首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Runt and Lozenge function in Drosophila development   总被引:4,自引:0,他引:4  
  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
The polyomavirus enhancer binding protein 2 (PEBP2) or core binding factor (CBF) is a heterodimeric enhancer binding protein that is associated with genetic regulation of hematopoiesis and osteogenesis. Aberrant forms of PEBP2/CBF are implicated in the cause of the acute human leukemias and in a disorder of bone development known as cleidocranial dysplasia. The common denominator in the natural and mutant forms of this protein is a highly conserved domain of PEBP2/CBF alpha, termed the Runt domain (RD), which is responsible for both DNA binding and heterodimerization with the beta subunit of PEBP2/CBF. The three-dimensional structure of the RD bound to DNA has been determined to be an S-type immunoglobulin fold, establishing a structural relationship between the RD and the core DNA binding domains of NF-kappaB, NFAT1, p53 and the STAT proteins. NMR spectroscopy of a 43.6 kD RD-beta-DNA ternary complex identified the surface of the RD in contact with the beta subunit, suggesting a mechanism for the enhancement of RD DNA binding by beta. Analysis of leukemogenic mutants within the RD provides molecular insights into the role of this factor in leukemogenesis and cleidocranial dysplasia.  相似文献   

15.
16.
17.
18.
19.
20.
The Runt domain (RD) is the DNA-binding region of the Runx genes. A related protein, known as core binding factor β (CBFβ) also binds to the RD to enhance RD–DNA interaction by 6- to 10-fold. Here, we report results from molecular dynamics (MD) simulations of RD alone, as a dimer in complexes with DNA and CBFβ and in a ternary complex with DNA and CBFβ. Consistent with the experimental findings, in the presence of CBFβ the estimated free energy of binding of RD to the DNA is more favorable, which is shown to be due to more favorable intermolecular interactions and desolvation contributions. Also contributing to the enhanced binding are favorable intramolecular interactions between the ‘wing’ residues (RD residues 139–145) and the ‘wing1’ residues (RD residues 104–116). The simulation studies also indicate that the RD–CBFβ binding is more favorable in the presence of DNA due to a more favorable RD–CBFβ interaction energy. In addition, it is predicted that long-range interactions involving ionic residues contribute to binding cooperativity. Results from the MD calculations are used to interpret a variety of experimental mutagenesis data. A novel role for RD Glu116 to the RD–CBFβ interaction is predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号