首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vasodepressor reactions were induced in 27 rats by a combination of inferior vena caval occlusion and an infusion of isoproterenol. A vasodepressor reaction was defined as paradoxical heart rate slowing during inferior vena caval occlusion. The R-R intervals were measured at 5-s intervals before, during, and after 60 s of inferior vena caval occlusion. The purpose of this study was to examine the role of the right and left vagus nerve and the right and left stellate ganglia in this reflex. Under control conditions inferior vena caval occlusion accelerated the rate (R-R, -15.9 +/- 0.9 ms). During an infusion of isoproterenol (0.5-1.0 micrograms.min-1), inferior vena caval occlusion produced paradoxical rate slowing, i.e., a vasodepressor reaction (R-R, +75.0 +/- 2.2 ms). The vasodepressor reaction was examined during inferior vena caval occlusion and isoproterenol under the following additional states: atropine methyl bromide or right vagotomy did not alter the reaction; left vagotomy eliminated the reaction; and right or left stellectomy greatly reduced the vasodepressor reaction. We conclude the following: (1) left vagal afferents mediate the vasodepressor reaction; (2) cardiac sympathetic fibers participate in the vasodepressor reaction by withdrawing efferent tone through the right stellate ganglion, and by generating the afferent signal, which triggers the vasodepressor reaction through the left stellate ganglion.  相似文献   

2.
The beat-by-beat changes in atrioventricular (AV) conduction evoked by constant frequency and phase-coupled vagal stimulation were examined both qualitatively and quantitatively in 13 anesthetized dogs. The effects of pacing cycle length and sympathetic activity on the vagally induced phasic changes in AV conduction were also characterized. When the vagal stimulus interval was nearly equal to the pacing cycle length and the vagal stimulus moved progressively through the cardiac cycle, AV interval oscillated in a rhythmic fashion. The rhythmicity of the vagally induced AV interval oscillations was altered substantially by changes in either the vagal stimulus interval or the pacing cycle length. The vagally induced AV interval oscillations were abolished during phase-coupled vagal stimulation; however, the magnitude of the resultant steady-state AV interval depended on the time relative to the phase of the cardiac cycle that the vagal stimulus was delivered. In the presence or absence of sympathetic stimulation, a vagal stimulus falling approximately 200 ms prior to atrial depolarization evoked the greatest prolongation in AV interval, regardless of the pacing cycle length. Additionally, the effects of combined sympathetic and phase-dependent vagal stimulation on the AV interval were additive. These data confirm that the influence of a vagal stimulus on AV interval can be predicted from the phase in the cardiac cycle that the vagal stimulus is delivered. Moreover, this phase dependency of vagal effects evokes marked qualitative variations in AV interval response patterns when either the vagal stimulus interval or the pacing cycle length is altered.  相似文献   

3.
Parasympathetic control of the heart is attenuated in heart failure (HF). We investigated possible mechanisms and sites of altered vagal control in dogs with HF induced by rapid pacing. Muscarinic blockade reduced the R-R interval by 308 ms in controls but only by 32 ms in HF, indicating low levels of resting vagal tone. Vagomimetic doses of atropine sulfate prolonged the R-R interval by 109 ms in controls and increased standard deviation of the R-R interval by 66 ms but only by 46 and 16 ms, respectively, in HF. Bradycardia elicited by electrical stimulation of the vagus nerve was also attenuated in the HF group. Conversely, muscarinic receptor activation by bethanechol, and indirectly by neostigmine, elicited exaggerated R-R interval responses in HF. To investigate possible mechanisms, we measured muscarinic receptor density (Bmax) and acetylcholinesterase activity in different areas of the heart. In sinoatrial nodes, Bmax was increased (230 +/- 75% of control) and acetylcholinesterase decreased (80 +/- 6% of control) in HF. We conclude that muscarinic receptors are upregulated and acetylcholinesterase is reduced in the sinus node in HF. Therefore, reduced vagal control in HF is most likely due to changes of presynaptic function (ganglionic), because postsynaptic mechanisms augment vagal control in HF.  相似文献   

4.
We hypothesized that pituitary adenylate cyclase-activating polypeptide (PACAP) activates intracardiac postganglionic parasympathetic nerves and has a different effect than cervical vagal stimulation. We measured effective refractory period (ERP) and conduction velocity at four atrial sites [high right atrium (HRA), low right atrium (LRA), high left atrium (HLA), and low left atrium (LLA)] and minimum atrial fibrillation (AF) cycle length at 12 atrial sites during cervical vagal stimulation and after PACAP in 26 autonomically decentralized, open-chest, anesthetized dogs. PACAP shortened ERP to a similar extent at all four sites (HRA, 58 +/- 2.0 ms; LRA, 60 +/- 6.3 ms; HLA, 68 +/- 11.5 ms; and LLA, 60 +/- 8.3 ms). Low- and high-intensity vagal stimulation shortened ERP at the HRA, but not in the other atrial sites (low-intensity stimulation: HRA, 64 +/- 4.0 ms; LRA, 126 +/- 5.1 ms; HLA, 110 +/- 9.5 ms; and LLA, 102 +/- 11.5 ms; high-intensity stimulation: HRA, 58 +/- 4.2 ms; and HLA, 101 +/- 4.0 ms). Conduction velocity was not altered by any intervention. Minimum AF cycle length after PACAP was similar in both atria but was shorter in the right atrium than in the left atrium during vagal stimulation. After atropine administration, no interventions changed ERP. These results suggest that PACAP shortens atrial refractoriness uniformly in both atria through activation of intrinsic cardiac nerves, not all of which are activated by cervical vagal stimulation.  相似文献   

5.
The present study investigated the effects of long-duration exercise on heart rate variability [as a marker of cardiac vagal tone (VT)]. Heart rate variability (time series analysis) was measured in mongrel dogs (n = 24) with healed myocardial infarctions during 1 h of submaximal exercise (treadmill running at 6.4 km/h at 10% grade). Long-duration exercise provoked a significant (ANOVA, all P < 0.01, means +/- SD) increase in heart rate (1st min, 165.3 +/- 15.6 vs. last min, 197.5 +/- 21.5 beats/min) and significant reductions in high frequency (0.24 to 1.04 Hz) power (VT: 1st min, 3.7 +/- 1.5 vs. last min, 1.0 +/- 0.9 ln ms(2)), R-R interval range (1st min, 107.9 +/- 38.3 vs. last min, 28.8 +/- 13.2 ms), and R-R interval SD (1st min, 24.3 +/- 7.7 vs. last min 6.3 +/- 1.7 ms). Because endurance exercise training can increase cardiac vagal regulation, the studies were repeated after either a 10-wk exercise training (n = 9) or a 10-wk sedentary period (n = 7). After training was completed, long-duration exercise elicited smaller increases in heart rate (pretraining: 1st min, 156.0 +/- 13.8 vs. last min, 189.6 +/- 21.9 beats/min; and posttraining: 1st min, 149.8 +/- 14.6 vs. last min, 172.7 +/- 8.8 beats/min) and smaller reductions in heart rate variability (e.g., VT, pretraining: 1st min, 4.2 +/- 1.7 vs. last min, 0.9 +/- 1.1 ln ms(2); and posttraining: 1st min, 4.8 +/- 1.1 vs. last min, 2.0 +/- 0.6 ln ms(2)). The response to long-duration exercise did not change in the sedentary animals. Thus the heart rate increase that accompanies long-duration exercise results, at least in part, from reductions in cardiac vagal regulation. Furthermore, exercise training attenuated these exercise-induced reductions in heart rate variability, suggesting maintenance of a higher cardiac vagal activity during exercise in the trained state.  相似文献   

6.
In order to distinguish the effects of beta-receptor stimulation on the ECG from other factors during short-term adjustment to hypoxic aerohypoxia, the ECG of 19 volunteers were compared during moderately acute, stepwise exposure to high altitude (6,000 m) in a low pressure chamber, once with and once without beta-receptor blockade (propranolol), and after isoprenaline inhalation at ground level. The results show that beta-receptor stimulation accounts mainly for most ECG changes during altitude exposure, i.e., for the shortening of R-R interval, the lengthening of Q-T and in particular for the ST-T flattening, the latter therefore being only an indirect sign of hypoxia. After exclusion of the catecholamines, the minor but still significant ECG changes at altitude (shortening of R-R interval, increase of P wave, prolongation of P-Q, deviation of the R vector, T wave flattening in the left precordial leads) may be attributed to other, so far undefined factors, such as cardiac hypoxia, vagal withdrawal, or increase of pulmonary resistance.  相似文献   

7.
The canine cervical trachea has been used for numerous studies regarding the neural control of tracheal smooth muscle. The purpose of the present study was to determine whether there is lateral dominance by either the left or right vagal innervation of the canine cervical trachea. In anesthetized dogs, pressure in the cuff of the endotracheal tube was used as an index of smooth muscle tone in the trachea. After establishment of tracheal tone, as indicated by increased cuff pressure, either the right or left vagus nerve was sectioned followed by section of the contralateral vagus. Sectioning the right vagus first resulted in total loss of tone in the cervical trachea, whereas sectioning the left vagus first produced either a partial or no decrease in tracheal tone. After bilateral section of the vagi, cuff pressure was recorded during electrical stimulation of the rostral end of the right or left vagus. At the maximum current strength used, stimulation of the left vagus produced tracheal constriction that averaged 28.5% of the response to stimulation of the right vagus (9.0 +/- 1.8 and 31.6 +/- 2.5 mmHg, respectively). In conclusion, the musculature of cervical trachea in the dog appears to be predominantly controlled by vagal efferents in the right vagus nerve.  相似文献   

8.
Although power spectra of R-R and P-R intervals in response to random respiration show similar frequency distributions, the way in which dynamic sympathetic regulation contributes to such similarity remains unknown. We estimated the transfer function from sympathetic stimulation to the atrioventricular interval (AV conduction time; T(AV)) with and without constant atrial pacing in seven anesthetized cats. The transfer function from sympathetic stimulation to T(AV), except for absolute gain values, approximated a low-pass filter similar to that from sympathetic stimulation to the A-A interval (heart period; T(AA)). The 90%-rise times did not differ between the T(AA) and T(AV) step responses (32.3 +/- 1.8 vs. 29.6 +/- 3.2 s). Constant pacing augmented the T(AV) step response (-0.58 +/- 0.10 vs. -0.86 +/- 0.12 ms/Hz, P < 0.05) without affecting the 90%-rise time. These findings suggest that the dynamic characteristics of sympathetic control are similar between T(AA) and T(AV) despite the different electrophysiological mechanisms determining T(AA) and T(AV). A numerical simulation indicated that if the dynamic characteristics of the sympathetic control do not match between T(AA) and T(AV), a critical condition for initiation of reentrant tachycardia would be encountered.  相似文献   

9.
Although electrical vagal stimulation exerts beneficial effects on the ischemic heart such as an antiarrhythmic effect, whether it modulates norepinephrine (NE) and acetylcholine (ACh) releases in the ischemic myocardium remains unknown. To clarify the neural modulation in the ischemic region during vagal stimulation, we examined ischemia-induced NE and ACh releases in anesthetized and vagotomized cats. In a control group (VX, n = 8), occlusion of the left anterior descending coronary artery increased myocardial interstitial NE level from 0.46+/-0.09 to 83.2+/-17.6 nM at 30-45 min of ischemia (mean+/-SE). Vagal stimulation at 5 Hz (VS, n = 8) decreased heart rate by approximately 80 beats/min during the ischemic period and suppressed the NE release to 24.4+/-10.6 nM (P < 0.05 from the VX group). Fixed-rate ventricular pacing (VSP, n=8) abolished this vagally mediated suppression of ischemia-induced NE release. The vagal stimulation augmented ischemia-induced ACh release at 0-15 min of ischemia (VX: 11.1+/-2.1 vs. VS: 20.7+/-3.9 nM, P < 0.05). In the VSP group, the ACh release was not augmented. In conclusion, vagal stimulation suppressed the ischemia-induced NE release and augmented the initial increase in the ACh level. These modulations of NE and ACh levels in the ischemic myocardium may contribute to the beneficial effects of vagal stimulation on the heart during acute myocardial ischemia.  相似文献   

10.
We studied the influence of unilateral vagal stimulation on intrapulmonary neuroepithelial bodies (NEB) in rabbits. The left vagus nerve was cut and electrically stimulated for 10 min. Animals were killed and the lungs studied with fluorescence and electron microscopy. Intensity of formaldehyde-induced fluorescence, which reflects the serotonin content in NEB, was higher on the stimulated side than on the nonstimulated side (118 +/- 7 vs. 100%, n = 8, P less than 0.001). The latter difference was found to correlate with the stimulus amplitude (r = 0.9, P less than 0.05). Ultrastructurally a decrease in the number of exocytotic dense-cored vesicle (DCV) profiles at the level of the NEB basal epithelial cell membrane was found on the stimulated side (0.32 +/- 0.10 vs. 0.45 +/- 0.16 DCV/micron of basal epithelial cell membrane, n = 8, P less than 0.05). Section of the left vagus nerve without electrical stimulation affected neither the fluorescence intensity nor the number of exocytotic DCV profiles. In animals with supranodosal or infranodosal chronic vagotomy the observed effects of unilateral vagal stimulation were no longer present. We conclude that 1) vagal stimulation increases the serotonin content of NEB; 2) it decreases the number of exocytotic DCV profiles; 3) this effect depends on the amplitude of the stimulus; 4) it is obtained through efferent vagal fibers; 5) these results are the opposite of the effects seen after exposing normal NEB to acute hypoxia; and 6) these physiological experiments corroborate a vagal innervation of NEB, which may play an important role in modulating the sensitivity and reaction of NEB to various stimuli.  相似文献   

11.
To examine whether changes in autonomic activity have an effect on the latency of the vagally mediated cardiac baroreflex response in humans, we investigated the effects of neck suction fluctuating sinusoidally at 0.2 Hz on R-R intervals (known to be mediated mainly by vagal activity) in the supine position, during 15 degrees head-down tilt and 60 degrees head-up tilt, and during vagotonic (2 microg/kg) and vagolytic (10 microg/kg) doses of atropine while the subjects breathed at 0.25 Hz. The phase shift between fluctuations in neck chamber pressure and in R-R interval was calculated by complex transfer function analysis and was used as a measure of the time delay between carotid baroreceptor stimulation and cardiac effector response. Cardiac baroreflex responsiveness increased significantly during low-dose atropine and decreased during head-up tilt or 10 microg/kg atropine. With increasing tilt angle, the time delay between cyclic baroreceptor stimulation and oscillations in R-R interval increased from 0.32 +/- 0.27 s (head down), to 0.59 +/- 0.25 s (supine position, P < 0.05 vs. head down), and to 0.86 +/- 0.27 s (head up, P < 0.01 vs. supine). Low-dose atropine had a similar effect to head-down tilt on baroreflex latency, whereas 10 microg/kg atropine increased the time delay markedly to 1.24 +/- 0.30 s. Our results demonstrate that changes in autonomic activity, generated either by gravitational stimulus or by atropine, not only affect baroreflex responsiveness but also have a major influence on the latency of the vagally mediated carotid baroreceptor-heart rate reflex. The prolonged baroreflex latency during decreased parasympathetic function may contribute to an unstable regulation of heart rate in patients with cardiac disease.  相似文献   

12.
In the denervated mammalian heart a change in right atrial pressure will still alter heart rate (intrinsic rate response, IRR). We have examined the IRR in isolated right atria of the guinea-pig maintained in oxygenated Krebs-Henseleit solution at 37 degrees C, to compare with and extend studies in other species, and to determine whether the guinea-pig is a suitable model for electrophysiological studies of the IRR. Baseline diastolic transmural pressure was set at 2 mmHg. A 6-mmHg increase in right atrial pressure (RAP) caused an increase in atrial rate that reached a steady value of 15 min(-1) after 1-2 min. This response was enhanced by carbamylcholine and attenuated by isoprenaline. The influence of RAP on the rate response to vagal stimulation was examined. With RAP set at 8 mmHg, the reduction in atrial rate following vagal stimulation was 72+/-5% of that at 2 mmHg (n=6, mean+/-S.E., P<0.005). Continuous vagal stimulation produced a sustained bradycardia, and the effect of this bradycardia on the IRR was examined. When atrial rate was reduced 6% by vagal stimulation, the IRR was augmented to 202+/-21% of the control (n=6, P<0.005). This augmentation was larger (P<0.05) than that seen when atrial rate was reduced 8% by carbamylcholine (130+/-8% of control; n=7, P<0.05). Overall, the IRR in the guinea-pig is similar to that in the rabbit, and shows similar interactions with the autonomic nervous system.  相似文献   

13.
Studies of genetically modified mice provide a powerful approach to investigate consequences of altered gene expression in physiological and pathological states. The goal of the present study was to characterize afferent, central, and efferent components of the baroreceptor reflex in anesthetized Webster 4 mice. Baroreflex and baroreceptor afferent functions were characterized by measuring changes in renal sympathetic nerve activity (RSNA) and aortic depressor nerve activity (ADNA) in response to nitroprusside- and phenylephrine-induced changes in arterial pressure. The data were fit to a sigmoidal logistic function curve. Baroreflex diastolic pressure threshold (P(th)), the pressure at 50% inhibition of RSNA (P(mid)), and baroreflex gain (maximum slope) averaged 74 +/- 5 mmHg, 101 +/- 3 mmHg, and 2.30 +/- 0.54%/mmHg, respectively (n = 6). The P(th), P(mid), and gain for the diastolic pressure-ADNA relation (baroreceptor afferents) were similar to that observed for the overall reflex averaging 79 +/- 9 mmHg, 101 +/- 4 mmHg, and 2.92 +/- 0.53%/mmHg, respectively (n = 5). The central nervous system mediation of the baroreflex and the chronotropic responsiveness of the heart to vagal efferent activity were independently assessed by recording responses to electrical stimulation of the left ADN and the peripheral end of the right vagus nerve, respectively. Both ADN and vagal efferent stimulation induced frequency-dependent decreases in heart rate and arterial pressure. The heart rate response to ADN stimulation was nearly abolished in mice anesthetized with pentobarbital sodium (n = 4) compared with mice anesthetized with ketamine-acepromazine (n = 4), whereas the response to vagal efferent stimulation was equivalent under both types of anesthesia. Application of these techniques to studies of genetically manipulated mice can be used to identify molecular mechanisms of baroreflex function and to localize altered function to afferent, central, or efferent sites.  相似文献   

14.
This paper describes the histological features of the vagus nerve after its stimulation with an electrostimulation system that is being developed for morbid obesity treatment. An electrostimulation system was implanted laparoscopically around the ventral vagal trunk of five Large White female pigs (49.63+/-1.94 kg.). Vagal nerve stimulation was performed by continuous constant voltage current pulses. Thoracic samples of both ventral and dorsal vagal trunks were obtained thoracoscopically one month after implantation. Animals were sacrificed one month after thoracoscopic vaguectomy. Tissue samples were then harvested from the vagal nerve at the implantation site, 1cm cranial to it, thoracic portion of ventral and dorsal vagal trunks, sub-diaphragmatic dorsal vagal trunk, left and right vagus nerves. Specimens were analysed with light microscope. The severity of the lesions was graded from 0 to 4 (0: no lesion, 1: mild, 2: moderate, 3: severe and 4: extremely severe), taking into account fibrosis, vascularization, necrosis, fiber degeneration and inflammation. Electrode implantation resulted in thickened epineurium and endoneural connective tissue. The greatest lesion score was evidenced at the leads implantation site in the ventral vagal trunk, followed by, in order of decreasing lesion severity, left vagus nerve, thoracic portion of ventral vagal trunk, subdiaphragmatic dorsal vagal trunk, thoracic portion of dorsal vagal trunk and right vagus nerve. The stimulation device used in this study caused connective tissue growth, greatest in the samples located closer to the implantation site. However, there was no sign of altered vascularization in any studied specimen.  相似文献   

15.
Atrial fibrillation (AF) is characterized by short and irregular ventricular cycle lengths (VCL). While the beneficial effects of heart rate slowing (i.e., the prolongation of VCL) in AF are well recognized, little is known about the impact of irregularity. In 10 anesthetized dogs, R-R intervals, left ventricular (LV) pressure, and aortic flow were collected for >500 beats during fast AF and when the average VCL was prolonged to 75%, 100%, and 125% of the intrinsic sinus cycle length by selective atrioventricular (AV) nodal vagal stimulation. We used the ratio of the preceding and prepreceding R-R intervals (RR(p)/RR(pp)) as an index of cycle length irregularity and assessed its effects on the maximum LV power, the minimum of the first derivative of LV pressure, and the time constant of relaxation by using nonlinear fitting with monoexponential functions. During prolongation of VCL, there was a pronounced decrease in curvature with the formation of a plateau, indicating a lesser dependence on RR(p)/RR(pp). We conclude that prolongation of the VCL during AF reduces the sensitivity of the LV performance parameters to irregularity.  相似文献   

16.
Baroreflex control of heart rate (HR) is impaired after chronic intermittent hypoxia (CIH). However, the location and nature of this response remain unclear. We examined baroreceptor afferent, vagal efferent, and central components of the baroreflex circuitry. Fischer 344 (F344) rats were exposed to room air (RA) or CIH for 35-50 days and were then anesthetized with isoflurane, ventilated, and catheterized for measurement of mean arterial blood pressure (MAP) and HR. Baroreceptor function was characterized by measuring percent changes of integrated aortic depressor nerve (ADN) activity (Int ADNA) relative to the baseline value in response to sodium nitroprusside- and phenylephrine-induced changes in MAP. Data were fitted to a sigmoid logistic function curve. HR responses to electrical stimulation of the left ADN and the right vagus nerve were assessed under ketamine-acepromazine anesthesia. Compared with RA controls, CIH significantly increased maximum baroreceptor gain or maximum slope, maximum Int ADNA, and Int ADNA range (maximum - minimum Int ADNA), whereas other parameters of the logistic function were unchanged. In addition, CIH increased the maximum amplitude of bradycardic response to vagal efferent stimulation and decreased the time from stimulus onset to peak response. In contrast, CIH significantly reduced the maximum amplitude of bradycardic response to left ADN stimulation and increased the time from stimulus onset to peak response. Therefore, CIH decreased central mediation of the baroreflex but augmented baroreceptor afferent function and vagal efferent control of HR.  相似文献   

17.
Food induced neurohumoral signals are conduced to data processing brain centers mainly as vagal afferent discharge resulting in food intake regulation. The aim of this study was to evaluate effects of vagal nerve neuromodulation in control of food intake with fed-pattern microchip (MC) pacing. Experiments were performed on 60 rats divided on 5 groups: I group 0,05Hz left vagal pacing, II - pacing of both vagal nerves with MC 0,05Hz, III- left vagal MC 0,1Hz pacing, IV - pacing of both vagal nerves with MC 0,1 Hz was performed. In group V left vagal pacing was combined with right side abdominal vagotomy. Body weight and total food intake decreased by 12% and 14% (I), 26% and 30%(II), 8% and 21%(III), 14% and 30%(IV), 38% and 41%(IV), respectively (p<0.05). Effects of both vagal nerves stimulation on final body weight and food intake was significantly more effective than only single nerve MC pacing however most effective was stimulation with 0,1Hz combined with right vagotomy. We conclude that vagal stimulation reduce food intake and body weight by increasing vagal afferent signals. Our results suggest that information in vagal afferents can be modulated resulting in changes of feeding behaviour and body weight.  相似文献   

18.
Vagal control of heart rate (HR) is mediated by direct and indirect actions of ACh. Direct action of ACh activates the muscarinic K(+) (K(ACh)) channels, whereas indirect action inhibits adenylyl cyclase. The role of the K(ACh) channels in the overall picture of vagal HR control remains to be elucidated. We examined the role of the K(ACh) channels in the transfer characteristics of the HR response to vagal stimulation. In nine anesthetized sinoaortic-denerved and vagotomized rabbits, the vagal nerve was stimulated with a binary white-noise signal (0-10 Hz) for examination of the dynamic characteristic and in a step-wise manner (5, 10, 15, and 20 Hz/min) for examination of the static characteristic. The dynamic transfer function from vagal stimulation to HR approximated a first-order, low-pass filter with a lag time. Tertiapin, a selective K(ACh) channel blocker (30 nmol/kg iv), significantly decreased the dynamic gain from 5.0 +/- 1.2 to 2.0 +/- 0.6 (mean +/- SD) beats.min(-1).Hz(-1) (P < 0.01) and the corner frequency from 0.25 +/- 0.03 to 0.06 +/- 0.01 Hz (P < 0.01) without changing the lag time (0.37 +/- 0.04 vs. 0.39 +/- 0.05 s). Moreover, tertiapin significantly attenuated the vagal stimulation-induced HR decrease by 46 +/- 21, 58 +/- 18, 65 +/- 15, and 68 +/- 11% at stimulus frequencies of 5, 10, 15, and 20 Hz, respectively. We conclude that K(ACh) channels contribute to a rapid HR change and to a larger decrease in the steady-state HR in response to more potent tonic vagal stimulation.  相似文献   

19.
Asymmetric innervation of the myocardium, especially a predominance of sympathetic innervation, may establish conditions whereby electrical instability could result. Using a swine animal model, we studied the effect of right cardiac vagal denervation on the variability of R-R and Q-T intervals. Newborn pigs were assigned randomly to two groups: sham-operated controls (C), or denervation of the right cardiac vagus nerve (RCVX). EKGs were recorded weekly until the two groups exhibited significant heart rate differences. Analysis of the EKG included measurements of R-R and Q-T intervals and corrected Q-T intervals (QTc). Poincaré plots were used to display age-related differences in R-R and Q-T intervals. For RCVX animals, decreased QTc and R-R intervals were noted at 6 and 7 weeks after denervation, respectively. Unexpectedly, one RCVX animal exhibited marked sudden pauses in sinus rhythm. These data indicated that reduced vagal cardiac modulation during development might alter cardiac electrical stability in conscious swine.  相似文献   

20.
Complex sympathovagal interactions govern heart rate (HR). Activation of the postjunctional beta-adrenergic receptors on the sinus nodal cells augments the HR response to vagal stimulation, whereas exogenous activation of the presynaptic alpha-adrenergic receptors on the vagal nerve terminals attenuates vagal control of HR. Whether the alpha-adrenergic mechanism associated with cardiac postganglionic sympathetic nerve activation plays a significant role in modulation of the dynamic vagal control of HR remains unknown. The right vagal nerve was stimulated in seven anesthetized rabbits that had undergone sinoaortic denervation and vagotomy according to a binary white-noise signal (0-10 Hz) for 10 min; subsequently, the transfer function from vagal stimulation to HR was estimated. The effects of beta-adrenergic blockade with propranolol (1 mg/kg i.v.) and the combined effects of beta-adrenergic blockade and tonic cardiac sympathetic nerve stimulation at 5 Hz were examined. The transfer function from vagal stimulation to HR approximated a first-order, low-pass filter with pure delay. beta-Adrenergic blockade decreased the dynamic gain from 6.0 +/- 0.4 to 3.7 +/- 0.6 beats x min(-1) x Hz(-1) (P < 0.01) with no alteration of the corner frequency or pure delay. Under beta-adrenergic blockade conditions, tonic sympathetic stimulation did not further change the dynamic gain (3.8 +/- 0.5 beats x min(-1) x Hz(-1)). In conclusion, cardiac postganglionic sympathetic nerve stimulation did not affect the dynamic HR response to vagal stimulation via the alpha-adrenergic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号