic metatarsal bone rudiments grown in organ culture were used to demonstrate that TGF-beta inhibits several stages of endochondral bone formation, including chondrocyte proliferation, hypertrophic differentiation, and matrix mineralization. Treatment with TGF-beta1 also stimulated the expression of PTHrP mRNA. PTHrP added to cultures inhibited hypertrophic differentiation and matrix mineralization but did not affect cell proliferation. Furthermore, terminal differentiation was not inhibited by TGF-beta in metatarsal rudiments from PTHrP-null embryos; however, growth and matrix mineralization were still inhibited. The data support the model that TGF-beta acts upstream of PTHrP to regulate the rate of hypertrophic differentiation and suggest that TGF-beta has both PTHrP-dependent and PTHrP-independent effects on endochondral bone formation.  相似文献   

2.
Articular cartilage extracellular matrix (ECM) plays a crucial role in regulating chondrocyte functions via cell-matrix interaction, cytoskeletal organization and integrin-mediated signaling. Factors such as interleukins, basic fibroblast growth factor (bFGF), bone morphogenic proteins (BMPs) and insulin-like growth factor (IGF) have been shown to modulate the synthesis of extracellular matrix in vitro. However, the effects of TGF-beta1 and beta-estradiol in ECM regulation require further investigation, although there have been suggestions that these factors do play a positive role. To establish the role of these factors on chondrocytes derived from articular joints, a study was conducted to investigate the effects of TGF-beta1 and beta-estradiol on glycosaminoglycan secretion and type II collagen distribution (two major component of cartilage ECM in vivo). Thus, chondrocyte cultures initiated from rabbit articular cartilage were treated with 10ng/ml of TGF-beta1, 10nM of beta-estradiol or with a combination of both factors. Sulphated glycosaminoglycan (GAG) and type II collagen levels were then measured in both these culture systems. The results revealed that the synthesis of GAG and type II collagen was shown to be enhanced in the TGF-beta1 treated cultures. This increase was also noted when TGF-beta1 and beta-estradiol were both used as culture supplements. However, beta-estradiol alone did not appear to affect GAG or type II collagen deposition. There was also no difference between the amount of collagen type II and GAG being expressed when chondrocyte cultures were treated with TGF-beta1 when compared with cultures treated with combined factors. From this, we conclude that although TGF-beta1 appears to stimulate chondrocyte ECM synthesis, beta-estradiol fails to produce similar effects. The findings of this study confirm that contrary to previous claims, beta-estradiol has little or no effect on chondrocyte ECM synthesis. Furthermore, the use of TGF-beta1 may be useful in future studies looking into biological mechanisms by which ECM synthesis in chondrocyte cultures can be augmented, particularly for clinical application.  相似文献   

3.
The induction of bone formation requires three parameters that interact in a highly regulated process: soluble osteoinductive signals, capable responding cells, and a supporting matrix substratum or insoluble signal. The use of recombinant and naturally derived bone morphogenetic proteins and transforming growth factor beta(s) (TGF-beta(s)) has increased our understanding of the functions of these morphogens during the induction of endochondral bone formation. In addition, growing understanding of the cellular interactions of living tissues with synthetic biomaterials has led to the in vivo induction of bone formation using porous biomimetic matrices as an alternative to the use of autografts for bone regeneration. This review outlines the basis of bone tissue engineering by members of the TGF-beta superfamily, focusing on their delivery systems and the intrinsic induction of bone formation by specific biomimetic matrices with a defined geometry.  相似文献   

4.
5.
The expression of mRNAs for type I and type II procollagens, transforming growth factor-beta (TGF-beta) and c-fos was studied in developing human long bones by Northern blotting and in situ hybridization. The cells producing bone and cartilage matrix were identified by hybridizations using cDNA probes for types I and II collagen, respectively. Northern blotting revealed that the highest levels of TGF-beta mRNA were associated with the growth plates. By in situ hybridization, this mRNA was localized predominantly in the osteoblasts and osteoclasts of the developing bone, in periosteal fibroblasts and in individual bone marrow cells. These findings are consistent with the view that TGF-beta may have a role in stimulation of type I collagen production and bone formation. Only a low level of TGF-beta mRNA was detected in cartilage where type II collagen mRNA is abundant. In Northern hybridization, the highest levels of c-fos mRNA were detected in epiphyseal cartilage. In situ hybridization revealed two cell types with high levels of c-fos expression: the chondrocytes bordering the joint space and the osteoclasts of developing bone. These differential expression patterns suggest specific roles for TGF-beta and c-fos in osseochondral development.  相似文献   

6.
Transforming growth factor beta-1 (TGF-beta1) is released from the extracellular matrix of rat growth plate chondrocytes and activated by stromelysin-1 (matrix metalloproteinase 3, MMP-3), an enzyme that is stored in matrix vesicles. MMP-3 is released from these extracellular organelles by the direct action of 1alpha,25(OH)2D3 via activation of phospholipase A2 (PLA2), resulting in local production of lysophospholipids and matrix vesicle membrane destabilization. This effect of 1alpha,25(OH)2D3 is greater in matrix vesicles from growth zone chondrocyte cultures and PLA2 activity is higher in the growth zone in vivo, suggesting that it may depend on chondrocyte maturation state in the endochondral lineage. Previous studies have shown that latent TGF-beta1 can be activated by mild detergents in vitro, suggesting that lysophospholipids may act in vivo in a similar manner. To test this hypothesis, we determined if rat costochondral growth plate cartilage cells produce lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) in a maturation state-dependent manner and if LPC or LPE could release and activate latent TGF-beta1 from the extracellular matrix produced by these cells. Rat growth plate chondrocytes produced both lysophospholipids, with growth zone cells producing higher levels of LPE via PLA1, and resting zone cells producing higher levels of LPC via PLA2. LPC and LPE directly increased activation of recombinant human latent TGF-beta1 in a biphasic manner with a peak at 2 microg/ml. Phosphatidylcholine, phosphatidylethanolamine, and LPE plasmalogen (LPEP), but not choline, also activated TGF-beta1. Latent TGF-beta1 incubated with LPC or LPE, but neither lysophospholipid alone, stimulated [3H]-thymidine incorporation of resting zone cells, indicating the TGF-beta1 released was biologically active. LPC and LPE also released TGF-beta1 in a dose- and time-dependent manner when incubated with cell-free extracellular matrices produced by the cells. These results indicate that LPC and LPE have important roles as regulators of rat growth plate chondrocytes by directly and indirectly activating TGF-beta1 stored in the extracellular matrix.  相似文献   

7.
Osteoarthritis has as main characteristics the degradation of articular cartilage and the formation of new bone at the joint edges, so-called osteophytes. In this study enhanced expression of TGF-beta1 and -beta3 was detected in developing osteophytes and articular cartilage during murine experimental osteoarthritis. To determine the role of endogenous TGF-beta on osteophyte formation and articular cartilage, TGF-beta activity was blocked via a scavenging soluble TGF-beta-RII. Our results clearly show that inhibition of endogenous TGF-beta nearly completely prevented osteophyte formation. In contrast, treatment with recombinant soluble TGF-beta-RII markedly enhanced articular cartilage proteoglycan loss and reduced the thickness of articular cartilage. In conclusion, we show for the first time that endogenous TGF-beta is a crucial factor in the process of osteophyte formation and has an important function in protection against cartilage loss.  相似文献   

8.
Transforming growth factor-beta (TGF-beta), one of the most abundant cytokines in bone matrix, has positive and negative effects on bone formation, although the molecular mechanisms of these effects are not fully understood. Bone morphogenetic proteins (BMPs), members of the TGF-beta superfamily, induce bone formation in vitro and in vivo. Here, we show that osteoblastic differentiation of mouse C2C12 cells was greatly enhanced by the TGF-beta type I receptor kinase inhibitor SB431542. Endogenous TGF-beta was found to be highly active, and induced expression of inhibitory Smads during the maturation phase of osteoblastic differentiation induced by BMP-4. SB431542 suppressed endogenous TGF-beta signaling and repressed the expression of inhibitory Smads during this period, possibly leading to acceleration of BMP signaling. SB431542 also induced the production of alkaline phosphatase and bone sialoprotein, and matrix mineralization of human mesenchymal stem cells. Thus, signaling cross-talk between BMP and TGF-beta pathways plays a crucial role in the regulation of osteoblastic differentiation, and TGF-beta inhibitors may be invaluable for the treatment of various bone diseases by accelerating BMP-induced osteogenesis.  相似文献   

9.
The role of the latent TGF-beta binding protein (LTBP) is unclear. In cultures of fetal rat calvarial cells, which form mineralized bonelike nodules, both LTBP and the TGF-beta 1 precursor localized to large fibrillar structures in the extracellular matrix. The appearance of these fibrillar structures preceded the appearance of type I collagen fibers. Plasmin treatment abolished the fibrillar staining pattern for LTBP and released a complex containing both LTBP and TGF-beta. Antibodies and antisense oligonucleotides against LTBP inhibited the formation of mineralized bonelike nodules in long-term fetal rat calvarial cultures. Immunohistochemistry of fetal and adult rat bone confirmed a fibrillar staining pattern for LTBP in vivo. These findings, together with the known homology of LTBP to the fibrillin family of proteins, suggest a novel function for LTBP, in addition to its role in matrix storage of latent TGF-beta, as a structural matrix protein that may play a role in bone formation.  相似文献   

10.
Cell surface adhesion and extracellular matrix proteins are known to play a key role in the formation of cell condensations during skeletal development, and their formation is crucial for the expression of cartilage-specific genes. However, little is known about the relationship between adhesion molecules (N-cadherin and N-CAM), extracellular matrix proteins (fibronectin and tenascin) and TGF-beta1, TGF-beta2 and TGF-beta3 during in vitro precartilage condensations in mouse chondrogenesis. On these bases, we determined the participation of mammalian TGF-beta1, TGF-beta2 and TFG-beta3 and Xenopus TGF-beta5 on the expression of cell surface adhesion and extracellular matrix proteins during the formation of precartilage condensations. Also, we characterized the effects of TGF-betas on proteoglycan metabolism at different cellular densities in mouse embryonic limb bud mesenchymal cells. In TGF-beta1 and TGF-beta5-treated cultures, proteoglycan biosynthesis was higher than in controls, while there were no differences in proteoglycan catabolism, which caused the accumulation of cartilage extracellular matrix. When mesenchymal cells were seeded at three different cellular densities in the presence of TGF-betas, only high density cultures presented increased stimulation of proteoglycan biosynthesis, compared to low and intermediate densities. To determine whether the effect of TGF-betas on precartilage condensations is mediated through the expression of N-cadherin, N-CAM, fibronectin and tenascin, we evaluated their expression. Results showed that TGF-beta1, TGF-beta2, TGF-beta3, and TGF-beta5 differentially enhanced the expression of N-cadherin, N-CAM, fibronectin and tenascin in precartilage condensations, suggesting that TGF-beta isoforms play an important role in the establishment of cell-cell and cell-extracellular matrix interactions during precartilage condensations.  相似文献   

11.
The addition of TGF-beta1 to bovine articular chondrocytes resulted in increased synthesis and secretion of two anionic glycoproteins, including a previously studied but unidentified high molecular weight anionic glycoconjugate (HMW-AG). Sequencing by mass spectroscopy identified these anionic glycoproteins as fibronectin. Western blot analysis confirmed the identity of these two overexpressed glycoproteins as fibronectin. In the presence and absence of TGF-beta1 both V(+) and V(-) isoforms of fibronectin, which are EDA(-) and EDB(-), are synthesized. Dual labeling experiments suggest that the HMW-AG, the larger of the two overexpressed glycoproteins (apparent molecular weight of monomer approximately 260,000 Da), is more heavily glycosylated than the lower molecular weight anionic glycoprotein. Since fibronectin proteolytic fragments appear to enhance matrix metalloproteinase synthesis, TGF-beta1-mediated hyperglycosylation of fibronectin could regulate cartilage metabolism by providing protection of fibronectin from proteolysis, a mechanism that would also favor articular cartilage health.  相似文献   

12.
Cartilage glycosaminoglycan (GAG) synthesis and composition, upon which its structural integrity depends, varies with age, is modified by anabolic and catabolic stimuli, and is regulated by UDP-glucuronate availability. However, how such stimuli, prototypically represented by transforming growth factor-beta1 (TGF-beta1) and IL-1alpha, modify GAG synthesis during aging of normal human articular cartilage is not known. Using explants, we show that chondroitin sulfate (CS):total GAG ratios decrease, whereas C6S:C4S ratios increase with cartilage maturation, and that chondrocytes in the cartilage mid-zone, but not the superficial or deep zones, exhibit uridine 5'-diphosphoglucose dehydrogenase (UDPGD) activity, which is also increased in mature cartilage. We also show that IL-1alpha treatment reduces both total GAG and CS synthesis, decreases C6S:C4S ratios (less C6S), but fails to modify chondrocyte UDPGD activity at all ages. On the other hand, TGF-beta1 increases total GAG synthesis in immature, but not mature, cartilage (stimulates CS but not non-CS), age-independently decreases C6S:C4S (more C4S), and increases chondrocyte UDPGD activity in a manner inversely correlated with age. Our findings show that TGF-beta1, but not IL-1alpha, modifies matrix synthesis such that its composition more closely resembles "less mature" articular cartilage. These effects of TGF-beta1, which appear to be restricted to periods of skeletal immaturity, are closely associated although not necessarily mechanistically linked with increases in chondrocyte UDPGD activity. The antianabolic effects of IL-1alpha are, on the other hand, likely to be independent of any direct modification in UDPGD activity and manifest equally in human cartilage of all ages.  相似文献   

13.
14.
We previously observed using cultured tibiotarsal long-bone rudiments from which the perichondrium (PC) and periosteum (PO) was removed that the PC regulates cartilage growth by the secretion of soluble negative regulatory factors. This regulation is "precise" in that it compensates exactly for removal of the endogenous PC and is mediated through at least three independent mechanisms, one of which involves a response to TGF-beta. PC cell cultures treated with 2 ng/ml TGF-beta1 produced a conditioned medium which when added to PC/PO-free organ cultures effected precise regulation of cartilage growth. In the present study, we have investigated the possibility that TGF-beta itself might be the negative regulator which is produced by the PC cells in response to their treatment with TGF-beta1. Using a TGF-beta responsive reporter assay, we determined that PC cell cultures, when treated with 2 ng/ml or greater exogenous TGF-beta1, produce 300 pg/ml of active TGF-beta. Then we observed that this concentration (300 pg/ml) of active TGF-beta1, when added to PC/PO-free tibiotarsal organ cultures, effected precise regulation of cartilage growth, whereas concentrations of TGF-beta1 either greater or less than 300 pg/ml produced abnormally small cartilages. These results suggest that one mechanism by which the PC effects normal cartilage growth is through the production of a precisely regulated amount of TGF-beta which the PC produces in response to treatment with exogenous TGF-beta itself.  相似文献   

15.
The possible in vivo role of TGF-beta 1 in regulating various proteins of the extracellular matrix, including fibronectin, collagen I and III, and glycosaminoglycans, was examined by immunohistochemical methods during critical stages of lung morphogenesis in the 11- to 18-day-old mouse embryo. Sections of Bouin-fixed, paraffin-embedded whole embryos were exposed to polyclonal antibodies specific to synthetic peptides present in the precursor part of TGF-beta 1 (pro-TGF-beta 1), in the processed TGF-beta 1 (antibody CC), collagen I and III, fibronectin, followed by the PAP or ABC technique to visualize the location of the antibody. GAG were stained with Alcian Blue 8GX. Our results indicate colocalization of TGF-beta 1 expression and that of matrix proteins in the developing lung when branching morphogenesis (cleft formation) and tissue stabilization occur. The presence of TGF-beta 1 at the epithelial-mesenchymal interfaces of stalks and clefts at a time when matrix proteins can first be visualized in these areas, suggests a direct participation of the growth factor in the development of the basic architecture of the lung.  相似文献   

16.
Poorly healing mandibular fractures and osteotomies can be troublesome complications of craniomaxillofacial trauma and reconstructive surgery. Gene therapy may offer ways of enhancing bone formation by altering the expression of desired growth factors and extracellular matrix molecules. The elucidation of suitable candidate genes for therapeutic intervention necessitates investigation of the endogenously expressed patterns of growth factors during normal (i.e., successful) fracture repair. Transforming growth factor beta1 (TGF-beta1), its receptor (Tbeta-RII), and the extracellular matrix proteins osteocalcin and type I collagen are thought to be important in long-bone (endochondral) formation, fracture healing, and osteoblast proliferation. However, the spatial and temporal expression patterns of these molecules during membranous bone repair remain unknown. In this study, 24 adult rats underwent mandibular osteotomy with rigid external fixation. In addition, four identically treated rats that underwent sham operation (i.e., no osteotomy) were used as controls. Four experimental animals were then killed at each time point (3, 5, 7, 9, 23, and 37 days after the procedure) to examine gene expression of TGF-beta1 and Tbeta-RII, osteocalcin, and type I collagen. Northern blot analysis was used to compare gene expression of these molecules in experimental animals with that in control animals (i.e., nonosteotomized; n = 4). In addition, TGF-beta1 and T-RII proteins were immunolocalized in an additional group of nine animals killed on postoperative days 3, 7, and 37. The results of Northern blot analysis demonstrated a moderate increase (1.7 times) in TGF-beta1 expression 7 days postoperatively; TGF-beta1 expression returned thereafter to near baseline levels. Tbeta-RII mRNA expression was downregulated shortly after osteotomy but then increased, reaching a peak of 1.8 times the baseline level on postoperative day 9. Osteocalcin mRNA expression was dramatically downregulated shortly after osteotomy and remained low during the early phases of fracture repair. Osteocalcin expression trended slowly upward as healing continued, reaching peak expression by day 37 (1.7 times the control level). In contrast, collagen type IalphaI mRNA expression was acutely downregulated shortly after osteotomy, peaked on postoperative days 5, and then decreased at later time points. Histologic samples from animals killed 3 days after osteotomy demonstrated TGF-beta1 protein localized to inflammatory cells and extracellular matrix within the fracture gap, periosteum, and peripheral soft tissues. On postoperative day 7, TGF-beta1 staining was predominantly localized to the osteotomized bone edges, periosteum, surrounding soft tissues, and residual inflammatory cells. By postoperative day 37, complete bony healing was observed, and TGF-beta1 staining was localized to the newly formed bone matrix and areas of remodeling. On postoperative day 3, Tbeta-RII immunostaining localized to inflammatory cells within the fracture gap, periosteal cells, and surrounding soft tissues. By day 7, Tbeta-RII staining localized to osteoblasts of the fracture gap but was most intense within osteoblasts and mesenchymal cells of the osteotomized bone edges. On postoperative day 37, Tbeta-RII protein was seen in osteocytes, osteoblasts, and the newly formed periosteum in the remodeling bone. These observations agree with those of previous in vivo studies of endochondral bone formation, growth, and healing. In addition, these results implicate TGF-beta1 biological activity in the regulation of osteoblast migration, differentiation, and proliferation during mandibular fracture repair. Furthermore, comparison of these data with gene expression during mandibular distraction osteogenesis may provide useful insights into the treatment of poorly healing fractures because distraction osteogenesis has been shown to be effective in the management of these difficult clinical cases.  相似文献   

17.
TGF-beta, a potent inducer of the extracellular matrix, is also known to stimulate its own synthesis. In this report we have analyzed long term effects of TGF-beta 1 on its own expression and on the expression of extracellular matrix genes. We demonstrated that 24 hours of incubation of human dermal fibroblasts with TGF-beta 1 (1 ng/ml) under serum free conditions resulted in an elevated expression of TGF-beta 1, collagen alpha 2(I) and fibronectin mRNAs that persisted at least 96 hours after removal of TGF-beta 1. These data suggest the possibility of persistent in vivo activation of target cells following exposure to TGF-beta 1.  相似文献   

18.
19.
We have investigated the ability of exogenous transforming growth factor-beta (TGF-beta) to induce osteogenesis and chondrogenesis, critical events in both bone formation and fracture healing. Daily injections of TGF-beta 1 or 2 into the subperiosteal region of newborn rat femurs resulted in localized intramembranous bone formation and chondrogenesis. After cessation of the injections, endochondral ossification occurred, resulting in replacement of cartilage with bone. Gene expression of type II collagen and immunolocalization of types I and II collagen were detected within the TGF-beta-induced cartilage and bone. Moreover, injection of TGF-beta 2 stimulated synthesis of TGF-beta 1 in chondrocytes and osteoblasts within the newly induced bone and cartilage, suggesting positive autoregulation of TGF-beta. TGF-beta 2 was more active in vivo than TGF-beta 1, stimulating formation of a mass that was on the average 375% larger at a comparable dose (p less than 0.001). With either TGF-beta isoform, the dose of the growth factor determined which type of tissue formed, so that the ratio of cartilage formation to intramembranous bone formation decreased as the dose was lowered. For TGF-beta 1, reducing the daily dose from 200 to 20 ng decreased the cartilage/intramembranous bone formation ratio from 3.57 to zero (p less than 0.001). With TGF-beta 2, the same dose change decreased the ratio from 3.71 to 0.28 (p less than 0.001). These data demonstrate that mesenchymal precursor cells in the periosteum are stimulated by TGF-beta to proliferate and differentiate, as occurs in embryologic bone formation and early fracture healing.  相似文献   

20.
Transforming growth factor-beta (TGF-beta) is abundant in bone matrix and has been shown to regulate the activity of osteoblasts and osteoclasts in vitro. To explore the role of endogenous TGF-(beta) in osteoblast function in vivo, we have inhibited osteoblastic responsiveness to TGF-beta in transgenic mice by expressing a cytoplasmically truncated type II TGF-beta receptor from the osteocalcin promoter. These transgenic mice develop an age-dependent increase in trabecular bone mass, which progresses up to the age of 6 months, due to an imbalance between bone formation and resorption during bone remodeling. Since the rate of osteoblastic bone formation was not altered, their increased trabecular bone mass is likely due to decreased bone resorption by osteoclasts. Accordingly, direct evidence of reduced osteoclast activity was found in transgenic mouse skulls, which had less cavitation and fewer mature osteoclasts relative to skulls of wild-type mice. These bone remodeling defects resulted in altered biomechanical properties. The femurs of transgenic mice were tougher, and their vertebral bodies were stiffer and stronger than those of wild-type mice. Lastly, osteocyte density was decreased in transgenic mice, suggesting that TGF-beta signaling in osteoblasts is required for normal osteoblast differentiation in vivo. Our results demonstrate that endogenous TGF-beta acts directly on osteoblasts to regulate bone remodeling, structure and biomechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号