首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative importance of systemic volume, concentration, and pressure signals in sodium homeostasis was investigated by intravenous infusion of isotonic (IsoLoad) or hypertonic (HyperLoad) saline at a rate (1 micromol Na(+) x kg(-1) x s(-1)), similar to the rate of postprandial sodium absorption. IsoLoad decreased plasma vasopressin (-35%) and plasma ANG II (-77%) and increased renal sodium excretion (95-fold), arterial blood pressure (DeltaBP; +6 mmHg), and heart rate (HR; +36%). HyperLoad caused similar changes in plasma ANG II and sodium excretion, but augmented vasopressin (12-fold) and doubled DeltaBP (+12 mm Hg) without changing HR. IsoLoad during vasopressin clamping (constant vasopressin infusion) caused comparable natriuresis at augmented DeltaBP (+14 mm Hg), but constant HR. Thus vasopressin abolished the Bainbridge reflex. IsoLoad during normotensive angiotensin clamping (enalaprilate plus constant angiotensin infusion) caused marginal natriuresis (9% of unclamped response) despite augmented DeltaBP (+14 mm Hg). Cessation of angiotensin infusion during IsoLoad immediately decreased BP (-13 mm Hg) and increased glomerular filtration rate by 20% and sodium excretion by 45-fold. The results suggest that fading of ANG II is the cause of acute "volume-expansion" natriuresis, that physiological ANG II deviations override the effects of modest systemic blood pressure changes, and that endocrine rather than hemodynamic mechanisms are the pivot of normal sodium homeostasis.  相似文献   

2.
The hypothesis was tested that suppression of generation of ANG II is one of the mechanisms of the water immersion (WI)-induced natriuresis in humans. In one protocol, eight healthy young males were subjected to 3 h of 1) WI (WI + placebo), 2) WI combined with ANG II infusion of 0.5 ng. kg(-1). min(-1) (WI + ANG II-low), and 3) a seated time control (Con). In another almost identical protocol, 7-10 healthy young males were investigated to delineate the tubular site(s) of action of ANG II by the lithium clearance method (C(Li)) and were on an additional fourth study day subjected to infusion of ANG II at a rate of 1.5 ng. kg(-1). min(-1) (WI + ANG II-high). During WI + placebo, plasma concentration of ANG II decreased from 16 +/- 2 to 8 +/- 1 pg/ml (P < 0.05) and renal sodium excretion increased from 104 +/- 15 to 294 +/- 27 micromol/min (P < 0.05). During WI + ANG II-low, plasma ANG II was not suppressed by WI, and the natriuresis was blunted by 52 +/- 13% (P < 0.05). During WI + ANG II-low and WI + ANG II-high, an increase in C(Li) was prevented that was otherwise observed during WI, and fractional distal reabsorption of sodium was facilitated. In conclusion, maintaining plasma concentration of ANG II unchanged at the level of control attenuates the natriuresis of WI considerably in humans. Therefore, suppression of generation of ANG II is an important mechanism of the natriuresis of WI in humans. Furthermore, infusion of ANG II during WI prevents an otherwise induced increase in C(Li) and facilitates the fractional distal reabsorption of sodium, probably via an effect on aldosterone release.  相似文献   

3.
The responses to AT(1)-receptor blockade (candesartan 1 mg/kg) and to concomitant volume expansion (saline 35 ml/kg for 90 min) with and without nitric oxide synthase (NOS) inhibition (N(G)-nitro-L-arginine methyl ester 30 microg small middle dot kg(-1) small middle dot min(-1)) were investigated in separate experiments in normal dogs. AT(1) blockade decreased arterial pressure (106 +/- 4 to 96 +/- 5 mmHg) and increased glomerular filtration rate (GFR) by 17% and sodium excretion threefold. NOS inhibition increased arterial pressure (103 +/- 3 to 116 +/- 3 mmHg) and decreased GFR by 21% and reduced sodium excretion by some 80%. Volume expansion increased arterial pressure significantly in all series involving this procedure, most pronounced during combined AT(1) blockade and NOS inhibition (21 +/- 4 mmHg). Volume expansion during AT(1) blockade elicited marked natriuresis (26 +/- 11 to 274 +/- 55 micromol/min) that was severely reduced by concomitant NOS inhibition (10 +/- 3 to 45 +/- 11 micromol/min), but still much larger than that seen with volume expansion during NOS inhibition alone (2 +/- 1 to 23 +/- 7 micromol/min). Volume expansion during AT(1) blockade increased GFR (+30%), less so during combined AT(1) blockade and NOS inhibition (+13%), but it did not increase GFR significantly (P = 0.07) during NOS inhibition alone. Plasma ANG II increased greater than sevenfold with AT(1) blockade and doubled with NOS inhibition (paired t-test, P < 0.05), whereas it decreased by 50-80% during volume expansion irrespective of pretreatment, i.e., during NOS inhibition, volume expansion did not generate subnormal plasma ANG II concentrations. In conclusion, 1) acute AT(1) blockade leads to hyperfiltration, natriuresis, and hyperresponsiveness to volume expansion, 2) these responses are >85% inhibitable by unspecific NOS inhibition, and 3) NOS inhibition alone is followed by increases in plasma ANG II, hypofiltration, and severe antinatriuresis that may be counterbalanced but not overwhelmed by volume expansion. Thus NOS inhibition virtually abolishes the volume expansion natriuresis, at least in part, due to the lack of appropriate inhibition of the renin-angiotensin-aldosterone system.  相似文献   

4.
Saline was infused intravenously for 90 min to normal, sodium-replete conscious dogs at three different rates (6, 20, and 30 micromol x kg(-1) x min(-1)) as hypertonic solutions (HyperLoad-6, HyperLoad-20, and HyperLoad-30, respectively) or as isotonic solutions (IsoLoad-6, IsoLoad-20, and IsoLoad-30, respectively). Mean arterial blood pressure did not change with any infusion of 6 or 20 micromol x kg(-1) x min(-1). During HyperLoad-6, plasma vasopressin increased by 30%, although the increase in plasma osmolality (1.0 mosmol/kg) was insignificant. During HyperLoad-20, plasma ANG II decreased from 14+/-2 to 7+/-2 pg/ml and sodium excretion increased markedly (2.3+/-0.8 to 19+/-8 micromol/min), whereas glomerular filtration rate (GFR) remained constant. IsoLoad-20 decreased plasma ANG II similarly (13+/-3 to 7+/-1 pg/ml) concomitant with an increase in GFR and a smaller increase in sodium excretion (1.9+/-1.0 to 11+/-6 micromol/min). HyperLoad-30 and IsoLoad-30 increased mean arterial blood pressure by 6-7 mm Hg and decreased plasma ANG II to approximately 6 pg/ml, whereas sodium excretion increased to approximately 60 micromol/min. The data demonstrate that, during slow sodium loading, the rate of excretion of sodium may increase 10-fold without changes in mean arterial blood pressure and GFR and suggest that the increase may be mediated by a decrease in plasma ANG II. Furthermore, the vasopressin system may respond to changes in plasma osmolality undetectable by conventional osmometry.  相似文献   

5.
The responses to infusion of nitric oxide synthase substrate (L-arginine 3 mg.kg(-1).min(-1)) and to slow volume expansion (saline 35 ml/kg for 90 min) alone and in combination were investigated in separate experiments. L-Arginine left blood pressure and plasma ANG II unaffected but decreased heart rate (6 +/- 2 beats/min) and urine osmolality, increased glomerular filtration rate (GFR) transiently, and caused sustained increases in sodium excretion (fourfold) and urine flow (0.2 +/- 0.0 to 0.7 +/- 0.1 ml/min). Volume expansion increased arterial blood pressure (102 +/- 3 to 114 +/- 3 mmHg), elevated GFR persistently by 24%, and enhanced sodium excretion to a peak of 251 +/- 31 micromol/min, together with marked increases in urine flow, osmolar and free water clearances, whereas plasma ANG II decreased (8.1 +/- 1.7 to 1.6 +/- 0.3 pg/ml). Combined volume expansion and L-arginine infusion tended to increase arterial blood pressure and increased GFR by 31%, whereas peak sodium excretion was enhanced to 335 +/- 23 micromol/min at plasma ANG II levels of 3.0 +/- 1.1 pg/ml; urine flow and osmolar clearance were increased at constant free water clearance. In conclusion, L-arginine 1) increases sodium excretion, 2) decreases basal urine osmolality, 3) exaggerates the natriuretic response to volume expansion by an average of 50% without persistent changes in GFR, and 4) abolishes the increase in free water clearance normally occurring during volume expansion. Thus L-arginine is a natriuretic substance compatible with a role of nitric oxide in sodium homeostasis, possibly by offsetting/shifting the renal response to sodium excess.  相似文献   

6.
The hypothesis that natriuresis can be induced by stimulation of gastrointestinal osmoreceptors was tested in eight supine subjects on constant sodium intake (150 mmol NaCl/day). A sodium load equivalent to the amount contained in 10% of measured extracellular volume was administered by a nasogastric tube as isotonic or hypertonic saline (850 mM). In additional experiments, salt loading was replaced by oral water loading (3.5% of total body water). Plasma sodium concentration increased after hypertonic saline (+3.1 +/- 0.7 mM), decreased after water loading (-3.8 +/- 0.8 mM), and remained unchanged after isotonic saline. Oncotic pressure decreased by 9.4 +/- 1.2, 3.7 +/- 1.2, and 10.7 +/- 1.3%, respectively. Isotonic saline induced an increase in renal sodium excretion (104 +/- 15 to 406 +/- 39 micromol/min) that was larger than seen with hypertonic saline (85 +/- 15 to 325 +/- 39 micromol/min) and water loading (88 +/- 11 to 304 +/- 28 micromol/min). Plasma ANG II decreased to 22 +/- 6, 35 +/- 6, and 47 +/- 5% of baseline after isotonic saline, hypertonic saline, and water loading, respectively. Plasma atrial natriuretic peptide (ANP) concentrations and urinary excretion rates of endothelin-1 were unchanged. In conclusion, stimulation of osmoreceptors by intragastric infusion of hypertonic saline is not an important natriuretic stimulus in sodium-replete subjects. The natriuresis after intragastric salt loading was independent of ANP but can be explained by inhibition of the renin-angiotensin system.  相似文献   

7.
We hypothesized that the respiratory baroreflex in conscious rats is either more transient, or has a higher pressure threshold than in other species. To characterize the effect of arterial pressure changes on respiration in conscious rats, ventilation (V) was measured by the plethysmographic technique during injections, or infusions, of pressor and depressor agents. Bolus injections of angiotensin II (Ang II) or arginine vasopressin (AVP), transiently increased mean arterial pressure (MAP; mean +/- SE) 43+/-6 and 28+/-5 mm Hg (1 mm Hg = 133.3 Pa), respectively, and immediately reduced tidal volume (Vt) and, in the case of AVP, V. In contrast, by 10 min of a sustained elevation of MAP (40+/-3 mm Hg) with infusion of Ang II, Vt, f, and V were not different from control levels. Bolus injection of sodium nitroprusside (SNP) to lower MAP (-28+/-3 mm Hg) immediately increased breathing frequency (f) and V, whereas sustained infusion of SNP to lower MAP (-21+/-3 mm Hg) did not change for V at 10 and 20 min. In conscious rats, both injection and infusion of the pressor agent PE (+40 to 50 mm Hg) stimulated f and V; this contrasted with anesthetized rats where PE inhibited f and V, as reported by others. In conscious rats, respiratory responses associated with baroreflexes adapt rapidly and, in the case of PE, can be overridden by some other mechanism.  相似文献   

8.
The hypothesis that increases in plasma sodium induce natriuresis independently of changes in body fluid volume was tested in six slightly dehydrated seated subjects on controlled sodium intake (150 mmol/day). NaCl (3.85 mmol/kg) was infused intravenously over 90 min as isotonic (Iso) or as hypertonic saline (Hyper, 855 mmol/l). After Hyper, plasma sodium increased by 3% (142.0 +/- 0.6 to 146.2 +/- 0.5 mmol/l). During Iso a small decrease occurred (142.3 +/- 0.6 to 140.3 +/- 0.7 mmol/l). Iso increased estimates of plasma volume significantly more than Hyper. However, renal sodium excretion increased significantly more with Hyper (291 +/- 25 vs. 199 +/- 24 micromol/min). This excess was not mediated by arterial pressure, which actually decreased slightly. Creatinine clearance did not change measurably. Plasma renin activity, ANG II, and aldosterone decreased very similarly in Iso and Hyper. Plasma atrial natriuretic peptide remained unchanged, whereas plasma vasopressin increased with Hyper (1.4 +/- 0.4 to 3.1 +/- 0.5 pg/ml) and decreased (1.3 +/- 0.4 to 0.6 +/- 0.1 pg/ml) after Iso. In conclusion, the natriuretic response to Hyper was 50% larger than to Iso, indicating that renal sodium excretion may be determined partly by plasma sodium concentration. The mechanism is uncertain but appears independent of changes in blood pressure, glomerular filtration rate, the renin system, and atrial natriuretic peptide.  相似文献   

9.
This study reports the effects of angiotensin II (ANG II), arginine vasopression (AVP), phenylephrine (PE), and sodium nitroprusside (SNP) on baroreflex control of heart rate in the presence and absence of the area postrema (AP) in conscious mice. In intact, sham-lesioned mice, baroreflex-induced decreases in heart rate due to increases in arterial pressure with intravenous infusions of ANG II were significantly less than those observed with similar increases in arterial pressure with PE (slope: -3.0 +/- 0.9 vs. -8.1 +/- 1.5 beats x min(-1) x mmHg(-1)). Baroreflex-induced decreases in heart rate due to increases in arterial pressure with intravenous infusions of AVP were the same as those observed with PE in sham animals (slope: -5.8 +/- 0.7 vs. -8.1 +/- 1.5 beats x min(-1) x mmHg(-1)). After the AP was lesioned, the slope of baroreflex inhibition of heart rate was the same whether pressure was increased with ANG II, AVP, or PE. The slope of the baroreflex-induced increases in heart rate due to decreases in arterial blood pressure with SNP were the same in sham- and AP-lesioned animals. These results indicate that, similar to other species, in mice the ability of ANG II to acutely reset baroreflex control of heart rate is dependent on an intact AP.  相似文献   

10.
The influence of increased central venous pressure (CVP) on the plasma concentration of arginine vasopressin (pAVP) was examined in 7 healthy males subjected to water immersion (WI) up to the neck following overnight food- and fluid restriction. During WI the subject sat upright in a pool (water temperature = 35.0 degrees C) for 6 h. In control experiments the subject assumed the same position outside the pool wearing a water perfused garment (water temperature = 34.6 degrees C). CVP increased markedly during WI and after 20 min of immersion it attained a level which was significantly higher than the control value (10.9 +/- 1.5 (mean +/- SE) vs. 2.2 +/- 1.3 mm Hg, p less than 0.01). This increase was sustained throughout the 6 h WI period. Simultaneously, after 20 min pAVP during WI was significantly lower than control values (1.8 +/- 0.3 vs. 2.2 +/- 0.3 pg X ml-1, p less than 0.05) and sustained throughout WI. Systolic arterial pressure increased significantly by 7-10 mm Hg (p less than 0.05) after 2 h of WI, while diastolic arterial pressure was unchanged. Heart rate was decreased by 10 bpm throughout immersion. There was no change in plasma osmolality when comparing control with immersion. A pronounced osmotic diuresis, natriuresis and kaliuresis occurred during WI, counteracting an acute significant increase in plasma volume of 6.5 +/- 1.9% (P less than 0.01 within 20 min of immersion). We conclude that an increase in CVP due to WI is accompanied by suppressed pAVP.  相似文献   

11.
Sex has an important influence on blood pressure (BP) regulation. There is increasing evidence that sex hormones interfere with the renin-angiotensin system. Thus the purpose of this study was to determine whether there are sex differences in the development of ANG II-induced hypertension in conscious male and female mice. We used telemetry implants to measure aortic BP and heart rate (HR) in conscious, freely moving animals. ANG II (800 ng.kg(-1).min(-1)) was delivered via an osmotic pump implanted subcutaneously. Our results showed baseline BP in male and female mice to be similar. Chronic systemic infusion of ANG II induced a greater increase in BP in male (35.1 +/- 5.7 mmHg) than in female mice (7.2 +/- 2.0 mmHg). Gonadectomy attenuated ANG II-induced hypertension in male mice (15.2 +/- 2.4 mmHg) and augmented it in female mice (23.1 +/- 1.0 mmHg). Baseline HR was significantly higher in females relative to males (630.1 +/- 7.9 vs. 544.8 +/- 16.2 beats/min). In females, ANG II infusion significantly decreased HR. However, the increase in BP with ANG II did not result in the expected decrease in HR in either intact male or gonadectomized mice. Moreover, the slope of the baroreflex bradycardia to phenylephrine was blunted in males (-5.6 +/- 0.3 to -2.9 +/- 0.5) but not in females (-6.5 +/- 0.5 to -5.6 +/- 0.3) during infusion of ANG II, suggesting that, in male mice, infusion of ANG II results in a resetting of the baroreflex control of HR. Ganglionic blockade resulted in greater reduction in BP on day 7 after ANG II infusion in males compared with females (-61.0 +/- 8.9 vs. -36.6 +/- 6.6 mmHg), suggesting an increased contribution of sympathetic nerve activity in arterial BP maintenance in male mice. Together, these data indicate that there are sex differences in the development of chronic ANG II-induced hypertension in conscious mice and that females may be protected from the increases in BP induced by ANG II.  相似文献   

12.
Acute hypertension inhibits proximal tubule (PT) fluid reabsorption. The resultant increase in end proximal flow rate provides the error signal to mediate tubuloglomerular feedback autoregulation of renal blood flow and glomerular filtration rate and suppresses renal renin secretion. To test whether the suppression of the renin-angiotensin system during acute hypertension affects the magnitude of the inhibition of PT fluid and sodium reabsorption, plasma ANG II levels were clamped by infusion of the angiotensin-converting enzyme (ACE) inhibitor captopril (12 microg/min) and ANG II after pretreatment with the bradykinin B(2) receptor blocker HOE-140 (100 microg/kg bolus). Because ACE also degrades bradykinin, HOE-140 was included to block effect of accumulating vasodilatory bradykinins during captopril infusion. HOE-140 increased the sensitivity of arterial blood pressure to ANG II: after captopril infusion without HOE-140, 20 ng x kg(-1) x min(-1) ANG II had no pressor effect, whereas with HOE-140, 20 ng x kg(-1) x min(-1) ANG II increased blood pressure from 104 +/- 4 to 140 +/- 6 mmHg. ANG II infused at 2 ng x kg(-1) x min(-1) had no pressor effect after captopril and HOE-140 infusion ("ANG II clamp"). When blood pressure was acutely increased 50-60 mmHg by arterial constriction without ANG II clamp, urine output and endogenous lithium clearance increased 4.0- and 6.7-fold, respectively. With ANG II clamp, the effects of acute hypertension were reduced 50%: urine output and endogenous lithium clearance increased two- and threefold, respectively. We conclude that HOE-140, an inhibitor of the B(2) receptor, potentiates the sensitivity of arterial pressure to ANG II and that clamping systemic ANG II levels during acute hypertension blunts the magnitude of the pressure diuretic response.  相似文献   

13.
The present studies were performed to quantify circulating components of the renin-angiotensin-aldosterone axis and to determine the functional importance of this system during alterations in sodium intake in conscious mice. Increasing sodium intake from approximately 200 to 1,000 microeq/day significantly decreased plasma renin concentration from 472 +/- 96 to 304 +/- 83 ng ANG I. ml(-1). h(-1) (n = 5) but did not alter plasma renin activity from the low-sodium level of 7.7 +/- 1.1 ng ANG I. ml(-1). h(-1). Despite the elevated plasma renin concentration, plasma ANG II in mice on low-sodium level averaged 14 +/- 3 pg/ml and was significantly suppressed to 6 +/- 1 pg/ml by high-sodium intake (n = 7). Consistent with the modulation of ANG II, plasma aldosterone significantly decreased from 41 +/- 8 to 8 +/- 3 ng/dl when sodium intake was elevated (n = 6). In a final set of experiments, the continuous infusion of ANG II (20 ng. kg(-1). min(-1)) led to a mild salt-sensitive increase in mean arterial pressure from 108 +/- 2 to 131 +/- 2 mmHg as sodium intake was varied from low to high (n = 7). In vehicle-infused mice, mean arterial pressure was unaltered from 109 +/- 2 mmHg when sodium intake was increased (n = 6). These studies indicate that the physiological suppression of circulating ANG II may be required to maintain a constancy of arterial pressure during alterations in sodium intake in normal mice.  相似文献   

14.
In this work we determined by telemetry the cardiovascular effects produced by Ang II infusion on blood pressure (BP) and heart rate (HR) in aged rats. Male Wistar aged (48-52 weeks) and young (12 weeks) rats were used. Ang II (6 microg/h, young, n=6; aged, n=6) or vehicle (0.9% NaCl 1 microl/h, young, n=4; aged, n=5) were infused subcutaneously for 7 days, using osmotic mini-pump. The basal diurnal and nocturnal BP values were higher in aged rats (day: 98+/-0.3 mm Hg, night: 104+/-0.4 mm Hg) than in the young rats (day: 92+/-0.2 mm Hg, night: 99+/-0.2 mm Hg). In contrast, the basal diurnal and nocturnal HR values were significantly smaller in the aged rats. Ang II infusion produced a greater increase in the diurnal BP in the aged rats (Delta MAP=37+/-1.8 mm Hg) compared to the young ones (Delta MAP=30+/-3.5 mm Hg). In contrast, the nocturnal MAP increase was similar in both groups (young rats; Delta MAP=22+/-3.0 mm Hg, aged rats; Delta MAP=24+/-2.6 mm Hg). During Ang II infusion HR decreased transiently in the young rats. An opposite trend was observed in the aged rats. Ang II infusion also inverted the BP circadian rhythm, in both groups. No changes in HR circadian rhythm were observed. These differences suggest that the aging process alters in a different way Ang II-sensitive neural pathways involved in the control of autonomic activity.  相似文献   

15.
Evidence of biological activity of fragments of ANG II is accumulating. Fragments considered being inactive degradation products might mediate actions previously attributed to ANG II. The study aimed to determine whether angiotensin fragments exert biological activity when administered in amounts equimolar to physiological doses of ANG II. Cardiovascular, endocrine, and renal effects of ANG II, ANG III, ANG IV, and ANG-(1-7) (6 pmol.kg-1.min-1) were investigated in conscious dogs during acute inhibition of angiotensin I-converting enzyme (enalaprilate) and aldosterone (canrenoate). Furthermore, ANG III was investigated by step-up infusion (30 and 150 pmol.kg-1.min-1). Arterial plasma concentrations [ANG immunoreactivity (IR)] were determined by an ANG II antibody cross-reacting with ANG III and ANG IV. Metabolic clearance rates were higher for ANG III and ANG IV (391 +/- 19 and 274 +/- 13 ml.kg-1.min-1, respectively) than for ANG II (107 +/- 13 ml.kg-1.min-1). ANG II increased ANG IR by 60 +/- 7 pmol/ml, blood pressure by 30%, increased plasma aldosterone markedly (to 345 +/- 72 pg/ml), and plasma vasopressin transiently, while reducing glomerular filtration rate (40 +/- 2 to 33 +/- 2 ml/min), sodium excretion (50 +/- 7 to 16 +/- 4 micromol/min), and urine flow. Equimolar amounts of ANG III induced similar antinatriuresis (57 +/- 8 to 19 +/- 3 micromol/min) and aldosterone secretion (to 268 +/- 71 pg/ml) at much lower ANG IR increments ( approximately 1/7) without affecting blood pressure, vasopressin, or glomerular filtration rate. The effects of ANG III exhibited complex dose-response relations. ANG IV and ANG-(1-7) were ineffective. It is concluded that 1) plasma clearances of ANG III and ANG IV are higher than those of ANG II; 2) ANG III is more potent than ANG II in eliciting immediate sodium and potassium retention, as well as aldosterone secretion, particularly at low concentrations; and 3) the complexity of the ANG III dose-response relationships provides indirect evidence that several effector mechanisms are involved.  相似文献   

16.
Previous experiments from our laboratory showed that longer-lasting reductions in renal perfusion pressure (RPP) are associated with a gradual decrease in renal blood flow (RBF) that can be abolished by clamping plasma ANG II concentration ([ANG II]). The aim of the present study was to investigate the mechanisms behind the RBF downregulation in halothane-anesthetized Sprague-Dawley rats during a 30-min reduction in RPP to 88 mmHg. During the 30 min of reduced RPP we also measured glomerular filtration rate (GFR), proximal tubular pressure (P(prox)), and proximal tubular flow rate (Q(LP)). Early distal tubular fluid conductivity was measured as an estimate of early distal [NaCl] ([NaCl](ED)), and changes in plasma renin concentration (PRC) over time were measured. During 30 min of reduced RPP, RBF decreased gradually from 6.5 +/- 0.3 to 6.0 +/- 0.3 ml/min after 5 min (NS) to 5.2 +/- 0.2 ml/min after 30 min (P < 0.05). This decrease occurred in parallel with a gradual increase in PRC from 38.2 +/- 11.0 x 10(-5) to 87.1 +/- 25.1 x 10(-5) Goldblatt units (GU)/ml after 5 min (P < 0.05) to 158.5 +/- 42.9 x 10(-5) GU/ml after 30 min (P < 0.01). GFR, P(prox), and [NaCl](ED) all decreased significantly after 5 min and remained low. Estimates of pre- and postglomerular resistances showed that the autoregulatory mechanisms initially dilated preglomerular vessels to maintain RBF and GFR. However, after 30 min of reduced RPP, both pre- and postglomerular resistance had increased. We conclude that the decrease in RBF over time is caused by increases in both pre- and postglomerular resistance due to rising plasma renin and ANG II concentrations.  相似文献   

17.
W H Waugh  T E Bales 《Life sciences》1988,42(15):1447-1454
To determine if indomethacin (indo) would attenuate the effects of changed renal perfusion pressure on sodium excretion as reported by others, we performed clearance studies in chloralose-anesthetized dogs without the major stress of laparotomy. Mean renal arterial pressure was varied by a balloon-tipped catheter indwelling the aorta suprarenally. With pressure decreases to mean values above 85 mm Hg during isotonic saline infusion, sodium output decreased only by 10.7 +/- 2.4% per 10 mm Hg pressure decrease without indo pre-treatment but decreased by 22.0 +/- 3.8% per 10 mm Hg pressure decrease with indo pre-treatment. The greater, rather than lesser, pressure effect on excretory function after indo in these experiments with chloralose anesthesia suggest that renal prostaglandin (PG) activity does not mediate normally pressure natriuresis. Instead, the data suggest that, in the absence of major stress, the renal pressure effects on excretory function may become more sensitive after indo. In addition, we postulate that the normal acute pressure natriuresis may be modest and may average no more than 20% change for each 10 mm Hg change in mean pressure above 90 mm Hg when stress is minimal and when vasoactive preglomerular autoregulation is nearly perfect. This is a phenomenon which keeps intrarenal tissue pressure and urine output relatively constant with arterial pressure elevations.  相似文献   

18.
Angiotensin II (ANG II) is known to activate central sympathetic neurons. In this study we determined the effects of ANG II on the autonomic components of the cardiovascular responses to stimulation of nasopharyngeal receptors with cigarette smoke. Experiments were carried out in conscious New Zealand White rabbits instrumented to record arterial pressure and heart rate. Rabbits were exposed to 50 ml of cigarette smoke before and after subcutaneous osmotic minipump delivery of ANG II at a dose of 50 ng.kg(-1).min(-1) for 1 wk in one group and intracerebroventricular (icv) infusion at a dose of 100 pmol/min for 1 h in a second group. The responses were compared before and after heart rate was controlled by pacing. Autonomic components were evaluated by intravenous administration of atropine methyl bromide (0.2 mg/kg) and prazosin (0.5 mg/kg). ANG II given either systemically or icv significantly blunted the pressor response to smoke (P < 0.05) when the bradycardic response was prevented. This blunted response was not due to an absolute increase in baseline blood pressure after ANG II infusion (71.64 +/- 11.6 vs. 92.1 +/- 19.8 mmHg; P < 0.05) because normalization of blood pressure with sodium nitroprusside to pre-ANG II levels also resulted in a significantly blunted pressor response to smoke. The effect of smoke was alpha(1)-adrenergic receptor-mediated because it was essentially abolished by prazosin in both the pre- and the post-ANG II states (P < 0.05). These results suggest that elevations in central ANG II reduce the sympathetic response to smoke in conscious rabbits. This effect may be due to an augmentation of baseline sympathetic outflow and a reduction in reflex sensitivity similar to the effect of ANG II on baroreflex function.  相似文献   

19.
李秀丽  高原 《生理学报》1992,44(1):8-14
In anesthetized rats, it was observed that intracerebroventricular (I.C.V.) microinjection of angiotensin II (ANG II) in a dose of 16 pg evoked a significant increase in renal sodium excretion which began within 15 min and lasted for 90 min. The activity of Na+.K(+)-ATPase in renal cortex after I.C.V. microinjection of ANG II (1.51 +/- 0.26 mumol Pi/mg Pro.h) was inhibited as compared with that of the control injecting of artificial cerebrospinal fluid (2.66 +/- 0.28 mumol Pi/mg Pro.h, P less than 0.01). There was no change in mean arterial pressure. Within 15 min after I.C.V. administration of ANG II antibody, however, and antinatriuretic period of 135 min and a higher activity of Na+.K(+)-ATPase in renal cortex (3.61 +/- 0.34 mumol Pi/mg Pro.h, P less than 0.05 compared with control) were observed. There was no natriuresis in the animals microinjected with ANG II either into femoral vein or into spinal subarachnoid space. The result of the present investigation suggests that brain endogenous ANG II may possess some natriuretic activity possibly through inhibiting renal Na+.K(+)-ATPase activity.  相似文献   

20.
We investigated the effect of the intravenous infusion of atrial natriuretic peptide (ANP) on the response of plasma arginine vasopressin (AVP) levels to intravenous infusion of angiotensin II (ANG II) in healthy individuals. Intravenous infusion of ANP (10 ng·kg(-1)·min(-1)) slightly but significantly decreased plasma AVP levels, while intravenous infusion of ANG II (10 ng·kg(-1)·min(-1)) resulted in slightly increased plasma AVP levels. ANG II infused significant elevations in arterial blood pressure and central venous pressure (CVP). Because the elevation in blood pressure could have potentially inhibited AVP secretion via baroreceptor reflexes, the effect of ANG II on blood pressure was attenuated by the simultaneous infusion of nitroprusside. ANG II alone produced a remarkable increase in plasma AVP levels when infused with nitroprusside, whereas the simultaneous ANP intravenous infusion (10 ng·kg(-1)·min(-1)) abolished the increase in plasma AVP levels induced by ANG II when blood pressure elevation was attenuated by nitroprusside. Thus, ANG II increased AVP secretion and ANP inhibited not only basal AVP secretion but also ANG II-stimulated AVP secretion in humans. These findings support the hypothesis that circulating ANP modulates AVP secretion, in part, by antagonizing the action of circulating ANG II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号