首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mouse H19 gene is expressed exclusively from the maternal allele. The imprinted expression of the endogenous gene can be recapitulated in mice by using a 14-kb transgene encompassing 4 kb of 5'-flanking sequence, 8 kb of 3'-flanking sequence, which includes the two endoderm-specific enhancers, and an internally deleted structural gene. We have generated multiple transgenic lines with this 14-kb transgene and found that high-copy-number transgenes most closely follow the imprinted expression of the endogenous gene. To determine which sequences are important for imprinted expression, deletions were introduced into the transgene. Deletion of the 5' region, where a differentially methylated sequence proposed to be important in determining parental-specific expression is located, resulted in transgenes that were expressed and hypomethylated, regardless of parental origin. A 6-kb transgene, which contains most of the differentially methylated sequence but lacks the 8-kb 3' region, was not expressed and also not methylated. These results indicate that expression of either the H19 transgene or a 3' DNA sequence is key to establishing the differential methylation pattern observed at the endogenous locus. Finally, methylation analysis of transgenic sperm DNA from the lines that are not imprinted reveals that the transgenes are not capable of establishing and maintaining the paternal methylation pattern observed for imprinted transgenes and the endogenous paternal allele. Thus, the imprinting of the H19 gene requires a complex set of elements including the region of differential methylation and the 3'-flanking sequence.  相似文献   

3.
4.
Mirza B 《Genetika》2005,41(12):1601-1607
In the experiment reported here, effect of the nature of T-DNA integration region on the activity of the transgenes was studied by using a colour marker gene in Arabidopsis thaliana. For this purpose a pale homozygous ch-42 mutant was transformed with the wild-type copy of the gene (CH-42) using kanamycin resistance gene as a selectable marker. Two independent lines were identified in which CH-42 transgene was inactive. The T-DNA flanking sequences were recovered from these inactive and two active lines. These flanking sequences were used to examine copy number and DNA methylation of the T-DNA insertion site in active and inactive lines. Southern blots produced by using MspI/HpaII digested genomic DNA showed signs of methylation in both inactive lines. Furthermore, in one of the inactive line the T-DNA flanking sequence probe hybridized to highly repetitive sequence. The results suggest some correlation between silencing of the transgene and methylation of its insertion region.  相似文献   

5.
RNA polymerase III (Pol III) as well as Pol II (35S) promoters are able to drive hairpin RNA (hpRNA) expression and induce target gene silencing in plants. siRNAs of 21 nt are the predominant species in a 35S Pol II line, whereas 24- and/or 22-nucleotide (nt) siRNAs are produced by a Pol III line. The 35S line accumulated the loop of the hpRNA, in contrast to full-length hpRNA in the Pol III line. These suggest that Pol II and Pol III-transcribed hpRNAs are processed by different pathways. One Pol III transgene produced only 24-nt siRNAs but silenced the target gene efficiently, indicating that the 24-nt siRNAs can direct mRNA degradation; specific cleavage was confirmed by 5' rapid amplification of cDNA ends (RACE). Both Pol II- and Pol III-directed hpRNA transgenes induced cytosine methylation in the target DNA. The extent of methylation is not correlated with the level of 21-nt siRNAs, suggesting that they are not effective inducers of DNA methylation. The promoter of a U6 transgene was significantly methylated, whereas the promoter of the endogenous U6 gene was almost free of cytosine methylation, suggesting that endogenous sequences are more resistant to de novo DNA methylation than are transgene constructs.  相似文献   

6.
7.
8.
9.
10.
In the experiment reported here, effect of the nature of T-DNA integration region on the activity of the transgenes was studied by using a color marker gene in Arabidopsis thaliana. For this purpose, a pale homozygous ch-42 mutant was transformed with the wild-type copy of the gene (CH-42) using kanamycin resistance gene as a selectable marker. Two independent lines were identified in which CH-42 transgene was inactive. The T-DNA flanking sequences were recovered from these inactive and two active lines. These flanking sequences were used to examine copy number and DNA methylation of the T-DNA insertion site in active and inactive lines. Southern blots produced by using MspI/HpaII digested genomic DNA showed signs of methylation in both inactive lines. Furthermore, in one of the inactive line, the T-DNA flanking sequence probe hybridized to highly repetitive sequence. The results suggest some correlation between silencing of the transgene and methylation of its insertion region.  相似文献   

11.
We have tested a methodology for the elimination of the selectable marker gene after Agrobacterium-mediated transformation of barley. This involves segregation of the selectable marker gene away from the gene of interest following co-transformation using a plasmid carrying two T-DNAs, which were located adjacent to each other with no intervening region. A standard binary transformation vector was modified by insertion of a small section composed of an additional left and right T-DNA border, so that the selectable marker gene and the site for insertion of the gene of interest (GOI) were each flanked by a left and right border. Using this vector three different GOIs were transformed into barley. Analysis of transgene inheritance was facilitated by a novel and rapid assay utilizing PCR amplification from macerated leaf tissue. Co-insertion was observed in two thirds of transformants, and among these approximately one quarter had transgene inserts which segregated in the next generation to yield selectable marker-free transgenic plants. Insertion of non-T-DNA plasmid sequences was observed in only one of fourteen SMF lines tested. This technique thus provides a workable system for generating transgenic barley free from selectable marker genes, thereby obviating public concerns regarding proliferation of these genes.  相似文献   

12.
Previous analysis of potato spindle tuber viroid (PSTVd) RNA-infected tobacco plants has suggested that an RNA-DNA interaction could trigger de novo methylation of PSTVd transgene sequences. Using the genomic sequencing technique, the methylation pattern associated with the RNA-directed DNA methylation process has been characterized. Three different PSTVd transgene constructs all showed a similar pattern of methylation. Most of the cytosines at symmetrical as well as non-symmetrical positions appeared to be methylated in both DNA strands of the viroid sequences. Heavy methylation was mostly restricted to the viroid cDNA sequences. Flanking DNA regions immediately adjacent to the viroid cDNA displayed a lower but significant level of cytosine methylation. The observation that the heavy methylation was essentially co-extensive with the length of the PSTVd cDNA sequences provided evidence that a direct RNA-DNA interaction can act as a strong and highly specific signal for de novo DNA methylation. These data also confirmed that de novo methylation was not limited to canonical CpG and CpNpG sites, but can also involve all the cytosine residues located in the genomic region where the RNA-DNA interaction takes place.  相似文献   

13.
14.
15.
16.
The chloramphenicol acetyltransferase gene under the control of the late E2A promoter of adenovirus type 2 (Ad2) was introduced as transgene into the B6D2F1 mouse strain with mixed genetic background and became extensively de novo methylated. The methylation of this pAd2E2AL-CAT (7-1A) transgene was regulated in a strain-specific manner apparently depending on the site of integration. Transmission of the 7-1A transgene into an inbred DBA/2, 129/sv, or FVB/N genetic background led to a significant loss of methylation in the transgene, whereas C57BL/6, CB20, and Balb/c backgrounds favored the de novo methylation in very specific patterns. The newly established patterns of de novo methylation were transmitted to the offspring and remained stable for many generations, regardless of the heterozygosity of strain-specific DNA sequences present in these mouse strains. Segregation analyses showed a non-mendelian transmission of methylation phenotypes and suggested the involvement of dominant modifiers of methylation. The genotype-specific modifications of the transgene were followed for 11 backcross generations. These observations reflect an evolutionarily conserved mechanism directed against foreign, e.g. viral or bacterial, DNA at least in the chromosomal location of the 7-1A transgene. In seven additional mouse lines carrying the same transgene in different chromosomal locations, strain-specific alterations of methylation patterns were not observed.  相似文献   

17.
The methylation patterns of cytosine and adenine residues in the Arabidopsis thaliana gene for domains rearranged methyltransferase (DRM2) were studied in wild-type and several transgene plant lines containing antisense fragments of the cytosine DNA-methyltransferase gene METI under the control of copper-inducible promoters. It was shown that the promoter region of the DRM2 gene is mostly unmethylated at the internal cytosine residue in CCGG sites whereas the 3'-end proximal part of the gene coding region is highly methylated. The DRM2 gene was found to be also methylated at adenine residues in some GATC sequences. Cytosine methylation in CCGG sites and adenine methylation in GATC sites in the DRM2 gene are variable between wild-type and different transgenic plants. The induction of antisense METI constructs with copper ions in transgene plants in most cases leads to further alterations in the DRM2 gene methylation patterns.  相似文献   

18.
Transgene integration mediated by heterologous site-specific recombination (SSR) systems into the dedicated genomic sites has been demonstrated in a few different plant species. This approach of plant transformation generates a precise site-specific integration (SSI) structure consisting of a single copy of the transgene construct. As a result, stable transgene expression correlated with promoter strength and gene copy number is observed among independent transgenic lines and faithfully transmitted through subsequent generations. Site-specific integration approaches use selectable marker genes, removal of which is necessary for the implementation of this approach as a biotechnology application. As SSR systems are also excellent tools for excising marker genes from transgene locus, a molecular strategy involving gene integration followed by marker excision, each mediated by a distinct recombination system, was earlier proposed. Experimental validation of this approach is the focus of this work. Using FLPe-FRT system for site-specific gene integration and heat-inducible Cre-lox for marker gene excision, marker-free SSI lines were developed in the first generation itself. More importantly, progeny derived from these lines inherited the marker-free locus, indicating efficient germinal transmission. Finally, as the transgene expression from SSI locus was not altered upon marker excision, this method is suitable for streamlining the production of marker-free SSI lines.  相似文献   

19.
Yoo SY  Bomblies K  Yoo SK  Yang JW  Choi MS  Lee JS  Weigel D  Ahn JH 《Planta》2005,221(4):523-530
Positive selection of transgenic plants is essential during plant transformation. Thus, strong promoters are often used in selectable marker genes to ensure successful selection. Many plant transformation vectors, including pPZP family vectors, use the 35S promoter as a regulatory sequence for their selectable marker genes. We found that the 35S promoter used in a selectable marker gene affected the expression pattern of a transgene, possibly leading to a misinterpretation of the result obtained from transgenic plants. It is likely that the 35S enhancer sequence in the 35S promoter is responsible for the interference, as in the activation tagging screen. This affected expression mostly disappeared in transgenic plants generated using vectors without the 35S sequences within their T-DNA region. Therefore, we suggest that caution should be used in selecting a plant transformation vector and in the interpretation of the results obtained from transgenic approaches using vectors carrying the 35S promoter sequences within their T-DNA regions.  相似文献   

20.
To test the influence of a Nicotiana tomentosiformis repetitive sequence (R8.3) on transgene expression in N. sylvestris and in N. sylvestris-N. tomentosiformis hybrids, the R8.3 sequence was placed upstream of a nopaline synthase promoter (NOSpro)-NPTII reporter gene in a T-DNA construct. A number of transgenic N. sylvestris lines were produced and in most, the NPTII gene was expressed. In one line, however, the NPTII gene became silenced and methylated in the NOSpro region. The silenced locus was able to trans-inactivate and induce methylation of two stably expressed transgene loci comprising a similar construct. Nucleotide sequence analyses of the three transgene loci revealed that they each contained a single incomplete copy of the T-DNA, which had sustained deletions of varying sizes in the R8.3 region. Paradoxically, the R8.3 DNA upstream of the two active, unmethylated NOSpro-NPTII genes was highly methylated, whereas the R8.3 DNA upstream of the silenced, methylated NOSpro-NPTII gene was less methylated. The methylated portions of the R8.3 sequence corresponded to retroelement remnants. An active NOSpro-NPTII gene downstream of a nearly intact R8.3 sequence did not become methylated in N. sylvestris-N. tomentosiformis hybrids. Thus, methylation in the R8.3 sequence did not spread into adjoining transgene promoters and the effect of the R8.3 dispersed repeat family on transgene expression was negligible. The silencing phenomena observed with the three single-copy transgene loci are discussed in the context of other possible triggers of silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号