首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Biliary excretion of certain bile acids is mediated by multidrug resistance associated protein 2 (Mrp2) and the bile salt export pump (Bsep). In the present study, the transport properties of several bile acids were characterized in canalicular membrane vesicles (CMVs) isolated from Sprague--Dawley (SD) rats and Eisai hyperbilirubinemic rats (EHBR) whose Mrp2 function is hereditarily defective and in membrane vesicles isolated from Sf9 cells infected with recombinant baculovirus containing cDNAs encoding Mrp2 and Bsep. ATP-dependent uptake of [(3)H]taurochenodeoxycholate sulfate (TCDC-S) (K(m)=8.8 microM) and [(3)H]taurolithocholate sulfate (TLC-S) (K(m)=1.5 microM) was observed in CMVs from SD rats, but not from EHBR. In addition, ATP-dependent uptake of [(3)H]TLC-S (K(m)=3.9 microM) and [(3)H]taurocholate (TC) (K(m)=7.5 microM) was also observed in Mrp2- and Bsep-expressing Sf9 membrane vesicles, respectively. TCDC-S and TLC-S inhibited the ATP-dependent TC uptake into CMVs from SD rats with IC(50) values of 4.6 microM and 1.2 microM, respectively. In contrast, the corresponding values for Sf9 cells expressing Bsep were 59 and 62 microM, respectively, which were similar to those determined in CMVs from EHBR (68 and 33 microM, respectively). By co-expressing Mrp2 with Bsep in Sf9 cells, IC(50) values for membrane vesicles from these cells shifted to values comparable with those in CMVs from SD rats (4.6 and 1.2 microM). Moreover, in membrane vesicles where both Mrp2 and Bsep are co-expressed, preincubation with the sulfated bile acids potentiated their inhibitory effect on Bsep-mediated TC transport. These results can be accounted for by assuming that the sulfated bile acids trans-inhibit the Bsep-mediated transport of TC.  相似文献   

3.
Drug-induced liver injury (DILI) is a major reason for the dropout of candidate compounds from drug testing and the withdrawal of pharmaceuticals from clinical use. Among the various mechanisms of liver injury, the accumulation of bile acids (BAs) within hepatocytes is thought to be a primary mechanism for the development of DILI. Although bile salt export pump (BSEP) dysfunction is considered a susceptibility factor for DILI, little is known about the relationship between drug-induced BSEP dysfunction and BA-dependent hepatotoxicity. Furthermore, few methods are at hand for the systematic and quantitative evaluation of BA-dependent DILI. This study aimed to construct a model of DILI by employing sandwich-cultured hepatocytes (SCHs). SCHs can be used to assess functions of canalicular transporters such as BSEP and the activity of metabolic enzymes. Here, the impact of 26 test compounds (ritonavir, troglitazone, etc.) was investigated on BA-dependent cytotoxicity in SCHs. SCHs were exposed to each compound for 24h with or without BAs (glycochenodeoxycholic acid, deoxycholic acid, etc.). As a result, BA-dependent toxicity was observed for 11 test compounds in SCHs treated in the presence of BAs, while no signs of toxicity were observed for SCHs treated in the absence of BAs. Of the 11 compounds, nine were known BSEP inhibitors. Moreover, for some compounds, an increase in the severity of BA-dependent toxicity was observed in SCHs that were co-treated with 1-aminobenzotriazole, a non-selective inhibitor of cytochrome P450 (CYP450)-mediated drug metabolism. These results indicate that the SCH-based model is likely to prove useful for the evaluation of BA-dependent DILI, including the effects of drug metabolism and BSEP inhibition on liver injury.  相似文献   

4.
Molecular cloning and characterization of the murine bile salt export pump   总被引:7,自引:0,他引:7  
Green RM  Hoda F  Ward KL 《Gene》2000,241(1):117-123
Hepatic bile salt secretion and bile formation are essential functions of the mammalian liver, and the rate-limiting step of hepatocellular secretion of bile salts is canalicular secretion. Recently, the rat sister-of-p-glycoprotein/bile salt export pump (spgp/BSEP) was demonstrated to encode for the rat ATP-dependent canalicular bile salt export protein, and mutations of human BSEP were identified as the cause of PFIC 2. Since mouse models are vital for studies in hepatocellular transport and metabolism, cloning and characterization of the murine gene are essential. In this study, we have cloned a full-length, functional cDNA for the mBsep. The deduced amino acid sequence encodes for a 1321-amino-acid protein and is 94% similar to rat and 89% similar to human bsep. Western immunoblotting using an antibody directed against a carboxy-terminal peptide of mbsep protein reveals a 160kDa protein, which is highly enriched in mouse canalicular membranes. Transfection of mBSEP into Sf-9 insect cells or mammalian Balb-3T3 cells confers functional transport of the bile salt taurocholate. The mBsep mRNA is expressed in murine liver, but not in other tissues. Hepatic mBsep levels appear highly regulated, being markedly diminished in both LPS and estrogen models of cholestasis. These data are important for further murine studies of hepatocellular transport physiology and metabolism.  相似文献   

5.
Human BSEP (ABCB11) mutations are the molecular basis for at least three clinical forms of liver disease, progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2), and intrahepatic cholestasis of pregnancy (ICP). To better understand the pathobiology of these disease phenotypes, we hypothesized that different mutations may cause significant differences in protein defects. Therefore we compared the effect of two PFIC2 mutations (D482G, E297G) with two BRIC2 mutations (A570T and R1050C) and one ICP mutation (N591S) with regard to the subcellular localization, maturation, and function of the rat Bsep protein. Bile salt transport was retained in all but the E297G mutant. Mutant proteins were expressed at reduced levels on the plasma membrane of transfected HEK293 cells compared with wild-type (WT) Bsep in the following order: WT > N591S > R1050C approximately A570T approximately E297G > D482G. Total cell protein and surface protein expression were reduced to the same extent, suggesting that trafficking of these mutants to the plasma membrane is not impaired. All Bsep mutants accumulate in perinuclear aggresome-like structures in the presence of the proteasome inhibitor MG-132, suggesting that mutations are associated with protein instability and ubiquitin-dependent degradation. Reduced temperature, sodium butyrate, and sodium 4-phenylbutyrate enhanced the expression of the mature and cell surface D482G protein in HEK293 cells. These results suggest that the clinical phenotypes of PFIC2, BRIC2, and ICP may directly correlate with the amount of mature protein that is expressed at the cell surface and that strategies to stabilize cell surface mutant protein may be therapeutic.  相似文献   

6.
7.
The major canalicular bile salt export pump (Bsep) of mammalian liver is downregulated by endotoxin. This study reports on the effects of dexamethasone and osmolarity on Bsep mRNA expression in cultured rat hepatocytes and its functional relevance in rat liver. Expression of Bsep mRNA in rat hepatocytes 24 and 48 h after isolation was dependent on the presence of dexamethasone (100 nM) in the culture medium. Bsep was functionally active at the pseudocanalicular membrane in cells cultured for 4 days in medium containing dexamethasone. Hypoosmolarity (205 mosmol/l) led to an induction of Bsep mRNA levels, whereas expression was decreased by hyperosmolarity (405 mosmol/l). Also the decay of Bsep mRNA following dexamethasone withdrawal was osmosensitive. In rat liver, dexamethasone counteracted the lipopolysaccharide (LPS)-induced down-regulation of Bsep mRNA levels after 12 hours and abolished the LPS-induced inhibition of taurocholate excretion. These results indicate that glucocorticoids are strong inducers of Bsep in liver. Furthermore, Bsep mRNA levels are osmosensitively regulated. The data suggest a longterm control of Bsep mRNA by osmolarity in addition to the short-term effects on canalicular bile acid excretion, which were reported recently.  相似文献   

8.
9.
10.
v-ErbA, an oncogenic derivative of the thyroid hormone receptor alpha (TRalpha) carried by the avian erythroblastosis virus, contains several alterations including fusion of a portion of avian erythroblastosis virus Gag to its N terminus, N- and C-terminal deletions, and 13 amino acid substitutions. Nuclear export of v-ErbA occurs through a CRM1-mediated pathway. In contrast, nuclear export of TRalpha and another isoform, TRbeta, is CRM1-independent. To determine which amino acid changes in v-ErbA confer CRM1-dependent nuclear export, we expressed a panel of green and yellow fluorescent protein-tagged mutant and chimeric proteins in mammalian cells. The sensitivity of subcellular trafficking of these mutants to leptomycin B (LMB), a specific inhibitor of CRM1, was assessed by fluorescence microscopy. Our data showed that a nuclear export sequence resides within a 70-amino acid domain in the C-terminal portion of the p10 region of Gag, and in vitro binding assays demonstrated that Gag interacts directly with CRM1. However, a panel of ligand-binding domain mutants of v-ErbA lacking the Gag sequence exhibited greater nuclear localization in the presence of LMB, suggesting that the various amino acid substitutions/deletions may cause a conformation shift, unmasking an additional CRM1-dependent nuclear export sequence. In contrast, the altered DNA-binding domain of the oncoprotein did not contribute to CRM1-dependent nuclear export. Heterokaryon experiments revealed that v-ErbA did not undergo nucleocytoplasmic shuttling when the CRM1 export pathway was blocked by LMB treatment, suggesting that the ability to follow the export pathway used by TRalpha has been lost by the oncoprotein during its evolution. Our findings thus point to the intriguing possibility that acquisition of altered nuclear export capabilities contributes to the oncogenic properties of v-ErbA.  相似文献   

11.
12.
Upf3p, which is required for nonsense-mediated mRNA decay (NMD) in yeast, is primarily cytoplasmic but accumulates inside the nucleus when UPF3 is overexpressed or when upf3 mutations prevent nuclear export. Upf3p physically interacts with Srp1p (importin-alpha). Upf3p fails to be imported into the nucleus in a temperature-sensitive srp1-31 strain, indicating that nuclear import is mediated by the importin-alpha/beta heterodimer. Nuclear export of Upf3p is mediated by a leucine-rich nuclear export sequence (NES-A), but export is not dependent on the Crm1p exportin. Mutations identified in NES-A prevent nuclear export and confer an Nmd(-) phenotype. The addition of a functional NES element to an export-defective upf(-) allele restores export and partially restores an Nmd(+) phenotype. Our findings support a model in which the movement of Upf3p between the nucleus and the cytoplasm is required for a fully functional NMD pathway. We also found that overexpression of Upf2p suppresses the Nmd(-) phenotype in mutant strains carrying nes-A alleles but has no effect on the localization of Upf3p. To explain these results, we suggest that the mutations in NES-A that impair nuclear export cause additional defects in the function of Upf3p that are not rectified by restoration of export alone.  相似文献   

13.
14.
Summary Bile pigment composition (biliverdin, bilirubin and their conjugates) was analyzed in stored gallbladder bile and newly synthesized hepatic bile from the small skate (Raja erinacea). During a five day period of captivity, gallbladder volume remained relatively constant while bilirubin and biliverdin content increased two to three fold. Biliverdin which accounted for 50% of the pigments did not increase as a percentage of tetrapyrroles during this period. The relative proportion of bilirubin and its conjugates also remained constant, averaging 65% for bilirubin monoglucuronide, 30% for bilirubin diglucuronide and 5% for unconjugated bilirubin as measured by HPLC methods. Intravenous administration of biliverdin resulted in significant increases in the biliary excretion of both biliverdin and all bilirubin tetrapyrroles. Insignificant quantities of3H-biliverdin were detected in hepatic bile following the intravenous administration of3H-bilirubin. These studies indicate that the small skate excreted both biliverdin and bilirubin conjugates in bile and that the biliverdin was not produced by in vitro oxidation of bilirubin or its metabolites.  相似文献   

15.
The Legionella pneumophila Dot/Icm T4SS injects ~ 300 protein effector proteins into host cells. Dot/Icm substrates have been proposed to contain a carboxy‐terminal signal sequence that is necessary and sufficient for export, although both traits have been demonstrated for only a small fraction of these proteins. In this study, we discovered that export of the substrate SidJ is mediated by dual signal sequences that include a conventional C‐terminal domain and a novel internal motif. The C‐terminal signal sequence facilitates secretion of SidJ into host cells at early points of infection, whereas the internal signal sequence mediates secretion at later time points. Interestingly, only the internal signal sequence is necessary for complementation of the intracellular growth defect of a ΔsidJ mutant. Although this is the first report of a Dot/Icm substrate being secreted by an internal signal sequence, many other substrates may be exported in a similar manner. In addition, efficient translocation of SidJ is dependent on the chaperone‐like type IV adaptors IcmS/IcmW. Five IcmS/IcmW binding domains that are distinct from both signal sequences were elucidated and, interestingly, only secretion mediated by the internal signal sequence requires IcmS/IcmW. Thus, Legionella employs multiple sophisticated molecular mechanisms to regulate the export of SidJ.  相似文献   

16.
The reduced expression of the bile salt export pump (BSEP/ABCB11) at the canalicular membrane is associated with cholestasis-induced hepatotoxicity due to the accumulation of bile acids in hepatocytes. We previously reported that 4-phenylbutyrate (4PBA), an approved drug for urea cycle disorders, is a promising agent for intrahepatic cholestasis because it increases both the cell surface expression and the transport capacity of BSEP. In the present study, we searched for effective compounds other than 4PBA by focusing on short- and medium-chain fatty acids, which have similar characteristics to 4PBA such as their low-molecular-weight and a carboxyl group. In transcellular transport studies using Madin–Darby canine kidney (MDCK) II cells, all short- and medium-chain fatty acids tested except for formate, acetate, and hexanoic acid showed more potent effects on wild type (WT) BSEP-mediated [3H]taurocholate transport than did 4PBA. The increase in WT BSEP transport with butyrate and octanoic acid treatment correlated with an increase in its expression at the cell surface. Two PFIC2-type variants, E297G and D482G BSEP, were similarly affected with both compounds treatment. The prolonged half-life of cell surface-resident WT BSEP was responsible for this increased octanoic acid-stimulated transport, but not for that of butyrate. In conclusion, short- and medium-chain fatty acids have potent effects on the increase in WT and PFIC2-type BSEP-mediated transport in MDCK II cells. Although both short- and medium-chain fatty acids enhance the transport capacity of WT and PFIC2-type BSEP by inducing those expressions at the cell surface, the underlying mechanism seems to differ between fatty acids.  相似文献   

17.
The fecal excretion of intraperitoneally injected 24-14C-labeled taurocholate (TCA), taurolithocholate (TLCA) and the respective 3-sulfate esters (TCA-3-S; TLCA-3-S), were compared in germfree (GF) rats, conventional (CV) rats, and in gnotobiotic rats associated with Clostridium Cl-8 or this same strain Cl-8 plus the bile desulfating Clostridium S1, respectively. TCA and TLCA were about two times more rapidly excreted by CV animals than by GF animals; the time required for 50% excretion of total label injected (t 1/2) was 6.6 days vs 14.9 for TCA, and 4.4 vs 8.9 for TLCA. In GF and in CV animals, TCA-3-S and TLCA-3-S were excreted more rapidly than their nonsulfated analogues; the t 1/2 values of TCA-3-S and TCA were 2.7 days vs 14.9 in GF rats, and 3.1 vs 6.6 days in CV animals. The t 1/2 values of TLCA-3-S and TLCA were 2.7 days vs 8.9 in GF rats, and 1.5 vs 4.4 days in CV rats. In gnotobiotic rats associated with Clostridium strains S1 + Cl-8, fecal bile salts were nearly 100% deconjugated and desulfated and the 50% excretion times of TCA-3-S and TLCA-3-S approximated to those of TCA and TLCA in GF animals. T 1/2 of TCA-3-S in gnotobiotic S1 + Cl-8 animals was 12.2 days vs 14.9 for TCA in GF animals. In gnotobiotic S1 + Cl-8 animals the t 1/2 of TLCA and TLCA-3-S was 12.5 and 11.0 days, respectively. These results illustrate clearly the important effect the intestinal microflora has upon the metabolic half-life of bile salts. Moreover, they demonstrate that desulfation of bile salts by the intestinal microflora takes place in intestinal segments from where a certain degree of reabsorption is still possible, and thus point to the fact that microbial desulfation is an important variable in the overall elimination of bile salts.  相似文献   

18.
19.

Objectives

Changes of bile salt tolerance, morphology and amount of bile acid within cells were studied to evaluate the exact effects of bile salt hydrolase (BSH) on bile salt tolerance of microorganism.

Results

The effect of BSHs on the bile salt tolerance of Lactococcus lactis was examined by expressing two BSHs (BSH1 and BSH2). Growth of L. lactis expressing BSH1 or BSH2 was better under bile salt stress compared to wild-type L. lactis. As indicated by transmission electron microscopy, bile acids released by the action of BSH induced the formation of micelles around the membrane surface of cells subject to conjugated bile salt stress. A similar micelle containing bile acid was observed in the cytoplasm by liquid chromatography-mass spectrometry. BSH1 produced fewer bile acid micelles in the cytoplasm and achieved better cell growth of L. lactis compared to BSH2.

Conclusions

Expression of BSH improved bile salt tolerance of L. lactis but excessive production by BSH of bile acid micelles in the cytoplasm inhibited cell growth.
  相似文献   

20.
Homologous recombination in Saccharomyces cerevisiae is a well-studied process. Here, we describe a yeast-recombination-based approach to construct and mutate plasmids containing the cDNA of the human bile salt export pump (BSEP) that has been shown to be unstable in E. coli. Using this approach, we constructed the necessary plasmids for a heterologous overexpression of BSEP in the yeast Pichia pastoris. We then applied a new site-directed mutagenesis method, DREAM (Directed REcombination-Assisted Mutagenesis) that completely bypasses E. coli by using S. cerevisiae as the plasmid host with high mutagenesis efficiency. Finally, we show how to apply this strategy to unstable non-yeast plasmids by rapidly turning an existing mammalian BSEP expression construct into a S. cerevisiae-compatible plasmid and analyzing the impact of a BSEP mutation in several mammalian cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号