首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The current study was undertaken to address responsiveness of skeletal muscle mitochondrial electron transport chain (ETC) activity to weight loss (WL) and exercise in overweight or obese, sedentary volunteers. Fourteen middle-aged participants (7 male/7 female) had assessments of mitochondrial ETC activity and mitochondrial (mt)DNA in vastus lateralis muscle, obtained by percutaneous biopsy, before and after a 16-wk intervention. Mean WL was 9.7 (1.5%) and the mean increase in Vo(2 max) was [means (SD)] 21.7 (3.7)%. Total ETC activity increased significantly, from 0.13 (0.02) to 0.19 (0.03) U/mU creatine kinase (CK; P < 0.001). ETC activity was also assessed in mitochondria isolated into subsarcolemmal (SSM) and intermyofibrillar (IMF-M) fractions. In response to intervention, there was a robust increase of ETC activity in SSM (0.028 (0.007) to 0.046 (0.011) U/mU CK, P < 0.001), and in IMF-M [0.101 (0.015) to 0.148 (0.018) U/mU CK, P < 0.005]. At baseline, the percentage of ETC activity contained in the SSM fraction was low and remained unchanged following intervention [19 (3) vs. 22 (2)%], despite the increase in ETC activity. Also, muscle mtDNA content did not change significantly [1665 (213) vs. 1874 (214) mtDNA/nuclear DNA], denoting functional improvement rather than proliferation of mitochondria as the principal mechanism of enhanced ETC activity. Increases in ETC activity were correlated with energy expenditure during exercise sessions, and ETC activity in SSM correlated with insulin sensitivity after adjustment for Vo(2 max). In summary, skeletal muscle ETC activity is increased by WL and exercise in previously sedentary obese men and women. We conclude that improved skeletal muscle ETC activity following moderate WL and improved aerobic capacity contributes to associated alleviation of insulin resistance.  相似文献   

2.
Inbred mice with the mutation diabetes C57BL/KsJ db+/db+ and the mutation obese C57BL/6J ob/ob displayed a total liver mitochondrial capacity to oxidize glutamate or succinate which was approximately eight times greater than the capacity of the C57BL/6J +/+ control mice. This increase in oxidation capacity was estimated by multiplying the observed twofold increase in each of the following components: total liver weight, the mitochondrial protein content per gram of liver, and glutamate or succinate respiration activity per milligram of liver mitochondrial protein. No significant difference in liver mitochondrial function and capacity for oxidation was observed between db+/db+ and ob/ob mutants, which indicated that these results may be primarily mediated by the genetic factors responsible for obesity and hyperphagia in these mutants, and not by the genetic traits associated with diabetes. These findings may provide a biochemical foundation in support of the thrifty gene hypothesis.  相似文献   

3.

Background

Within the animal kingdom, horses are among the most powerful aerobic athletic mammals. Determination of muscle respiratory capacity and control improves our knowledge of mitochondrial physiology in horses and high aerobic performance in general.

Methodology/Principal Findings

We applied high-resolution respirometry and multiple substrate-uncoupler-inhibitor titration protocols to study mitochondrial physiology in small (1.0–2.5 mg) permeabilized muscle fibres sampled from triceps brachii of healthy horses.Oxidative phosphorylation (OXPHOS) capacity (pmol O2•s−1•mg−1 wet weight) with combined Complex I and II (CI+II) substrate supply (malate+glutamate+succinate) increased from 77±18 in overweight horses to 103±18, 122±15, and 129±12 in untrained, trained and competitive horses (N = 3, 8, 16, and 5, respectively). Similar to human muscle mitochondria, equine OXPHOS capacity was limited by the phosphorylation system to 0.85±0.10 (N = 32) of electron transfer capacity, independent of fitness level. In 15 trained horses, OXPHOS capacity increased from 119±12 to 134±37 when pyruvate was included in the CI+II substrate cocktail. Relative to this maximum OXPHOS capacity, Complex I (CI)-linked OXPHOS capacities were only 50% with glutamate+malate, 64% with pyruvate+malate, and 68% with pyruvate+malate+glutamate, and ∼78% with CII-linked succinate+rotenone. OXPHOS capacity with glutamate+malate increased with fitness relative to CI+II-supported ETS capacity from a flux control ratio of 0.38 to 0.40, 0.41 and 0.46 in overweight to competitive horses, whereas the CII/CI+II substrate control ratio remained constant at 0.70. Therefore, the apparent deficit of the CI- over CII-linked pathway capacity was reduced with physical fitness.

Conclusions/Significance

The scope of mitochondrial density-dependent OXPHOS capacity and the density-independent (qualitative) increase of CI-linked respiratory capacity with increased fitness open up new perspectives of integrative and comparative mitochondrial respiratory physiology.  相似文献   

4.
There are fewer mitochondria and a reduced oxidative capacity in skeletal muscle in obesity. Moderate-intensity physical activity combined with weight loss increase oxidative enzyme activity in obese sedentary adults; however, this adaptation occurs without a significant increase in mitochondrial DNA (mtDNA), which is unlike the classic pattern of mitochondrial biogenesis induced by vigorous activity. The objective of this study was to examine the hypothesis that the mitochondrial adaptation to moderate-intensity exercise and weight loss in obesity induces increased mitochondrial cristae despite a lack of mtDNA proliferation. Content of cardiolipin and mtDNA and enzymatic activities of the electron transport chain (ETC) and tricarboxylic acid cycle were measured in biopsy samples of vastus lateralis muscle obtained from sedentary obese men and women before and following a 4-mo walking intervention combined with weight loss. Cardiolipin increased by 60% from 47 +/- 4 to 74 +/- 8 microg/mU CK (P < 0.01), but skeletal muscle mtDNA content did not change significantly (1,901 +/- 363 to 2,169 +/- 317 Rc, where Rc is relative copy number of mtDNA per diploid nuclear genome). Enzyme activity of the ETC increased (P < 0.01); that for rotenone-sensitive NADH-oxidase (96 +/- 1%) increased more than for ubiquinol-oxidase (48 +/- 6%). Activities for citrate synthase and succinate dehydrogenase increased by 29 +/- 9% and 40 +/- 6%, respectively. In conclusion, moderate-intensity physical activity combined with weight loss induces skeletal muscle mitochondrial biogenesis in previously sedentary obese men and women, but this response occurs without mtDNA proliferation and may be characterized by an increase in mitochondrial cristae.  相似文献   

5.
K.S. Cheah  J.C. Waring 《BBA》1983,723(1):45-51
The effect of trifluoperazine on the respiration of porcine liver and skeletal muscle mitochondria was investigated by polarographic and spectroscopic techniques. Low concentrations of trifluoperazine (88 nmol/mg protein) inhibited both the ADP- and Ca2+-stimulated oxidation of succinate, and reduced the values of the respiratory control index and the ADPO and Ca2+O ratio. High concentrations inhibited both succinate and ascorbate plus tetramethyl-p-phenylenediame (TMPD) oxidations, and uncoupler (carbonyl cyanide p-trifluromethoxyphenylhydrazone) and Ca2+-stimulated respiration. Porcine liver mitochondria were more sensitive to trifluoperazine than skeletal muscle mitochondria. Trifluoperazine inhibited the electron transport of succinate oxidation of skeletal muscle mitochondria within the cytochrome b-c1 and cytochrome c1-aa3 segments of the respiratory chain system. 233 nmol trifluoperazine/mg protein inhibited the aerobic steady-state reduction of cytochrome c1 by 92% with succinate as substrate, and of cytochrome c and cytochrome aa3 by 50–60% with ascorbate plus TMPD as electron donors. Trifluoperazine can thus inhibit calmodulin-independent reactions particularly when used at high concentrations.  相似文献   

6.
Objective: A non‐silent polymorphism in the mitochondrial coding region of the ND1 gene, a subunit of reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase is associated with resting metabolic rate (RMR) in 245 non‐diabetic Pima Indians. The purpose of this investigation was to determine the effect of the ND1 gene polymorphism on mitochondrial function in 14 male Pima Indians. Methods and Procedures: Seven subjects with an A at site 3547 of the ND1 gene (Ile at amino acid 81), and seven with a G at this site (Val) were studied. Mitochondria were isolated from 0.8 to 1.5 g of skeletal muscle obtained by needle biopsy of the lateral quadriceps muscle. In intact mitochondria, maximal (state‐3) and resting (state‐4) respiration rates were measured polarographically at 37 °C with a variety of single substrates or substrate combinations. Disrupted mitochondria were analyzed for maximal capacities through the entire electron transport chain (ETC) (NADH oxidase (NADHOX)), as well as through a segment of Complex I that is independent of the ND1 component (NADH‐ferricyanide (NADH‐FeCN) reductase). Results: Mitochondria were well coupled and exhibited higher respiratory control ratios (RCRs) than rodent muscle. There were no differences between the two groups for any of the measured parameters. Discussion: These results indicate that the cause of the observed association between RMR and the ND1 polymorphism is not related to in vitro mitochondrial function.  相似文献   

7.
The genetically obese Zucker rat has a reduced capacity to deposit dietary protein in skeletal muscle. To determine whether amino acid uptake by muscle of obese Zucker rats is impaired, soleus strip (SOL) and epitrochlearis (EPI) muscles from 10-wk-old lean and obese Zucker rats were studied in vitro by use of [14C]alpha-aminoisobutyric acid (AIB). Muscles from fasted rats were incubated under basal conditions at rest or after a 1-h treadmill run at 8% grade. To equate total work completed, lean and obese rats ran at 27 and 20 m/min, respectively. Muscles were pinned at resting length, preincubated for 30 min at 37 degrees C in Krebs-Ringer bicarbonate buffer containing 5 mM glucose under 95% O2-5% CO2, and then incubated up to 3 h in Krebs-Ringer bicarbonate with 0.5 mM AIB, [14C]AIB, and [3H]inulin as a marker of extracellular fluid. Basal AIB uptake in EPI and SOL from obese rats was significantly reduced by 40 and 30% (P less than 0.01), respectively, compared with lean rats. For both lean and obese rats, exercise increased (P less than 0.05) basal AIB uptake in EPI and SOL, but the relative increases were greater in the obese rats (EPI 54% and SOL 71% vs. EPI 32% and SOL 37%). These results demonstrate that genetically obese Zucker rats have reduced basal skeletal muscle amino acid uptake and suggest that physical inactivity may partially contribute to this defect.  相似文献   

8.
We tested the hypothesis that strength exercise after intermittent aerobic exercise might activate signaling pathways that regulate mitochondrial biogenesis (activation of the AMPK and p38 pathways; the expression of PGC-1α, NT-PGC-1α, TFAM, and VEGFA mRNA), protein synthesis (phosphorylation level of p70S6K1Thr389 and eEF2Thr56; the expression IGF-1Ea, IGF-1Ec (MGF), and REDD1 mRNA) and proteolysis (phosphorylation level of FOXO1Ser256; the expression of MURF1, MAFbx, and Myostatin mRNA) in trained skeletal muscles. Nine amateur endurance-trained athletes performed an intermittent aerobic cycling (70 min), followed by one-leg strength exercise (ES: four sets of knee extensions till exhaustion), while the other leg was resting (E). Gene expression and protein level were evaluated in samples from m. vastus lateralis taken before the exercise, 40 min, 5 and 22 h after the aerobic exercise. The phosphorylation level of the АССSer79/222 (an endogenous marker of AMPK activity) and the expression of PGC-1α-related gene TFAM (a marker of mitochondrial biogenesis) were increased after E exercise and did not changed after ES exercise. The expression of PGC-1α and truncated isoform NT-PGC-1α was increased in both legs as well. Insulin concentration in blood was decreased significantly (7.5-fold) after aerobic exercise; the phosphorylation level of FOXOSer256 (a regulator of ubiquitin-related proteolysis) was decreased in both legs, which means that it was activated in both types of exercises; at the same time, the expression of the E3-ubiquitin ligase gene MURF1, its target, was only increased after E exercise. Neither aerobic or combined exercise had a significant effect on the regulation of protein synthesis: there were no changes in either expression of IGF-1Ea and IGF-1Ec(MGF) mRNA isoforms or the phosphorylation levels of markers of protein synthesis p70S6K1Thr389 and eEF2Thr56. Thus, the performance of strength exercise immediately after aerobic one prevented the activation of mitochondrial biogenesis in endurance-trained muscles: activation of AMPK pathway and the expression of TFAM are decreased, while protein synthesis regulation is not affected. At the same time, the strength exercise inhibited the expression of MURF1 gene (a marker of ubiquitin proteasome system), which was induced by aerobic exercise. We suggest that strength exercise performed immediately after intense intermittent aerobic exercise may have a negative effect on aerobic performance if used chronically.  相似文献   

9.
Long-term preservation of muscle mitochondria for consequent functional analysis is an important and still unresolved challenge in the clinical study of metabolic diseases and in the basic research of mitochondrial physiology. We here present a method for cryopreservation of mitochondria in various muscle types including human biopsies. Mitochondrial function was analyzed after freeze-thawing permeabilized muscle fibers using glycerol and dimethyl sulfoxide as cryoprotectant. Using optimal freeze-thawing conditions, high rates of adenosine 5(')-diphosphate-stimulated respiration and high respiratory control were observed, showing intactness of mitochondrial respiratory function after cryopreservation. Measurement of adenosine 5(')-triphosphate (ATP) formation showed normal rates of ATP synthesis and ATP/O ratios. Intactness of the outer mitochondrial membrane and functional coupling between mitochondrial creatine kinase and oxidative phosphorylation were verified by respiratory cytochrome c and creatine tests. Simultaneous confocal imaging of mitochondrial flavoproteins and nicotinamide adenine dinucleotide revealed normal intracellular arrangement and metabolic responses of mitochondria after freeze-thawing. The method therefore permits, after freezing and long-term storage of muscle samples, mitochondrial function to be estimated and energy metabolism to be monitored in situ. This will significantly expand the scope for screening and exchange of human biopsy samples between research centers, thus providing a new basis for functional analysis of mitochondrial defects in various diseases.  相似文献   

10.
Cisplatin is widely known as an anti-cancer drug. However, the effects of cisplatin on mitochondrial function and autophagy-related proteins levels in the skeletal muscle are unclear. The purpose of this study was to investigate the effect of different doses of cisplatin on mitochondrial function and autophagy-re-lated protein levels in the skeletal muscle of rats. Eight-week-old male Wistar rats (n = 24) were assigned to one of three groups; the first group was administered a saline placebo (CON, n = 10), and the second and third groups were given 0.1 mg/kg body weight (BW) (n = 6), and 0.5 mg/kg BW (n = 8) of cisplatin, respectively. The group that had been administered 0.5 mg cisplatin exhibited a reduced BW, skeletal muscle tissue weight, and mitochondrial function and upregulated levels of autophagy-related proteins, including LC3II, Beclin 1, and BNIP3. Moreover, this group had a high LC3 II/I ratio in the skeletal muscle; i.e., the administration of a high dose of cisplatin decreased the muscle mass and mitochondrial function and increased the levels of autophagy-related proteins. These results, thus, suggest that reducing mitochondrial dysfunction and autophagy pathways may be important for preventing skeletal muscle atrophy following cisplatin administration.  相似文献   

11.
目的: 从线粒体动力学的角度,探讨抗阻运动对增龄大鼠骨骼肌线粒体功能的影响。方法: 40只雄性SD大鼠随机分为4组:2月龄安静对照组(C1组)、2月龄抗阻运动训练组(R1组)、6月龄安静对照组(C2组)、6月龄抗阻运动训练组(R2组),每组10只。C1、C2组正常喂养,R1、R2组大鼠进行跑台坡度为35°,速度为15 m/min的抗阻运动,一次跑动15 s,间歇30 s,4次为一组,组间间歇3 min,3组为一次循环,一天为2个循环,循环间歇10 min,每周6 d,共8周。采用Western blot法测定各组大鼠股四头肌线粒体融合蛋白2(Mfn2)、GTP酶1(DRP1) 蛋白含量,使用流式细胞仪测定各组大鼠股四头肌线粒体膜电位(ΔΨm)、活性氧(ROS)和游离钙(Ca2+)水平。结果: ① 与C1组相比,R1组大鼠DRP1蛋白升高(P<0.01)、Mfn2蛋白无显著变化,C2组大鼠DRP1、Mfn2蛋白均降低(P均<0.01);与C2组相比,R2组大鼠DRP1、Mfn2蛋白均升高(P<0.01,P<0.05);与R1组相比,R2组DRP1、Mfn2蛋白均降低(P<0.01,P<0.05)。② 与C1组相比,R1组Ca2+含量降低(P<0.01)、C2组Ca2+含量升高(P<0.01);与C2组相比,R2组Ca2+含量降低(P<0.01);与R1组相比,R2组Ca2+含量升高(P<0.01)。③ 与C1组相比,R1组ROS含量有所上升,但无显著性差异,C2组ROS含量升高(P<0.01);与C2组相比,R2组ROS含量降低(P<0.01);与R1组相比,R2组ROS含量升高(P<0.01)。④ 与C1组相比,C2组ΔΨm降低(P<0.01);与C2组相比,R2组ΔΨm升高(P<0.01);与R1组相比,R2组ΔΨm有所降低,但无统计学差异。结论: 大鼠增龄过程中股四头肌线粒体出现Ca2+堆积、活性氧增多、线粒体膜电位下降、融合蛋白减少等现象,抗阻训练可有效改善这些变化。  相似文献   

12.
The pathophysiology underlying mitochondrial dysfunction in insulin-resistant skeletal muscle is incompletely characterized. To further delineate this we investigated the interaction between insulin signaling, mitochondrial regulation, and function in C2C12 myotubes and in skeletal muscle. In myotubes elevated insulin and glucose disrupt insulin signaling, mitochondrial biogenesis, and mitochondrial bioenergetics. The insulin-sensitizing thiazolidinedione pioglitazone restores these perturbations in parallel with induction of the mitochondrial biogenesis regulator PGC-1alpha. Overexpression of PGC-1alpha rescues insulin signaling and mitochondrial bioenergetics, and its silencing concordantly disrupts insulin signaling and mitochondrial bioenergetics. In primary skeletal myoblasts pioglitazone also up-regulates PGC-1alpha expression and restores the insulin-resistant mitochondrial bioenergetic profile. In parallel, pioglitazone up-regulates PGC-1alpha in db/db mouse skeletal muscle. Interestingly, the small interfering RNA knockdown of the insulin receptor in C2C12 myotubes down-regulates PGC-1alpha and attenuates mitochondrial bioenergetics. Concordantly, mitochondrial bioenergetics are blunted in insulin receptor knock-out mouse-derived skeletal myoblasts. Taken together these data demonstrate that elevated glucose and insulin impairs and pioglitazone restores skeletal myotube insulin signaling, mitochondrial regulation, and bioenergetics. Pioglitazone functions in part via the induction of PGC-1alpha. Moreover, PGC-1alpha is identified as a bidirectional regulatory link integrating insulin-signaling and mitochondrial homeostasis in skeletal muscle.  相似文献   

13.
We have investigated the presence of diazoxide- and nicorandil-activated K+ channels in rat skeletal muscle. Activation of potassium transport in the rat skeletal muscle myoblast cell line L6 caused a stimulation of cellular oxygen consumption, implying a mitochondrial effect. Working with isolated rat skeletal muscle mitochondria, both potassium channel openers (KCOs) stimulate respiration, depolarize the mitochondrial inner membrane and lead to oxidation of the mitochondrial NAD-system in a strict potassium-dependent manner. This is a strong indication for KCO-mediated stimulation of potassium transport at the mitochondrial inner membrane. Moreover, the potassium-specific effects of both diazoxide and nicorandil on oxidative phosphorylation in skeletal muscle mitochondria were completely abolished by the antidiabetic sulfonylurea derivative glibenclamide, a well-known inhibitor of ATP-regulated potassium channels (K(ATP) channels). Since both diazoxide and nicorandil facilitated swelling of de-energised mitochondria in KSCN buffer at the same concentrations, our results implicate the presence of a mitochondrial ATP-regulated potassium channel (mitoK(ATP) channel) in rat skeletal muscle which can modulate mitochondrial oxidative phosphorylation.  相似文献   

14.
15.
Recent data have shown that individuals with low insulin sensitivity (S(I)) also have reduced whole body maximal oxygen uptake. The objectives of this study were to determine 1) whether muscle mitochondrial function was independently related to S(I) after being adjusted for known determinants of S(I) and 2) whether lower S(I) among African-American (AA) vs. Caucasian-American (CA) women was due to lower muscle mitochondrial function among AA women. Subjects were 37 CA and 22 AA premenopausal women (age: 33.6 +/- 6.3 yr). Mitochondrial function [time constant of ADP (ADP(tc))] was assessed during a 90-s unilateral isometric contraction using (31)P magnetic resonance spectroscopy, S(I) with an intravenous glucose tolerance test, body composition by dual-energy X-ray absorptiometry, and visceral adipose tissue (VAT) with computed tomography. ANOVA was used to compare AA and CA groups, and multiple linear regression modeling was used to identify independent predictors of S(I). Between-race comparisons indicated that muscle oxidative capacity was lower among AAs vs. CAs (ADP(tc): 25.6 +/- 9.8 vs. 21.4 +/- 9.9 s). Multiple linear regression models for the dependent variable S(I) contained 1) VAT and race and 2) VAT, race, and ADP(tc). Significant independent effects for all predictor variables were observed in both the first (r(2) = 0.345) and second (r(2) = 0.410) models. The partial correlation for race was lower in the second model (-0.404 vs. -0.300), suggesting that muscle mitochondrial function contributed to the racial difference in S(I). Lower muscle mitochondrial function among AAs may in part explain lower S(I) among them.  相似文献   

16.
17.
We studied the effect of caffeine on voluntary and electrically stimulated contractions of the adductor pollicis muscle in five adult volunteers. Caffeine (500 mg) was administered orally in a double-blind fashion. Electrical stimulation of the ulnar nerve was performed at 10, 20, 30, 50, and 100 Hz before and after a sustained voluntary contraction held at 50% of the maximal voluntary contraction (MVC). A brief tetanus at 30 Hz was also performed to calculate relaxation rate in the fresh muscle. Contractile properties, relaxation rate, and endurance were then assessed after caffeine and placebo, as well as the response of the fatigued muscle to different frequencies of stimulation. There was no difference in the maximal tension obtained with electrical stimulation (T100) or in the MVC between placebo and caffeine. The tensions developed with electrical stimulation at lower frequencies increased significantly with caffeine ingestion, shifting the frequency-force curve to the left, both before and after fatigue. Mean plasma caffeine concentration associated with these responses was 12.2 +/- 4.9 mg/l. We conclude that caffeine has a direct effect on skeletal muscle contractile properties both before and after fatigue as demonstrated by electrical stimulation.  相似文献   

18.
目的:探讨有氧运动对衰老大鼠骨骼肌线粒体能量代谢的影响。方法:将20只12月龄的雌性Wistar大鼠随机分为老年安静组(AC,n=10)及老年运动组(AE,n=10),另取10只2月龄的雌性Wistar大鼠为青年安静组(YC,n=10);安静组大鼠进行正常饲养,运动组大鼠进行坡度为5°,速度为15.2 m/min,第1天运动15 min、第2天运动30 min、从第3天开始每天运动45 min,每周6 d,共12周。12周后所有大鼠断头处死,取腓肠肌样本,差速离心法提取线粒体,测定SOD和GSH-Px活性、MDA含量、三羧酸循环限速酶(CS、ICD和α-KGDHC)活性及呼吸链酶复合体(RCCⅠ~Ⅳ)活性。结果:①与YC组相比,AC组骨骼肌线粒体SOD活性和MDA含量显著增加(P<0.05),CS和α-KGDHC活性均显著降低(P<0.05),RCCⅠ、RCCⅡ和RCCⅣ活性均显著下降(P<0.05),RCCⅢ活性显著升高(P<0.05);AE组骨骼肌线粒体SOD、GSH-Px活性和MDA含量均显著增加(P<0.01),CS、ICD和α-KGDHC活性均显著升高(P<0.01),RCCⅠ~Ⅳ活性均显著升高(P<0.01)。②与AC组相比,AE组骨骼肌线粒体SOD、GSH-Px活性均显著升高(P<0.05),MDA含量显著下降(P<0.05),CS、ICD、α-KGDHC和RCCⅠ~Ⅳ活性均显著升高(P<0.01)。结论:有氧运动可以提高老年大鼠骨骼肌线粒体抗氧化能力,降低脂质过氧化水平,提高三羧酸循环及呼吸链功能,促进线粒体能量代谢,延缓衰老过程中线粒体的退行性变化。  相似文献   

19.
Seven untrainedvolunteers [3 men, 4 women, 20.1 ± 2.0 (SD) yr, 66.0 ± 11.0 kg, 171 ± 13 cm] participated in a 10-day cycle exercisetraining program. Resting muscle samples were obtained from vastuslateralis before and after 5 and 10 days of training. Mitochondrial ATPproduction rate (MAPR) was assayed in isolated mitochondria by using abioluminescence technique and referenced to the activity of glutamatedehydrogenase in the muscle sample. MAPR increased 136 and 161% after10 days of training for the mitochondrial substrate combinationspyruvate + palmitoyl-L-carnitine + -ketoglutarate + malate andpalmitoyl-L-carnitine + malate, respectively. Total muscle glutamate dehydrogenase and citrate synthaseactivity increased 53 and 16%, respectively, after 5 days but did notsignificantly increase further after 10 days. The results from thepresent study indicate that MAPR, measured by using the substratecombinations pyruvate + palmitoyl-L-carnitine + -ketoglutarate + malate andpalmitoyl-L-carnitine + malate, can rapidly increase in response to endurance training.  相似文献   

20.
To determine the role of intramitochondrial protein synthesis (PS) and degradation (PD) in contractile activity-induced mitochondrial biogenesis, we evaluated rates of [(35)S]methionine incorporation into protein in isolated rat muscle subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria. Rates of PS ranged from 47 to 125% greater (P < 0.05) in IMF compared with SS mitochondria. Intense, acute in situ contractile activity (10 Hz, 5 min) of fast-twitch gastrocnemius muscle resulted in a 50% decrease in PS (P < 0.05) in SS but not IMF mitochondria. Recovery, or continued contractile activity (55 min), reestablished PS in SS mitochondria. In contrast, PS was not affected in either SS or IMF mitochondria after prolonged (60-min) contractile activity in the presence or absence of a recovery period. PD was not influenced by 5 min of contractile activity in the presence or absence of recovery but was reduced after 60 min of contractions followed by recovery. Chronic stimulation (10 Hz, 3 h/day, 14 days) increased muscle cytochrome-c oxidase activity by 2.2-fold but reduced PS in IMF mitochondria by 29% (P < 0.05; n = 4). PS in SS mitochondria and PD in both subfractions were not changed by chronic stimulation. Thus acute contractile activity exerts differential effects on protein turnover in IMF and SS mitochondria, and it appears that intramitochondrial PS does not limit the extent of chronic contractile activity-induced mitochondrial biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号