首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitogen-activated protein kinase (MAPK) family members such as c-jun N-terminal kinase (JNK) may act as signal transducers early during pancreatitis development and evidence indicates that MAPK phosphatases (MKP) downregulate MAPK. We therefore investigated expression and regulation of pancreatic MKP in vivo. Pancreatic MKP mRNA levels were near or below the detection threshold in unstimulated animals. Cerulein hyperstimulation strongly induced MKP-1, MKP-3, and MKP-5 expression, peaking 30 to 60 min after treatment. Thus, MKP's clearly are early responsive genes during pancreatitis induction. Interestingly, inhibition of MKP-1 expression by Ro-31-8220 maximally induced activation of JNK but not of p38 and ERK in acutely isolated acini. These effects indicate that JNK may indeed be a preferred MKP-1 substrate in vivo.  相似文献   

2.
During acute pancreatitis, protease-activated receptor 2 (PAR2) can be activated by interstitially released trypsin. In the mild form of pancreatitis, PAR2 activation exerts local protection against intrapancreatic damage, whereas, in the severe form of pancreatitis, PAR2 activation mediates some systemic complications. This study aimed to identify the molecular mechanisms of PAR2-mediated protective effects against intrapancreatic damage. A mild form of acute pancreatitis was induced by an intraperitoneal injection of caerulein (40 microg/kg) in rats. Effects of PAR2 activation on intrapancreatic damage and on mitogen-activated protein (MAP) kinase signaling were assessed. Caerulein treatment activated extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK) within 15 min and maintained phosphorylation of ERK and JNK for 2 h in the rat pancreas. Although PAR2 activation by the pretreatment with PAR2-activating peptide (AP) itself increased ERK phosphorylation in rat pancreas, the same treatment remarkably decreased caerulein-induced activation of ERK and JNK principally by accelerating their dephosphorylation. Inhibition of ERK and JNK phosphorylation by the pretreatment with MAP/ERK kinase (MEK) or JNK inhibitors decreased caerulein-induced pancreatic damage that was similar to the effect induced by PAR2-AP. Notably, in caerulein-treated rats, PAR2-AP cotreatment highly increased the expression of a group of MAP kinase phosphatases (MKPs) that deactivate ERK and JNK. The above results imply that downregulation of MAP kinase signaling by MKP induction is a key mechanism involved in the protective effects of PAR2 activation on caerulein-induced intrapancreatic damage.  相似文献   

3.
CEP-1347 (KT7515) promotes neuronal survival at dosages that inhibit activation of the c-Jun amino-terminal kinases (JNKs) in primary embryonic cultures and differentiated PC12 cells after trophic withdrawal and in mice treated with 1-methyl-4-phenyl tetrahydropyridine. In an effort to identify molecular target(s) of CEP-1347 in the JNK cascade, JNK1 and known upstream regulators of JNK1 were co-expressed in Cos-7 cells to determine whether CEP-1347 could modulate JNK1 activation. CEP-1347 blocked JNK1 activation induced by members of the mixed lineage kinase (MLK) family (MLK3, MLK2, MLK1, dual leucine zipper kinase, and leucine zipper kinase). The response was selective because CEP-1347 did not inhibit JNK1 activation in cells induced by kinases independent of the MLK cascade. CEP-1347 inhibition of recombinant MLK members in vitro was competitive with ATP, resulting in IC(50) values ranging from 23 to 51 nm, comparable to inhibitory potencies observed in intact cells. In addition, overexpression of MLK3 led to death in Chinese hamster ovary cells, and CEP-1347 blocked this death at doses comparable to those that inhibited MLK3 kinase activity. These results identify MLKs as targets of CEP-1347 in the JNK signaling cascade and demonstrate that CEP-1347 can block MLK-induced cell death.  相似文献   

4.
Chan YC  Leung PS 《Regulatory peptides》2011,166(1-3):128-134
Angiotensin II is a vasoactive peptide that controls blood pressure and homeostasis. Emerging evidence shows that locally generated angiotensin II plays a crucial role in normal physiology, as well as pathophysiological conditions such as pancreatitis. We recently reported that angiotensin II activates pancreatic NFκB in obstructive pancreatitis. However, the specific cell type responsible for this activation remains unclear. In this study, we investigated whether pancreatic acinar cells respond to angiotensin II. These cells are the most abundant pancreatic cells and the most vulnerable to pancreatitis. Pancreatic acinar AR42J cells were used as an in vitro model of pancreatic inflammation. Our results demonstrated that treatment with caerulein, a cholecystokinin receptor agonist, induced hypersecretion and NFκB activation, as demonstrated by elevated amylase secretion and degradation of inhibitor of NFκB (IκBβ). Angiotensin II, either alone or in combination with caerulein, augmented IκBβ degradation. Pre-treatment with losartan, an antagonist of the angiotensin type I (AT1) receptor, abolished NFκB activation by angiotensin II and caerulein in a dose-dependent manner. Treatment with PD123319, a blocker of the angiotensin type II (AT2) receptor, enhanced the activation of NFκB by angiotensin II and caerulein. Preliminary data further demonstrated that angiotensin II could extend caerulein-induced ERK1/2 activation in acinar cells. These results indicated that inflammation triggered by hyperstimulation of pancreatic acinar cells is enhanced by angiotensin II, via the AT1 receptor. In contrast, stimulation of the AT2 receptor protects against caerulein-induced NFκB activation. The differential roles of the AT1 and AT2 receptors might be useful in developing potential therapies for pancreatic inflammation.  相似文献   

5.
Cerebellar granule neurons grown in high potassium undergo rapid apoptosis when switched to medium containing 5 mm potassium, a stimulus mimicking deafferentation. This cell death can be blocked by genetic deletion of Bax, a member of the pro-apoptotic Bcl-2 family, cycloheximide an inhibitor of macromolecular synthesis or expression of dominant-negative c-jun. These observations suggest that Bax activation is the result of c-jun target gene(s) up-regulation following trophic withdrawal. Candidate genes include the BH3-only Bcl-2 family members Dp5 and Bim. The molecular mechanisms underlying granule cell neuronal apoptosis in response to low potassium were investigated using CEP-1347 (KT7515), an inhibitor of the MLK family of JNKKK. CEP-1347 provided protection of potassium-serum-deprived granule cells, but such neuroprotection was not long term. The incomplete protection was not due to incomplete blockade of the JNK signaling pathway because c-jun phosphorylation as well as induction of c-jun RNA and protein were completely blocked by CEP-1347. Following potassium-serum deprivation the JNKK MKK4 becomes phosphorylated, an event blocked by CEP-1347. Cells that die in the presence of CEP-1347 activate caspases; and dual inhibition of caspases and MLKs has additive, not synergistic, effects on survival. A lack of synergism was also seen with the p38 inhibitor SB203580, indicating that the neuroprotective effect of the JNK pathway inhibitor cannot be explained by p38 activation. Activation of the JNK signaling pathway seems to be a key event in granule cell apoptosis, but these neurons cannot survive long term in the absence of sustained PI3 kinase signaling.  相似文献   

6.
In isolated rat pancreatic acini, protein expression of RhoA and Rho-associated kinase, ROCK-II, and the formation of immunocomplex of RhoA with ROCK-II were enhanced by CCK-8, carbachol, and the phorbol ester TPA. The ROCK-specific inhibitor, Y-27632, did not alter basal amylase secretion, whereas it potentiated CCK-stimulated pancreatic enzyme secretion in vitro. During caerulein-induced pancreatitis occurring in mice in vivo, Y-27632 enhanced serum amylase levels and the formation of interstitial edema and vacuolization at 12-18h after the first injection of caerulein. Y-27632 in turn inhibited the recovery of protein expression of ROCK-II at 18h after the first caerulein injection. These results suggest that RhoA and ROCK-II assemble normal CCK-stimulated pancreatic enzyme secretion and prevent caerulein-induced acute pancreatitis.  相似文献   

7.
8.
Inhibition of microglial inflammation by the MLK inhibitor CEP-1347   总被引:2,自引:0,他引:2  
CEP-1347 is a potent inhibitor of the mixed lineage kinases (MLKs), a distinct family of mitogen-activated protein kinase kinase kinases (MAPKKK). It blocks the activation of the c-Jun/JNK apoptotic pathway in neurons exposed to various stressors and attenuates neurodegeneration in animal models of Parkinson's disease (PD). Microglial activation may involve kinase pathways controlled by MLKs and might contribute to the pathology of neurodegenerative diseases. Therefore, the possibility that CEP-1347 modulates the microglial inflammatory response [tumour necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and monocyte chemotactic protein-1 (MCP-1)] was explored. Indeed, the MLK inhibitor CEP-1347 reduced cytokine production in primary cultures of human and murine microglia, and in monocyte/macrophage-derived cell lines, stimulated with various endotoxins or the plaque forming peptide Abeta1-40. Moreover, CEP-1347 inhibited brain TNF production induced by intracerebroventricular injection of lipopolysaccharide in mice. As expected from a MLK inhibitor, CEP-1347 acted upstream of p38 and c-Jun activation in microglia by dampening the activity of both pathways. These data imply MLKs as important, yet unrecognized, modulators of microglial inflammation, and demonstrate a novel anti-inflammatory potential of CEP-1347.  相似文献   

9.
CEP-1347, also known as KT7515, a derivative of a natural product indolocarbazole, inhibited motor neuronal death in vitro, inhibited activation of the stress-activated kinase JNK1 (c-jun NH terminal kinase) in cultured spinal motor neurons, but had no effect on the mitogen-activated protein kinase ERK1 in these cells. Results reported here profile the functional activity of CEP-1347/KT7515 in vivo in models of motor neuronal death or dedifferentiation. Application of CEP-1347/KT7515 to the chorioallantoic membrane of embryonic chicks rescued 40% of the lumbar motor neurons that normally die during the developmental period assessed. Peripheral administration of low doses (0.5 and 1 mg/kg daily) of CEP-1347/KT7515 reduced death of motor neurons of the spinal nucleus of the bulbocavernosus in postnatal female rats, with efficacy comparable to testosterone. Strikingly, daily administration of CEP-1347/KT7515 during the 4-day postnatal window of motor neuronal death resulted in persistent long-term motor neuronal survival in adult animals that received no additional CEP-1347/KT7515. In a model of adult motor neuronal dedifferentiation following axotomy, local application of CEP-1347/KT7515 to the transected hypoglossal nerve substantially reduced the loss of choline acetyl transferase immunoreactivity observed 7 days postaxotomy compared to untreated animals. Results from these experiments demonstrate that a small organic molecule that inhibits a signaling pathway associated with stress and injury also reduces neuronal death and degeneration in vivo. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 361–370, 1998  相似文献   

10.
Microtubule disruption by colchicine induces apoptosis in selected neuronal populations. However, little is known about the upstream death signalling events mediating the neurotoxicity. We investigated first whether colchicine-induced granule cell apoptosis activates the c-Jun N-terminal kinase (JNK) pathway. Cultured murine cerebellar granule cells were exposed to 1 microm colchicine for 24 h. Activation of the JNK pathway was detected by western blotting as well as immunocytochemistry using antibodies against phospho-c-Jun (p-c-Jun). Next, adult male rats were injected intracerebroventricularly with colchicine (10 microg), and JNK pathway activation in dentate granule cells (DGCs) was detected by antibodies against p-c-Jun. The second part of the study tested the involvement of mixed lineage kinases (MLK) as upstream activators of the JNK pathway in colchicine toxicity, using CEP-1347, a potent MLK inhibitor. In vitro, significant inhibition of the JNK pathway, activated by colchicine, was achieved by 100-300 nm CEP-1347, which blocked both activation of cell death proteases and apoptosis. Moreover, CEP-1347 markedly delayed neurite fragmentation and cell degeneration. In vivo, CEP-1347 (1 mg/kg) significantly prevented p-c-jun increase following injection of colchicine, and enhanced survival of DGCs. We conclude that colchicine-induced neuronal apoptosis involves the JNK/MLK pathway, and that protection of granule cells can be achieved by MLK inhibition.  相似文献   

11.
This study was planned to observe the effects of nitric oxide synthesis on the antioxidative defense enzymes and pancreatic tissue histology in caerulein-induced acute pancreatitis. Acute pancreatitis was induced by intraperitoneal injections of 50 microg/kg caerulein, L-arginine used for NO induction and N(omega)-nitro-L-arginine methyl ester (L-NAME) used for NO inhibition. In the caerulein group acinar cell degeneration, interstitial inflammation, oedema and haemorrhage were detected. Pancreatic damage scores were decreased with both NO induction and inhibition (p<0.05). MDA, GSH-Px, CAT, GSH and SOD activities were significantly changed in the caerulein group and indicated increased oxidative stress. Both NO induction and inhibition decreased this oxidative stress. It is concluded that both nitric oxide induction and inhibition ameliorated caerulein-induced acute pancreatitis. The findings indicate that a certain amount of NO production has beneficial effects in experimental acute pancreatitis, but uncontrolled over-production of NO may be detrimental.  相似文献   

12.
Isoforms of protein kinase C (PKC) have been shown to modulate some cellular responses such as pathological secretion and generation of inflammatory mediators during acute pancreatitis (AP). We propose that PKC also participates in premature zymogen activation within the pancreatic acinar cell, a key event in the initiation of AP. This hypothesis was examined in in vivo and cellular models of caerulein-induced AP using PKC activators and inhibitors. Phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA, 200 nM), a known activator of PKC, enhanced zymogen activation at both 0.1 nM and 100 nM caerulein, concentrations which mimic physiological and supraphysiological effects of the hormone cholecystokinin, respectively, in preparations of pancreatic acinar cells. Isoform-specific PKC inhibitors for PKC-delta and PKC-epsilon reduced supraphysiological caerulein-induced zymogen activation. Using a cell-free reconstitution system, we showed that inhibition of PKC-delta and -epsilon, reduced zymogen activation in both zymogen granule-enriched and microsomal fractions. In dispersed acinar cells, 100 nM caerulein stimulation caused PKC-delta and -epsilon isoform translocation to microsomal membranes using cell fractionation and immunoblot analysis. PKC translocation was confirmed with in vivo studies and immunofluorescence microscopy in pancreatic tissues from rats treated with or without 100 nM caerulein. PKC-epsilon redistributed from an apical to a supranuclear region following caerulein administration. The signal for PKC-epsilon overlapped with granule membrane protein, GRAMP-92, an endosomal/lysosomal marker, in a supranuclear region where zymogen activation takes place. These results indicate that PKC-delta and -epsilon isoforms translocate to specific acinar cell compartments and modulate zymogen activation.  相似文献   

13.
Intra-acinar cell nuclear factor-kappaB (NF-kappaB) and trypsinogen activation are early events in secretagogue-induced acute pancreatitis. We have studied the relationship between NF-kappaB and trypsinogen activation in rat pancreas. CCK analogue caerulein induces early (within 15 min) parallel activation of both NF-kappaB and trypsinogen in pancreas in vivo as well as in pancreatic acini in vitro. However, NF-kappaB activation can be induced without trypsinogen activation by lipopolysaccharide in pancreas in vivo and by phorbol ester in pancreatic acini in vitro. Stimulation of acini with caerulein after 6 h of culture results in NF-kappaB but not trypsinogen activation. Protease inhibitors (AEBSF, TLCK, and E64d) inhibit both intracellular trypsin activity and NF-kappaB activation in caerulein stimulated acini. A chymotrypsin inhibitor (TPCK) inhibits NF-kappaB activation but not trypsin activity. The proteasome inhibitor MG-132 prevents caerulein-induced NF-kappaB activation but does not prevent trypsinogen activation. These findings indicate that although caerulein-induced NF-kappaB and trypsinogen activation are temporally closely related, they are independent events in pancreatic acinar cells. NF-kappaB activation per se is not required for the development of early acinar cell injury by supramaximal secretagogue stimulation.  相似文献   

14.
This study was planned to observe the effects of nitric oxide synthesis on the antioxidative defense enzymes and pancreatic tissue histology in caerulein-induced acute pancreatitis. Acute pancreatitis was induced by intraperitoneal injections of 50 µg/kg caerulein, L-arginine used for NO induction and Nω-nitro-L-arginine methyl ester (L-NAME) used for NO inhibition. In the caerulein group acinar cell degeneration, interstitial inflammation, oedema and haemorrhage were detected. Pancreatic damage scores were decreased with both NO induction and inhibition (p<0.05). MDA, GSH-Px, CAT, GSH and SOD activities were significantly changed in the caerulein group and indicated increased oxidative stress. Both NO induction and inhibition decreased this oxidative stress. It is concluded that both nitric oxide induction and inhibition ameliorated caerulein-induced acute pancreatitis. The findings indicate that a certain amount of NO production has beneficial effects in experimental acute pancreatitis, but uncontrolled over-production of NO may be detrimental.  相似文献   

15.
16.
17.
Although c-Jun N-terminal kinase (JNK) plays an important role in cytokine expression, its function in IL-12 production is obscure. The present study uses human macrophages to examine whether the JNK pathway is required for LPS-induced IL-12 production and defines how JNK is involved in the regulation of IL-12 production by glutathione redox, which is the balance between intracellular reduced (GSH) and oxidized glutathione (GSSG). We found that LPS induced IL-12 p40 protein and mRNA in a time- and concentration-dependent manner in PMA-treated THP-1 macrophages, and that LPS activated JNK and p38 mitogen-activated protein (MAP) kinase, but not extracellular signal-regulated kinase, in PMA-treated THP-1 cells. Inhibition of p38 MAP kinase activation using SB203580 dose dependently repressed LPS-induced IL-12 p40 production, as described. Conversely, inhibition of JNK activation using SP600125 dose dependently enhanced both LPS-induced IL-12 p40 production from THP-1 cells and p70 production from human monocytes. Furthermore, JNK antisense oligonucleotides attenuated cellular levels of JNK protein and LPS-induced JNK activation, but augmented IL-12 p40 protein production and mRNA expression. Finally, the increase in the ratio of GSH/GSSG induced by glutathione reduced form ethyl ester (GSH-OEt) dose dependently enhanced LPS-induced IL-12 p40 production in PMA-treated THP-1 cells. GSH-OEt augmented p38 MAP kinase activation, but suppressed the JNK activation induced by LPS. Our findings indicate that JNK negatively affects LPS-induced IL-12 production from human macrophages, and that glutathione redox regulates LPS-induced IL-12 production through the opposite control of JNK and p38 MAP kinase activation.  相似文献   

18.
19.
Airway epithelial cells which are the initial site of influenza virus (IV) infection are suggested to participate in airway inflammatory response by expressing various cytokines including RANTES; however, the intracellular signal that regulates RANTES expression has not been determined. In the present study, we examined the role of p38 mitogen-activated protein (MAP) kinase, extracellular signal-regulated kinase (Erk), and c-Jun-NH2-terminal kinase (JNK) in RANTES production by IV-infected human bronchial epithelial cells. The results showed that IV infection induced increases in p38 MAP kinase, and Erk and JNK phosphorylation and activity. SB 203580, PD 98059, and CEP-1347 attenuated IV-infection induced p38 MAP kinase activity, Erk activity, and JNK activity, respectively. SB 203580 and CEP-1347 attenuated RANTES production by 45.3% and 45.2%, respectively, but a combination of these inhibitors additively attenuated by 69.1%. In contrast, PD 98059 did not attenuate. Anti-IL-1alpha mAb, anti-IL-1beta mAb, anti-TNF-alpha mAb, anti-IL-8 mAb, anti-IFN-beta mAb, anti-RANTES mAb, and a combination of these mAbs did not affect IV infection-induced increases in p38 MAP kinase, Erk, and JNK phosphorylation, indicating that each cytokine neutralized by corresponding Ab was not involved in IV infection-induced phosphorylation of MAP kinases. N-acetylcysteine (NAC) did not affect IV infection-induced increases in MAP kinase phosphorylation, whereas NAC attenuated RANTES production by 18.2%, indicating that reactive oxygen species may act as a second messenger leading to RANTES production via p38 MAP kinase- and JNK-independent pathway. These results indicate that p38 MAP kinase and JNK, at least in part, regulate RANTES production by bronchial epithelial cells.  相似文献   

20.
Ghrelin attenuates the development of acute pancreatitis in rat.   总被引:12,自引:0,他引:12  
BACKGROUND: Ghrelin, a circulating growth hormone-releasing peptide isolated from human and rat stomach, stimulates growth hormone secretion, food intake and exhibits gastroprotective properties. Ghrelin is predominantly produced by a population of endocrine cells in the gastric mucosa, but its presence in bowel, pancreas, pituitary and hypothalamus has been reported. In human fetal pancreas, ghrelin is expressed in a prominent endocrine cell population. In adult pancreatic islets the population of these cell is reduced. The aim of present study was to investigate the influence of ghrelin administration on the development of acute pancreatitis. METHODS: Acute pancreatitis was induced in rat by caerulein injection. Ghrelin was administrated twice (30 min prior to the first caerulein or saline injection and 3 h later) at the doses: 2, 10 or 20 nmol/kg. Immediately after cessation of caerulein or saline injections the following parameters were measured: pancreatic blood flow, plasma lipase activity, plasma interleukin-1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, and morphological signs of pancreatitis. RESULTS: Administration of ghrelin without induction of pancreatitis did not affect significantly any parameter tested. Caerulein led to the development of acute edematous pancreatitis. Treatment with ghrelin at the dose 2 nmol/kg, during induction of pancreatitis, was without effect on pancreatic histology or biochemical and functional parameters. Treatment with ghrelin at the dose 10 and 20 nmol/kg attenuated the development of pancreatitis and the effects of both doses were similar. Administration of ghrelin (10 or 20 nmol/kg) reduced inflammatory infiltration of pancreatic tissue and vacuolization of acinar cells. Also, plasma lipase activity and plasma IL-1beta concentration were reduced, and caerulein-induced fall in pancreatic DNA synthesis was reversed. Administration of ghrelin at the dose 10 and 20 nmol/kg was without effect on caerulein-induced pancreatic edema and pancreatitis-related fall in pancreatic blood flow. CONCLUSIONS: (1) Administration of ghrelin attenuates pancreatic damage in caerulein-induced pancreatitis; (2) Protective effect of ghrelin administration seems Background: Ghrelin, a circulating growth hormone-releasing peptide isolated from human and rat stomach, stimulates growth hormone secretion, food intake and exhibits gastroprotective properties. Ghrelin is predominantly produced by a population of endocrine cells in the gastric mucosa, but its presence in bowel, pancreas, pituitary and hypothalamus has been reported. In human fetal pancreas, ghrelin is expressed in a prominent endocrine cell population. In adult pancreatic islets the population of these cell is reduced. The aim of present study was to investigate the influence of ghrelin administration on the development of acute pancreatitis. Methods: Acute pancreatitis was induced in rat by caerulein injection. Ghrelin was administrated twice (30 min prior to the first caerulein or saline injection and 3 h later) at the doses: 2, 10 or 20 nmol/kg. Immediately after cessation of caerulein or saline injections the following parameters were measured: pancreatic blood flow, plasma lipase activity, plasma interleukin-1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, and morphological signs of pancreatitis. Results: Administration of ghrelin without induction of pancreatitis did not affect significantly any parameter tested. Caerulein led to the development of acute edematous pancreatitis. Treatment with ghrelin at the dose 2 nmol/kg, during induction of pancreatitis, was without effect on pancreatic histology or biochemical and functional parameters. Treatment with ghrelin at the dose 10 and 20 nmol/kg attenuated the development of pancreatitis and the effects of both doses were similar. Administration of ghrelin (10 or 20 nmol/kg) reduced inflammatory infiltration of pancreatic tissue and vacuolization of acinar cells. Also, plasma lipase activity and plasma IL-1beta conc; concentration were reduced, and caerulein-induced fall in pancreatic DNA synthesis was reversed. Administration of ghrelin at the dose 10 and 20 nmol/kg was without effect on caerulein-induced pancreatic edema and pancreatitis-related fall in pancreatic blood flow. Conclusions: (1) Administration of ghrelin attenuates pancreatic damage in caerulein-induced pancreatitis; (2) Protective effect of ghrelin administration seems to be related the inhibition in inflammatory process and the reduction in liberation of pro-inflammatory IL-1beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号