首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We exposed seedlings of Cotinus coggygria var. cinerea to drought and exogenous abscisic acid (ABA) under two different light conditions. Two watering regimes (well-watered and drought), two exogenous ABA applications (no ABA and with ABA) and two light regimes (full sunlight and shade) were employed. Compared with well-watered treatment, drought treatment significantly reduced the relative growth rate, relative water content (RWC), net photosynthesis rate (A) and transpiration (E), but increased chlorophyll a (chla), carbon isotope (δ13C), endogenous ABA, malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, and guaiacol peroxidase (POD) and catalase (CAT) activities. There was an apparent alleviation of drought effects by shade, as indicated by the lower relative growth rate, and chlorophyll, MDA and H2O2 contents, and increases in indoleacetic acid (IAA) and reduced glutathione (GSH) contents. On the other hand, the exogenous ABA application under shade induced protective effects on drought-stressed seedlings, as visible in RWC, MDA, A, stomatal conductance (gs), E, δ13C, ABA and IAA values. In all, our results suggest that seedlings of C. coggygria are more sensitive to drought under full-light than under shade.  相似文献   

2.
The acclimation of photosynthesis and metabolism in response to water deficit is characterized using hydroponically grown potato plants (Solanum tuberosum cv. Désirée). Plants were subjected to a reduced water potential of the nutrient solution by adding 10% (w/v) PEG 6000. PEG-treated plants were retarded in growth. Leaves which had been fully developed before the PEG treatment and leaves grown during the PEG treatment showed different phenotypes and biochemical and physiological properties. Photosynthesis of all leaves decreased during the whole treatment. However, the decrease of photosynthesis in the two types of leaves had different causes indicated by differences in their metabolism. Leaves which were fully developed at the beginning of the PEG treatment began to wilt starting from the leaf rim. The apoplastic ABA content increased, coinciding with a decreased stomatal conductance. Increased energy charge of the cells indicated impaired chloroplastic metabolism, accompanied by a decrease of amounts of chloroplastic enzymes. The apoplastic and the symplastic ABA content were increased during water deficit and because ABA was concentrated in the cytosolic compartment it is suggested that ABA is involved in decreasing photosynthetic enzyme contents in old leaves. Young leaves, grown after the imposition of water deficit, were smaller than control leaves and had a curly surface. In young leaves apoplastic and cytosolic ABA contents were identical with control values. Carboxylation efficiency of photosynthesis was decreased, but the water use efficiency remained unchanged. Metabolic data of the photosynthetic pathways indicate a down-regulation of chloroplastic metabolism. It is concluded that in young leaves photosynthesis was non-stomatally limited. This limitation was not caused by ABA.  相似文献   

3.
The greater sensitivity of B. carinata to salinity in comparison to B. napus has been linked to a greater reduction in net assimilation rate. Apparently this is not due to ion toxicity; the cause is unknown. In this report, we test the hypothesis that increases in abscisic acid (ABA) are involved in the reduction of growth by salinity. Salinity (8 dS m–1) caused an increase of ABA concentrations in the shoot, root and callus of both species. ABA concentrations were lower in the salt-tolerant species, B. napus, than the salt-sensitive species, B. carinata, both in the whole plant and callus. Leaf expansion for both species was equally sensitive to ABA; salt stress did not significantly alter sensitivity to applied ABA. The growth inhibition increased in a hyperbolic manner with an increase in endogenous ABA concentration. These results indicate that ABA in salt-stressed plants may play a role in the inhibition of growth. The photosynthesis of salt-sensitive species, B. carinata, was also decreased by salinity, corresponding to the reduction in growth. The decreased photosynthesis does not appear to be the cause of the growth reduction, because photosynthesis was not inhibited by short-term exposure to salinity and photosynthesis was poorly correlated with endogenous ABA concentrations.  相似文献   

4.
Drought- and ABA-induced changes in photosynthesis of barley plants   总被引:1,自引:0,他引:1  
The changes caused by drought stress and abscisic acid (ABA) on photosynthesis of barley plants (Hordeum vulgare. L. cv. Alfa) have been studied. Drought stress was induced by allowing the leaves to lose 12% of their fresh weight. Cycloheximide (CHI), an inhibitor of stress-induced ABA accumulation, was used to distinguish alterations in photosynthetic reactions that are induced after drought stress in response to elevated ABA levels from those that are caused directly by altered water relations. Four hoars after imposition of drought stress or 2 h after application of ABA, Ihe bulk of the leaf's ABA content measured by enzyme-amplified ELISA, increased 14- and 16-fold, respectively. CHI fully blocked the stress-induced ABA accumulation. Gas exchange measurements and analysis of enzyme activities were used to study the reactions of photosynthesis to drought stress and ABA. Leaf dehydration or ABA treatment led to a noticeable decrease in both the initial slope of the curves representing net photosynthetic rate versus intercellular CO2 concentration and the maximal rate of photosynthesis; dehydration of CHI-treated plants showed much slower inhibition of the latter. The calculated values of the intercellular CO2 concentration, CO2 compensation point and maximal carboxylating efficiency of ribulose 1,5-bisphosphate (RuBP) carboxylase support the suggestion that biochemical factors are involved in the response of photosynthesis to ABA and drought stress. RuBP carboxylase activity was almost unaffected in ABA- and CHI-treated, non-stressed plants. A drop in enzyme activity was observed after leaf dehydration of the control and ABA-treated plants. When barley plants were supplied with ABA, the activity of carbonic anhydrase (CA, EC 4.2.2.1) increased more than 2-fold. Subsequent dehydration caused an over 1.5-fold increase in CA activity of the control plants and a more than 2.5-fold increase in ABA-treated plants. Dehydration of CHI-treated plants caused no change in enzyme activity. It is suggested that increased activity of CA is a photosynthetic response to elevated ABA concentration.  相似文献   

5.
6.
To determine whether natural plant growth regulators (PGRs) can enhance drought tolerance and the competitive ability of transplanted seedlings, 1.5-year-old jack pine (Pinus banksana Lamb.) seedlings were treated with homobrassinolide, salicylic acid, and two polyamines, spermine and spermidine, triacontanol, abscisic acid (ABA), and the synthetic antioxidant, Ambiol. PGRs were fed into the xylem for 7 days and plants were droughted by withholding water for 12 days. ABA, Ambiol, spermidine, and spermine at a concentration of 10 μg L−1 stimulated elongation growth under drought, whereas ABA, Ambiol, and spermidine maintained higher photosynthetic rates, higher water use efficiency, and lower Ci/Ca ratio under drought compared with control plants. The damaging effects of drought on membrane leakage was reversed by Ambiol, ABA, triacontanol, spermidine, and spermine. Because ABA, Ambiol, and both polyamines enhanced elongation growth and also reduced membrane damage in jack pine under drought, they show promise as treatments to harden seedlings against environmental stress. The protective action of these compounds on membrane integrity was associated with an inhibition of ethylene evolution, with a reduction in transpiration rate and an enhancement of photosynthesis, which together increased water use efficiency under drought. Although most of the tested compounds acted as antitranspirants, the inhibition in membrane leakage in ABA-, Ambiol-, and polyamine-treated plants appeared more closely related to the antiethylene action. Received December 30, 1998; accepted October 14, 1999  相似文献   

7.
Adaptive responses of Populus kangdingensis to drought stress   总被引:7,自引:1,他引:7  
We measured dry matter accumulation and allocation, photosynthesis, lipid peroxidation, osmotic adjustment, antioxidative defences and ABA content of Populus kangdingensis C. Wang et Tung under three different watering regimes (100%, 50% and 25% of the field capacity) to characterize the morphological, physiological and biochemical basis of drought resistance in woody plants. The results showed that drought stress caused pronounced inhibition of the growth and photosynthesis rate, and that the stomatal limitation to photosynthesis was dominant. The decrease in stomatal conductance effectively controlled water loss and increased water use efficiency. Drought also affected many physiological and biochemical processes, including increases in free proline, malondialdehyde and ABA content, and superoxide dismutase activity. On the other hand, the ABA content of leaves was significantly higher than that of stem and roots under all watering regimes; the high level of ABA in the leaf may result from the large import of ABA to leaves from other organs. These results demonstrate that there are a large set of parallel changes in the morphological, physiological and biochemical responses when plants are exposed to drought stress; these changes may enhance the capability of plants to survive and grow during drought periods.  相似文献   

8.
9.
Abscisic acid (ABA) catabolism is one of the determinants of endogenous ABA levels affecting numerous aspects of plant growth and abiotic stress responses. The major ABA catabolic pathway is triggered by ABA 8'-hydroxylation catalysed by the cytochrome P450 CYP707A family. Among four members of Arabidopsis CYP707As, the expression of CYP707A3 was most highly induced in response to both dehydration and subsequent rehydration. A T-DNA insertional cyp707a3-1 mutant contained higher ABA levels in turgid plants, which showed a reduced transpiration rate and hypersensitivity to exogenous ABA during early seedling growth. On dehydration, the cyp707a3-1 mutant accumulated a higher amount of stress-induced ABA than the wild type, an event that occurred relatively later and was coincident with slow drought induction of CYP707A3. The cyp707a3 mutant plants exhibited both exaggerated ABA-inducible gene expression and enhanced drought tolerance. Conversely, constitutive expression of CYP707A3 relieved growth retardation by ABA, increased transpiration, and a reduction of endogenous ABA in both turgid and dehydrated plants. Taken together, our results indicate that CYP707A3 plays an important role in determining threshold levels of ABA during dehydration and after rehydration.  相似文献   

10.
To test whether drought and ABA application alter the effects of enhanced UV-B on the growth and biomass allocation of Populus yunnanensis Dode, cuttings were grown in pots at two ABA levels, two watering regimes and two UV-B levels for one growth season. Exposure to enhanced UV-B radiation significantly decreased plant growth and photosynthesis under well-watered conditions, but these effects were obscured by drought, which alone caused growth reduction. Drought may contribute to masking the effects of UV-B radiation. The accumulation of UV-B absorbing compounds and the increase of the ABA content induced by drought could reduce the effectiveness of UV-B radiation. ABA application did not have large direct effects on biomass accumulation and allocation. Evidence for interactions between UV-B and ABA was detected for only a few measured traits. Therefore, there was little evidence to support a pivotal role for ABA in regulating a centralized whole plant response to enhanced UV-B. Yet, we recorded an ABA-induced decrease in stomatal conductance (g(s)) and increase in UV-B absorbing compounds and carbon isotope composition (delta(13)C) in response to enhanced UV-B. The allometric analysis revealed that regression models between root and shoot biomass in response to enhanced UV-B are different for plants under well-watered and drought conditions. Enhanced UV-B led to a significant displacement of the allometric regression line under well-watered condition, while allometric trajectories for both UV-B regimes did not differ significantly under drought condition.  相似文献   

11.
12.
Longan species (Dimocarpus longan Lour.) exhibit a high agronomic potential in many subtropical regions worldwide; however, little is known about its responses to abiotic stress conditions. Drought and salinity are the most environmental factors inducing negative effects on plant growth and development. In order to elucidate the responses of longan to drought and salinity, seedlings were grown under conditions of drought and salt stresses. Drought was imposed by suspending water supply leading to progressive soil dehydration, and salinity was induced using two concentrations of NaCl, 100 and 150 mM in water solution, for 64 days. Data showed that salt concentrations increased foliar abscisic acid (ABA) and only 150 mM NaCl reduced indole-3-acetic acid (IAA) and increased proline levels. NaCl treatments also increased Na+ and Cl? content in plant organs proportionally to salt concentration. Drought increased leaf ABA but did not change IAA concentrations, and also increased proline synthesis. In addition, drought and salt stresses reduced the photosynthesis performance; however, only drought decreased leaf growth and relative leaf water content. Overall, data indicate that under severe salt stress, high ABA accumulation was accompanied by a reduction of IAA levels; however, drought strongly increased ABA but did not change IAA concentrations. Moreover, drought and high salinity similarly increased (or maintained) ion levels and proline synthesis. Data also suggest that ABA accumulation may mitigate the impact of salt stress through inducing stomatal closure and delaying water loss, but did not mediate the effects of long-term drought conditions probably because leaves reached a strong dehydration and the role of ABA at this stage was not effective to detain leaf injuries.  相似文献   

13.
The effect of abscisic acid (ABA) treatment on growth pigments and antioxidant defense system were investigated in seedlings of Helianthus annuus (cvs. Nantio F1 and Özdemirbey) subjected to drought and waterlogging stress. In addition, seedlings were sprayed with 10 M ABA three times every other day. Relative growth rate (RGR) was significantly reduced in both genotypes under drought stress, however, this growth inhibition was less in ABA-treated plants. Total chlorophyll content increased by drought stress in both genotypes. Ascorbate was not influenced by drought, while α-tocopherol increased in cv. Nantio F1. Ascorbate and α-tocopherol increased with drought stress in cv. Özdemirbey. ABA treatment decreased ascorbate and β-carotene contents while it increased α-tocopherol and xanthophylls contents under drought stress. The activity of superoxide dismutase (SOD) in both genotypes increased under drought stress-ABA combinations. Catalase (CAT) activity decreased under drought stress and drought-ABA combinations while it increased under waterlogging stress. Glutathione reductase (GR) activity decreased under drought stress but recovered with ABA treatment. The results suggested that ABA treatments have different effects on the components of antioxidant defense system in H. annuus genotypes and ABA may contribute drought-induced oxidative stress tolerance but not effects under waterlogging stress.  相似文献   

14.
Abstract

A field experiment was conducted to quantify the effect of varied water regimes on root length, partitioning of dry matter and plant growth regulators by using sunflower genotypes differing in maturity and drought tolerance. Significant depressing effect of drought stress was evident on traits (i.e., reproductive dry matter, leaf area index and cytokinin concentrations in leaves). However, root/shoot, reproductive/vegetative ratios and Abscisic acid (ABA) concentration were found to increase under drought stress. Drought stress also changed the dry matter accumulation pattern of genotypes. In most cases it reduced the days to reach the maximum peak showing early senescence.

ABA was identified as a multi-functional plant growth regulator under drought stress, causing early senescence of plants and translocation of assimilates to the roots and reproductive part while root growth under drought stress was explained by the indole-acetic acid (IAA) concentrations. Maintaining higher cytokinin contents were involved in accumulation of higher reproductive dry matter under drought stress. Although ABA and IAA were both involved in the development of defense responses during the adaptation and survival to drought stress but higher productivity under drought stress was only realized through maintaining higher cytokinin contents.  相似文献   

15.
Under drought conditions, leaf photosynthesis is limited by the supply of CO2. Drought induces production of abscisic acid (ABA), and ABA decreases stomatal conductance (gs). Previous papers reported that the drought stress also causes the decrease in mesophyll conductance (gm). However, the relationships between ABA content and gm are unclear. We investigated the responses of gm to the leaf ABA content [(ABA)L] using an ABA‐deficient mutant, aba1, and the wild type (WT) of Nicotiana plumbaginifolia. We also measured leaf water potential (ΨL) because leaf hydraulics may be related to gm. Under drought conditions, gm decreased with the increase in (ABA)L in WT, whereas both (ABA)L and gm were unchanged by the drought treatment in aba1. Exogenously applied ABA decreased gm in both WT and aba1 in a dose‐dependent manner. ΨL in WT was decreased by the drought treatment to ?0.7 MPa, whereas ΨL in aba1 was around ?0.8 MPa even under the well‐watered conditions and unchanged by the drought treatment. From these results, we conclude that the increase in (ABA)L is crucial for the decrease in gm under drought conditions. We discuss possible relationships between the decrease in gm and changes in the leaf hydraulics.  相似文献   

16.
17.
Dioecious plant species represent an important component of terrestrial ecosystems. Yet, little is known about sex-specific responses to drought and elevated temperatures. Populus cathayana Rehd, which is a dioecious, deciduous tree species, widely distributed in the northern, central and southwestern regions of China, was employed as a model species in our study. In closed-top chamber experiments, sex-specific morphological, physiological and biochemical responses of P. cathayana to drought and different elevated temperatures were investigated. Compared with the controls, drought significantly decreased the growth and the net photosynthesis rate (A), and increased the intrinsic water use efficiency (WUE(i)), carbon isotope composition (delta13C), and the malondialdehyde (MDA) and abscisic acid (ABA) contents in droughted plants. In contrast, elevated temperatures significantly promoted the growth and the A, but decreased the WUE(i), delta13C, MDA and ABA contents in well-watered individuals. When compared with males, elevated temperatures induced well-watered females to express a greater increase in the height growth (HG), basal diameter (BD), leaf area (LA), total number of leaves (TNL), dry matter accumulation (DMA) and specific leaf area (SLA), and a lower decrease in the A value, transpiration (E), stomatal conductance (g(s)), MDA and ABA contents, while elevated temperatures induced drought-stressed females to exhibit lower values of HG, BD, LA, TNL, DMA, A, E, g(s) and the intercellular CO2 concentration (C(i)), and higher levels of SLA, WUE(i), delta13C, MDA and ABA contents. Our results indicated that the female individuals of P. cathayana are more responsive and suffer from greater negative effects than do males when grown under environments with increased drought stress and elevated temperature.  相似文献   

18.
19.
The effects of drought on plant growth and development are occurring as a result of climate change and the growing scarcity of water resources. Hippophae rhamnoides has been exploited for soil and water conservation for many years. However, the outstanding drought‐resistance mechanisms possessed by this species remain unclear. The protein, physiological, and biochemical responses to medium and severe drought stresses in H. rhamnoides seedlings are analyzed. Linear decreases in photosynthesis rate, transpiration rate, and the content of indole acetic acid in roots, as well as a linear increase in the contents of abscisic acid, superoxide dismutase, glutathione reductase, and zeatin riboside in leaves are observed as water potential decreased. At the same time, cell membrane permeability, malondialdehyde, stomatal conductance, water use efficiency, and contents of zeatin riboside in roots and indole acetic acid in leaves showed nonconsistent changes. DIGE and MS/MS analysis identified 51 differently expressed protein spots in leaves with functions related to epigenetic modification and PTM in addition to normal metabolism, photosynthesis, signal transduction, antioxidative systems, and responses to stimuli. This study provides new insights into the responses and adaptations in this drought‐resistant species and may benefit future agricultural production.  相似文献   

20.
盐旱复合胁迫对小麦幼苗生长和水分吸收的影响   总被引:4,自引:0,他引:4  
为明确盐害、干旱及盐旱复合胁迫对小麦幼苗生长和水分吸收的影响,从而为盐害和干旱胁迫下栽培调控提供理论依据。以2个抗旱性不同的小麦品种(扬麦16和耐旱型洛旱7号)为材料,采用水培试验,以NaCl和PEG模拟盐旱复合胁迫,研究了盐旱复合胁迫下小麦幼苗生长、根系形态、光合特性及水分吸收特性的变化。结果表明,盐、旱及复合胁迫下小麦幼苗的生物量、叶面积、总根长与根系表面积、叶绿素荧光和净光合速率均显著下降,但是复合胁迫处理的降幅却显著低于单一胁迫。盐旱复合胁迫下根系水导速率和根系伤流液强度显著大于单一胁迫,从而提高了小麦幼苗叶片水势和相对含水量。盐胁迫下小麦幼苗Na~+/K~+显著大于复合胁迫,但复合胁迫下ABA含量却显著小于单一的盐害和干旱胁迫。因此,盐旱复合胁迫可以通过增强根系水分吸收及降低根叶中ABA含量以维持较高光合能力,这是盐旱复合胁迫提高小麦适应性的重要原因。洛旱7号和扬麦16对盐及盐旱复合胁迫的响应基本一致,但在干旱胁迫下洛旱7号表现出明显的耐性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号