首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have demonstrated that the proapoptotic protein Bax plays an important role in the elevated enterocyte apoptosis that occurs during the intestinal adaptation response to massive small bowel resection (SBR). Additionally, epidermal growth factor receptor (EGFR) activation prevents SBR-induced enterocyte apoptosis. The present study aims to delineate the relationship between EGFR activity and intestinal epithelial cell apoptosis. Treatment of model intestinal epithelial cells (RIEC-18) with both a selective EGFR inhibitor (ZD1839) and EGFR small interfering RNA knockdown resulted in a dramatic increase in apoptosis, accompanied by rapid phosphorylation of p38alpha. Concurrently, Bax underwent conformational changes consistent with activation and translocated to mitochondria. In contrast, EGF stimulation enhanced cell survival by attenuating p38alpha phosphorylation, Bax conformational change, mitochondrial trafficking, and apoptosis. These results demonstrate that that diminished EGFR activity initiates the intrinsic pathway of apoptosis through p38alpha-dependent Bax activation in intestinal epithelial cells. These finding provide mechanistic insight into the role that EGFR signaling plays in the regulation of enterocyte apoptosis following massive intestinal loss.  相似文献   

2.
Sirtuin 1 (SIRT1), a NAD(+)-dependent histone deacetylase, is involved in a wide array of cellular processes including glucose homeostasis, energy metabolism, proliferation and apoptosis, and immune response. However, it is unknown whether SIRT1 plays any physiological role in the regulation of intestinal homeostasis and motility. Thus the aim was to define SIRT1 expression and function in the gastrointestinal (GI) tract under physiological conditions. Forty 12-14-wk-old SIRT1 knockout (KO) and wild-type (WT) mice were fasted 21 h and/or refed 3 h. Fasted mice were injected intraperitoneally with bromodeoxyuridine (120 mg/kg body wt) 2 h before euthanasia. SIRT1 protein was localized to gastric and intestinal epithelial nuclei and was responsive to the nutritional status. SIRT1 was required for intestinal epithelial homeostasis. The SIRT1 KO mice showed enhanced crypt proliferation and suppressed villous apoptosis, resulting in increased intestinal villous height. In the SIRT1 KO intestine, the abundance of Forkhead box protein O1 and p53 protein decreased, whereas the subcellular localization of β-catenin protein accumulated mainly in the crypts. The SIRT1 KO mice showed accelerated gastric emptying rate with increased abundance of ghrelin mRNA and protein in the stomach. Moreover, the SIRT1 KO mouse intestine showed enhanced ex vivo spontaneous contraction. We concluded that, SIRT1 plays a critical role in the control of intestinal homeostasis (by promoting apoptosis and inhibiting proliferation) and gastrointestinal motility (by reducing gastric emptying and intestinal contractile activity), implicating a novel role for SIRT1.  相似文献   

3.
The Bcl2 family of proteins plays a significant role in regulation of apoptosis. In this study, the microtubule-damaging drugs paclitaxel, vincristine, and vinblastine induced Bcl2 hyperphosphorylation and apoptosis in MCF-7 and MDA-MB-231 cells and reduced Bcl2-Bax dimerization. Paclitaxel or vincristine induced increased expression of Bax, while overexpression of Bcl2 in these cell lines counteracted the effects of low doses of these drugs. In addition, paclitaxel- and vincristine-induced activation of cyclic AMP (cAMP)-dependent protein kinase (protein kinase A [PKA]) induced Bcl2 hyperphosphorylation and apoptosis, which were blocked by the PKA inhibitor Rp diastereomers of cAMP (Rp-cAMP). This finding suggests that activation of PKA due to microtubule damage is an important event in Bcl2 hyperphosphorylation and induction of apoptosis. These microtubule-damaging drugs caused growth arrest in G2-M phase of the cell cycle and had no effect on p53 induction, suggesting that hyperphosphorylation mediated inactivation of Bcl2 and apoptosis without the involvement of p53. By comparison, the DNA-damaging drugs methotrexate and doxorubicin had no effect on Bcl2 hyperphosphorylation but induced p53 expression. Interestingly, paclitaxel or vincristine induced activation of caspase 3 and cleavage of poly(ADP-ribose) polymerase downstream of Bcl2 hyperphosphorylation. These data suggest that there may be a signaling cascade induced by agents that disrupt or damage the cytoskeleton that is distinct from (i.e., p53 independent), but perhaps related to (i.e., involves kinase activation and leads to apoptosis), the cellular response to DNA damage.  相似文献   

4.
It is now well established that a fraction of stress-induced wtp53 protein rapidly translocates to mitochondria in immortalized and transformed cells in culture. Mitochondrial p53 interacts with anti-apoptotic proteins of the Bcl 2 family at the outer mitochondrial membrane, resulting in membrane permeabilization, release of death effectors such as cytochrome C and subsequent rapid apoptosis. The significance and relevance of this direct mitochondrial p53 program to the overall p53-mediated stress response in vivo is underlined by a number of recent studies in animals and primary cells. They all support a role for this direct pathway in the physiologic and pathophysiologic response to genotoxic and hypoxic insults and occur precisely in those tissues where p53 plays a critical role in mediating apotpotis rather than cell cycle arrest.  相似文献   

5.

Background

Neurons are more likely to die through apoptosis in the immature brain after injury whereas adult neurons in the mature brain die by necrosis. Several studies have suggested that this maturational change in the mechanism of cell death is regulated, in part, by thyroid hormone. We examined the involvement of the hairless (Hr) gene which has been suspected of having a role in cell cycle regulation and apoptosis in the hair follicle and is strongly regulated by the thyroid hormone in the brain.

Methodology

Forced expression of Hr by transfection decreased the number of apoptotic nuclei, levels of caspase-3 activity, and cytosolic cytochrome C in COS cells exposed to staurosporine and tunicamycin. Similarly, capsase-3 activity was lower and the decrease in mitochondrial membrane potential was smaller in cultures of adult cerebellar granule neurons from wild type mice compared to Hr knockout mice induced to undergo apoptosis. In vivo, apoptosis as detected by positive TUNEL labeling and caspase 3 activity was lower in wild-type mice compared to Hr knockouts after exposure to trimethyltin. Hr expression lowered levels of p53, p53 mediated reporter gene activity, and lower levels of the pro-apoptotic Bcl2 family member Bax in COS cells. Finally, Hr expression did not attenuate apoptosis in mouse embryonic fibroblasts from p53 knockout mice but was effective in mouse embryonic fibroblasts from wild type mice.

Conclusions/Significance

Overall, our studies demonstrate that Hr evokes an anti-apoptotic response by repressing expression of p53 and pro-apoptotic events regulated by p53.  相似文献   

6.
The BH3-only protein PUMA plays an important role in the activation of apoptosis in response to p53. In different studies, PUMA has been described to function by either directly activating the pro-apoptotic proteins Bax and Bak, or by neutralizing anti-apoptotic members of the Bcl2 family. We have examined the contribution of regions of PUMA other than the BH3 domain to its localization and function. Although the hydrophobic domain in the C-terminus of PUMA is necessary for efficient mitochondrial localization of PUMA itself, PUMA proteins lacking this region can still induce apoptosis and localize to the mitochondria through binding to Bcl2. Even a nuclear localization signal (NLS)-tagged PUMA protein retains apoptotic activity and can be efficiently relocalized from the nucleus after interaction with ectopically expressed Bcl2, underscoring the efficiency of this interaction. Interestingly, unlike the Bcl2 interaction, the binding of PUMA to Bax is severely compromised by the loss of the C-terminal domain of PUMA. However, since the loss of the C-terminus does not compromise the ability of PUMA to induce cell death, our results indicate that the key apoptotic function of PUMA is through interaction with anti-apoptotic proteins such as Bcl2.  相似文献   

7.
Bax, a pro‐apoptotic protein from the Bcl‐2 family, is central to apoptosis regulation. To suppress spontaneous apoptosis, Bax must be under stringent control that may include regulation of Bax conformation and expression levels. We report that IBRDC2, an IBR‐type RING‐finger E3 ubiquitin ligase, regulates the levels of Bax and protects cells from unprompted Bax activation and cell death. Downregulation of IBRDC2 induces increased cellular levels and accumulation of the active form of Bax. The ubiquitination‐dependent regulation of Bax stability is suppressed by IBRDC2 downregulation and stimulated by IBRDC2 overexpression in both healthy and apoptotic cells. Although mostly cytosolic in healthy cells, upon induction of apoptosis, IBRDC2 accumulates in mitochondrial domains enriched with Bax. Mitochondrial accumulation of IBRDC2 occurs in parallel with Bax activation and also depends on the expression levels of Bcl‐xL. Furthermore, IBRDC2 physically interacts with activated Bax. By applying Bax mutants in HCT116 Bax?/? cells, combined with the use of active Bax‐specific antibodies, we have established that both mitochondrial localization and apoptotic activation of Bax are required for IBRDC2 translocation to the mitochondria.  相似文献   

8.
Upon apoptosis induction, the proapoptotic protein Bax is translocated from the cytosol to mitochondria, where it promotes release of cytochrome c, a caspase‐activating protein. However, the molecular mechanisms by which Bax triggers cytochrome c release are unknown. Here we report that before the initiation of apoptotic execution by etoposide or staurosporin, an active calpain activity cleaves Bax at its N‐terminus, generating a potent proapoptotic 18‐kDa fragment (Bax/p18). Both the calpain‐mediated Bax cleavage activity and the Bax/p18 fragment were found in the mitochondrial membrane‐enriched fraction. Cleavage of Bax was followed by release of mitochondrial cytochrome c, activation of caspase‐3, cleavage of poly(ADP‐ribose) polymerase, and fragmentation of DNA. Unlike the full‐length Bax, Bax/p18 did not interact with the antiapoptotic Bcl‐2 protein in the mitochondrial fraction of drug‐treated cells. Pretreatment with a specific calpain inhibitor calpeptin inhibited etoposide‐induced calpain activation, Bax cleavage, cytochrome c release, and caspase‐3 activation. In contrast, transfection of a cloned Bax/p18 cDNA into multiple human cancer cell lines targeted Bax/p18 to mitochondria, which was accompanied by release of cytochrome c and induction of caspase‐3‐mediated apoptosis that was not blocked by overexpression of Bcl‐2 protein. Therefore, Bax/p18 has a cytochrome c–releasing activity that promotes cell death independent of Bcl‐2. Finally, Bcl‐2 overexpression inhibited etoposide‐induced calpain activation, Bax cleavage, cytochrome c release, and apoptosis. Our results suggest that the mitochondrial calpain plays an essential role in apoptotic commitment by cleaving Bax and generating the Bax/p18 fragment, which in turn mediates cytochrome c release and initiates the apoptotic execution. J. Cell. Biochem. 80:53–72, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

9.
Recent studies have shown that Notch pathway plays a key role in the pathogenesis of diabetic nephropathy (DN), however, the exact mechanisms remain elusive. Here we demonstrated that high glucose (HG) upregulated Notch pathway in podocytes accompanied with the alteration of Bcl‐2 and p53 pathways, subsequently leading to podocytes apoptosis. Inhibition of Notch pathway by chemical inhibitor or specific short hairpin RNA (shRNA) vector in podocytes prevented Bcl‐2‐ and p53‐dependent cell apoptosis. These findings suggest that Notch pathway mediates HG‐induced podocytes apoptosis via Bcl‐2 and p53 pathways. J. Cell. Biochem. 114: 1029–1038, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Pro-apoptotic Bax and Bak have been implicated in the regulation of p53-dependent apoptosis. We assessed the ability of primary baby mouse kidney (BMK) epithelial cells from bax(-/-), bak(-/-), and bax(-/-) bak(-/-) mice to be transformed by E1A alone or in conjunction with dominant-negative p53 (p53DD). Although E1A alone transformed BMK cells from p53-deficient mice, E1A alone did not transform BMK cells from bax(-/-), bak(-/-), or bax(-/-) bak(-/-) mice. Thus, the loss of both Bax and Bak was not sufficient to relieve p53-dependent suppression of transformation in epithelial cells. To test the requirement for Bax and Bak in other death signaling pathways, stable E1A plus p53DD-transformed BMK cell lines were derived from the bax(-/-), bak(-/-), and bax(-/-) bak(-/-) mice and characterized for their response to tumor necrosis factor-alpha (TNF-alpha)-mediated apoptosis. The loss of both Bax and Bak severely impaired TNF-alpha-mediated apoptosis, but the presence of either Bax or Bak alone was sufficient for cell death. Cytochrome c was released from mitochondria, and caspase-9 was activated in Bax- or Bak-deficient cells in response to TNF-alpha but not in cells deficient in both. Thus, either Bax or Bak is required for death signaling through mitochondria in response to TNF-alpha, but both are dispensable for p53-dependent transformation inhibition.  相似文献   

11.
Free oxygen radicals are involved in the pathogenesis of necrotizing enterocolitis (NEC) in premature infants. The stress-activated p38 mitogen-activated protein kinase (MAPK) has been implicated in gut injury. Here, we found that phosphorylated p38 was detected primarily in the villus tips of normal intestine, whereas it was expressed in the entire mucosa in NEC. H(2)O(2) treatment resulted in a rapid phosphorylation of p38 MAPK and subsequent apoptosis of rat intestinal epithelial (RIE)-1 cells; this induction was attenuated by treatment with SB203580, a selective p38 MAPK inhibitor, or transfection with p38alpha siRNA. Moreover, SB203580 also blocked H(2)O(2)-induced PKC activation. In contrast, the PKC inhibitor (GF109203x) did not affect p38 activation, indicating that p38 MAPK activation occurs upstream of PKC activation in H(2)O(2)-induced apoptosis. H(2)O(2) treatment also decreased mitochondrial membrane potential; pretreatment with SB203580 attenuated this response. Our study demonstrates that the p38 MAPK/PKC pathway plays an important role as a pro-apoptotic cellular signaling during oxidative stress-induced intestinal epithelial cell injury.  相似文献   

12.
4-Hydroxynonenal (4-HNE) has been suggested to be involved in stress-induced signaling for apoptosis. In present studies, we have examined the effects of 4-HNE on the intrinsic apoptotic pathway associated with p53 in human retinal pigment epithelial (RPE and ARPE-19) cells. Our results show that 4-HNE causes induction, phosphorylation, and nuclear accumulation of p53 which is accompanied with down regulation of MDM2, activation of the pro-apoptotic p53 target genes viz. p21 and Bax, JNK, caspase3, and onset of apoptosis in treated RPE cells. Reduced expression of p53 by an efficient silencing of the p53 gene resulted in a significant resistance of these cells to 4-HNE-induced cell death. The effects of 4-HNE on the expression and functions of p53 are blocked in GSTA4-4 over expressing cells indicating that 4-HNE-induced, p53-mediated signaling for apoptosis is regulated by GSTs. Our results also show that the induction of p53 in tissues of mGsta4 (−/−) mice correlate with elevated levels of 4-HNE due to its impaired metabolism. Together, these studies suggest that 4-HNE is involved in p53-mediated signaling in in vitro cell cultures as well as in vivo that can be regulated by GSTs.  相似文献   

13.
14.
We recently demonstrated that protein kinase D (PKD) exerts a protective function during oxidative stress-induced intestinal epithelial cell injury; however, the exact role of DAG kinase (DGK)ζ, an isoform expressed in intestine, during this process is unknown. We sought to determine the role of DGK during oxidative stress-induced intestinal cell injury and whether DGK acts as an upstream regulator of PKD. Inhibition of DGK with R59022 compound or DGKζ siRNA transfection decreased H2O2-induced RIE-1 cell apoptosis as measured by DNA fragmentation and increased PKD phosphorylation. Overexpression of kinase-dead DGKζ also significantly increased PKD phosphorylation. Additionally, endogenous nuclear DGKζ rapidly translocated to the cytoplasm following H2O2 treatment. Our findings demonstrate that DGK is involved in the regulation of oxidative stress-induced intestinal cell injury. PKD activation is induced by DGKζ, suggesting DGK is an upstream regulator of oxidative stress-induced activation of the PKD signaling pathway in intestinal epithelial cells.  相似文献   

15.
Bap31 is an integral ER membrane protein which functions as an escort factor in the sorting of newly synthesized membrane proteins within the endoplasmic reticulum (ER). During apoptosis signaling, Bap31 is subject to early cleavage by initiator caspase-8. The resulting p20Bap31 (p20) fragment has been shown to initiate proapoptotic ER-mitochondria Ca2+ transmission, and to exert dominant negative (DN) effects on ER protein trafficking. We now report that ectopic expression of p20 in E1A/DNp53-transformed baby mouse kidney epithelial cells initiates a non-apoptotic form of cell death with paraptosis-like morphology. This pathway was characterized by an early rise in ER Ca2+ stores and massive dilation of the ER/nuclear envelope, dependent on intact ER Ca2+ stores. Ablation of the Bax/Bak genes had no effect on these ER/nuclear envelope transformations, and delayed but did not prevent cell death. ER-restricted expression of Bcl2 in the absence of Bax/Bak, however, delayed both ER/nuclear envelope dilation and cell death. This prosurvival role of Bcl2 at the ER thus extended beyond inhibition of Bax/Bak, and correlated with its ability to lower ER Ca2+ stores. Furthermore, these results indicate that ER restricted Bcl2 is capable of antagonizing not only apoptosis, but also a non-apoptotic, Bax/Bak independent, paraptosis-like form of cell death.  相似文献   

16.
17.
18.
Fetal alveolar type II (fATII) epithelial cells were used to evaluate the role of signaling factors involved in oxidative stress-induced programmed cell death (PCD; apoptosis). Bcl-2, an antiapoptotic proto-oncogene, showed maximum abundance in hypoxia and mild reoxygenation, but declined thereafter. The Bcl-2 counterpart, Bax, which promotes PCD, displayed an increasing logarithmic profile with ascending DeltapO(2) regimen, such that the ratio of Bcl-2/Bax decreased as pO(2) increased. The expression of p53, a cell cycle regulator, paralleled Bax abundance. Pretreatment of fATII cells with l-buthionine-(S,R)-sulfoximine, an irreversible inhibitor of gamma-glutamylcysteine synthetase, the rate-limiting enzyme in the biosynthesis of glutathione (GSH), enhanced Bax and p53 expression over Bcl-2. The GSH analogue, gamma-glutamylcysteinyl-ethyl ester, down-regulated Bax/p53 abundance but restored that of Bcl-2, thereby increasing Bcl-2/Bax. The antioxidant and GSH precursor N-acetyl-l-cysteine favored Bcl-2 at the expense of Bax/p53, whereas pyrrolidine dithiocarbamate induced Bax against Bcl-2, with mild effect on p53. Sulfasalazine, a potent and specific inhibitor of NF-kappaB, induced Bax at the expense of Bcl-2, in a p53-dependent manner. We conclude that the differential expression of signaling factors involved in PCD in the alveolar epithelium is redox-sensitive and mediated, at least in part, by a negative feedback mechanism transduced by NF-kappaB.  相似文献   

19.
Radiotherapy is one of the most effective modalities for treatment of neoplastic diseases. Radiation damage is to a large extent caused by overproduction of reactive oxygen species. To improve the therapeutic index, identifying effective substances for prevention or treatment of postirradiation intestinal and bone marrow injury should be prompted. This study was designed to evaluate the protective effects of cimetidine on the in rats exposed to γ-irradiation (5 Gy) and exploring the B-cell lymphoma 2 (Bcl2)/Bcl2 associated X (bax) pathway as a probable underlying mechanism. Eighteen adult male rats were randomly grouped into three: control, untreated irradiated rats, and irradiated rats pretreated with cimetidine. Seven days postirradiation the rats were culled, the bone marrow (BM) and jejunum tissue samples were collected for biochemical, histological, and immunohistological evaluation of BM cell count (BMCs), intestinal fibrosis, oxidative stress, tumor necrosis factor-α, Bcl2, and Bax. Cimetidine pretreatment significantly reversed the loss of BMCs, intestinal lining destruction, and fibrosis seen in the untreated irradiated rats and significantly decreased the underlying oxidative stress, inflammation, and Bax/Bcl2 ratio. There was a significant differential correlation between Bax/Bcl2 ratio, tissue oxidative stress level, and tissue injury. Cimetidine represents a very promising radioprotective agent with a potential differential beneficial effect on both cancer cells (inducing apoptosis) as previously proved through different studies and adjacent healthy cells (providing radioprotection via inhibiting apoptosis) as clearly demonstrated through this study, via its antioxidant effect and subsequent regulation of type 2 apoptotic pathway through modulation of Bax/Bcl2 ratio.  相似文献   

20.
Fluorescent protein based signaling probes are emerging as valuable tools to study cell signaling because of their ability to provide spatio- temporal information in non invasive live cell mode. Previously, multiple fluorescent protein probes were employed to characterize key events of apoptosis in diverse experimental systems. We have employed a live cell image based approach to visualize the key events of apoptosis signaling induced by zerumbone, the active principle from ginger Zingiber zerumbet, in cancer cells that enabled us to analyze prominent apoptotic changes in a hierarchical manner with temporal resolution. Our studies substantiate that mitochondrial permeabilisation and cytochrome c dependent caspase activation dominate in zerumbone induced cell death. Bax activation, the essential and early event of cell death, is independently activated by reactive oxygen species as well as calpains. Zerumbone failed to induce apoptosis or mitochondrial permeabilisation in Bax knockout cells and over-expression of Bax enhanced cell death induced by zerumbone confirming the essential role of Bax for mitochondrial permeabilsation. Simultaneous inhibition of reactive oxygen species and calpain is required for preventing Bax activation and cell death. However, apoptosis induced by zerumbone was prevented in Bcl 2 and Bcl-XL over-expressing cells, whereas more protection was afforded by Bcl 2 specifically targeted to endoplasmic reticulum. Even though zerumbone treatment down-regulated survival proteins such as XIAP, Survivin and Akt, it failed to affect the pro-apoptotic proteins such as PUMA and BIM. Multiple normal diploid cell lines were employed to address cytotoxic activity of zerumbone and, in general, mammary epithelial cells, endothelial progenitor cells and smooth muscle cells were relatively resistant to zerumbone induced cell death with lesser ROS accumulation than cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号