首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The atrial volume reflex is attenuated in pregnancy. This may be mimicked by chronic administration of 5alpha-pregnan-3alpha-ol-20-one (pregnan). We investigated whether afferent output from sensory receptors may be suppressed at this time. Vagal afferent nerve activity was measured during discrete localized stimulation of the atrial volume receptors by inflation of a balloon at the superior vena caval-right atrial junction. The receptors were classified as high- (HF) or low- (LF) frequency subtypes on the basis of their response to graded atrial distension. Although both HF (regression coefficient = 0.50 +/- 0.11 Hz/microl, r(2) = 0.47, P < 0.001) and LF (regression coefficient = 0.03 +/- 0.05 Hz/microl, r(2) = 0.009, P = 0.613) subtypes could be identified in virgin rats, only LF (regression coefficient = 0.09 +/- 0.05 Hz/microl, r(2) = 0.044, P = 0.099) receptors were found in late-pregnant animals. Similarly, in virgin rats treated chronically with pregnan (500 microg/24 h for 2 days), only LF receptors were identified (regression coefficient = -0.004 +/- 0.078 Hz/microl, r(2) = 0.000, P = 0.962), whereas both subtypes were present in the vehicle-treated animals (HF regression coefficient = 0.626 +/- 0.255 Hz/microl, r(2) = 0.317, P = 0.029; LF regression coefficient = -0.012 +/- 0.071 Hz/microl, r(2) = 0.002, P = 0.866). By contrast, acute intracardiac pregnan (2.6 microg/kg) did not alter vagal afferent nerve activity. In conclusion, stretch-induced discharge of high-frequency atrial receptors is suppressed during pregnancy, whereas that of low-frequency receptors is preserved. This effect may be mimicked by chronic, but not acute, pregnan. We propose that, during pregnancy, pregnan alters the transducer properties of the atrial volume receptors, thus allowing blood volume to increase.  相似文献   

2.
Blood volume expands significantly during pregnancy, but afferent signals from cardiac receptors are reduced. In addition, during exogenous volume expansion, right atrial pressure (RAP) increases more for equivalent volumes in pregnant animals, implying reduced atrial compliance. To examine possible gestational alterations in atrial dimension during volume expansion, we compared the effects of volume expansion on RAP and right atrial dimension (RAD) in pregnant vs. virgin rats. Anesthetized animals were ventilated and catheterized for measurement of arterial pressure and RAP and for drug infusion. Through a parasternal incision, ultrasonic crystals were glued to the medial and lateral surfaces of the right atrium for measurement of RAD. Plasma volume and hematocrit were determined before experimentation. RAP, RAD, and arterial pressure were recorded at baseline and during progressive volume expansion (6% dextran, 60% of initial blood volume). Baseline RAP was similar in the two groups: 2.82 +/- 0.40 and 2.72 +/- 0.47 mmHg in pregnant and virgin rats, respectively. Basal RAD was significantly larger in pregnant than in virgin rats: 4.36 +/- 0.66 vs. 3.36 +/- 0.48 mm. Despite increased basal RAD in pregnant rats, the slope of the RAD-RAP relation during volume expansion was similar in the two groups. Results indicate that resting RAD is increased in pregnant rats and that the change in dimension during volume loads is similar to that in virgin rats. Thus, during pregnancy, the right atrium appears to accommodate the increased blood volume, and reduced afferent signaling most likely is due to mechanisms other than mechanical alterations of the atrium by expanded volume.  相似文献   

3.
Stimulation of cardiac receptors (CR) evokes blunted reflex reductions in mean arterial pressure (MAP) in pregnant compared with virgin rats. Because CR-mediated sympathoinhibition has preferential effects on the kidney, we tested whether, during pregnancy, renal vascular resistance (RVR) changes less in response to CR stimulation and investigated possible mechanisms. MAP, right atrial pressure, renal sympathetic nerve activity (RSNA), renal blood flow (RBF), and RVR were measured in anesthetized animals in response to CR stimulation by graded atrial injections of saline. Baseline MAP and RVR and reflex changes in these variables during CR stimulation were reduced in late-pregnant vs. virgin rats (P<0.05). Reflex changes in RSNA were attenuated in pregnant rats, but changes in RBF as a function of RSNA were similar in both groups. ANG II AT(1)-receptor blockade increased basal RBF more in virgin rats (P<0.05), but between-group differences in reflex changes in MAP, RSNA, and RVR were maintained after AT(1) blockade. Thus during CR simulation, reflex changes in RVR were reduced in pregnant versus virgin rats. This difference does not appear to involve differential effects of ANG II.  相似文献   

4.
In the denervated mammalian heart a change in right atrial pressure will still alter heart rate (intrinsic rate response, IRR). We have examined the IRR in isolated right atria of the guinea-pig maintained in oxygenated Krebs-Henseleit solution at 37 degrees C, to compare with and extend studies in other species, and to determine whether the guinea-pig is a suitable model for electrophysiological studies of the IRR. Baseline diastolic transmural pressure was set at 2 mmHg. A 6-mmHg increase in right atrial pressure (RAP) caused an increase in atrial rate that reached a steady value of 15 min(-1) after 1-2 min. This response was enhanced by carbamylcholine and attenuated by isoprenaline. The influence of RAP on the rate response to vagal stimulation was examined. With RAP set at 8 mmHg, the reduction in atrial rate following vagal stimulation was 72+/-5% of that at 2 mmHg (n=6, mean+/-S.E., P<0.005). Continuous vagal stimulation produced a sustained bradycardia, and the effect of this bradycardia on the IRR was examined. When atrial rate was reduced 6% by vagal stimulation, the IRR was augmented to 202+/-21% of the control (n=6, P<0.005). This augmentation was larger (P<0.05) than that seen when atrial rate was reduced 8% by carbamylcholine (130+/-8% of control; n=7, P<0.05). Overall, the IRR in the guinea-pig is similar to that in the rabbit, and shows similar interactions with the autonomic nervous system.  相似文献   

5.
Modifications of autonomic activity during parabolic flight were studied by a time-variant model able to estimate low (LF, 0.04-0.14 Hz) and high (HF, 0.14-0.35 Hz) frequency spectral components on a beat-to-beat basis. Ten subjects were studied with and without lower body negative pressure (LBNP). ECG and Gz load were digitized (500 Hz) and RR interval variability series extracted. Beat-to-beat mean RR, variance, LF and HF power were obtained. One-way ANOVA (p<0.01) was used to compare values obtained during starting 1Gz (I), first 1.8Gz (II), 0Gz (III), second 1.8Gz (IV), ending 1Gz (V). Without LBNP, total and LF power increased during 0Gz to 1.69 +/- 1.41 and 2.87 +/- 4.66 respectively (mean +/- SD, normalized by phase I value). With LBNP, their change during 0Gz (1.38 +/- 1.37 and 1.54 +/- l.04 respectively) reached significance only with phase II and phase V. Phase I HF power was higher than in the other phases, both without and with LBNP.  相似文献   

6.

Background

Sympathetic activity involves the pathogenesis of atrial fibrillation (AF). Renal sympathetic denervation (RSD) decreases sympathetic renal afferent nerve activity, leading to decreased central sympathetic drive. The aim of this study was to identify the effects of RSD on AF inducibility induced by hyper-sympathetic activity in a canine model.

Methods

To establish a hyper-sympathetic tone canine model of AF, sixteen dogs were subjected to stimulation of left stellate ganglion (LSG) and rapid atrial pacing (RAP) for 3 hours. Then animals in the RSD group (n = 8) underwent radiofrequency ablation of the renal sympathetic nerve. The control group (n = 8) underwent the same procedure except for ablation. AF inducibility, effective refractory period (ERP), ERP dispersion, heart rate variability and plasma norepinephrine levels were measured at baseline, after stimulation and after ablation.

Results

LSG stimulation combined RAP significantly induced higher AF induction rate, shorter ERP, larger ERP dispersion at all sites examined and higher plasma norepinephrine levels (P<0.05 in all values), compared to baseline. The increased AF induction rate, shortened ERP, increased ERP dispersion and elevated plasma norepinephrine levels can be almost reversed by RSD, compared to the control group (P<0.05). LSG stimulation combined RAP markedly shortened RR-interval and standard deviation of all RR-intervals (SDNN), Low-frequency (LF), high-frequency (HF) and LF/HF ratio (P<0.05). These changes can be reversed by RSD, compared to the control group (P<0.05).

Conclusions

RSD significantly reduced AF inducibility and reversed the atrial electrophysiological changes induced by hyper-sympathetic activity.  相似文献   

7.
Atrial distension increases c-fos expression in the paraventricular nucleus of virgin, but not pregnant, rats. We proposed that nitric oxide (NO), biosynthesis of which increases during pregnancy, blunts this reflex and that blocking NO biosynthesis would restore the response. Female rats were implanted with indwelling intracardiac balloons. On day 14 of pregnancy, osmotic minipumps containing either D- or N(G)-nitro-L-arginine methyl ester (L-NAME) (120 mg/2 ml at 10 microg/min) were implanted. On day 20, the rats were infused with saline (3 ml/h) with or without atrial balloon inflation (1 h). The brains were then processed for quantitation of c-fos expression. In the virgin rats, and in the pregnant rats treated with L-NAME, atrial distension significantly increased hypothalamic c-fos expression. In the pregnant animals treated with D-NAME, the response was greatly attenuated. NO had no effect on the increase in atrial receptor afferent discharge (single-fiber recordings) elicited by atrial distension. We conclude that, during pregnancy, NO attenuates central processing of the reflex response to atrial distension but does not alter the transducer properties of the volume receptors.  相似文献   

8.
In order to verify the contribution of right atrial pressure to atrial natriuretic polypeptides (ANP) release, we measured plasma levels of immunoreactive (ir)-ANP when graded rise of right atrial pressure was executed in anesthetized dogs. Increasing right atrial pressure (RAP) from 2.7 +/- 0.6 to 9.0 +/- 0.7 mmHg, plasma levels of ir-ANP in aorta tended to increase by 33% but not significantly (p greater than 0.05). However, when RAP was increased from 9.0 +/- 0.7 to 17.0 +/- 1.1 mmHg, ir-ANP levels in aorta were significantly (p less than 0.05) increased by 132% of control within 5 min from the start of RAP elevation. The RAP elevation produced a sustained increase in plasma levels of ir-ANP. There was a positive correlation between right atrial pressure and plasma levels of ir-ANP. The plasma levels of ir-ANP were similar between aorta and pulmonary artery. These results demonstrate that increasing atrial pressure is closely correlated with ANP release and ANP is not greatly metabolized by pulmonary circulation.  相似文献   

9.
Previous work from our laboratory using heart rate variability (HRV) has demonstrated that women before menopause have a more dominant parasympathetic and less effective sympathetic regulations of heart rate compared with men. Because it is still not clear whether normal or preeclamptic pregnancy coincides with alternations in the autonomic functions, we evaluated the changes of HRV in 17 nonpregnant, 17 normotensive pregnant, and 11 preeclamptic women who were clinically diagnosed without history of diabetic neuropathy, cardiac arrhythmia, and other cardiovascular diseases. Frequency-domain analysis of short-term, stationary R-R intervals was performed to evaluate the total variance, low-frequency power (LF; 0.04-0.15 Hz), high-frequency power (HF; 0.15-0.40 Hz), ratio of LF to HF (LF/HF), and LF in normalized units (LF%). Natural logarithm transformation was applied to variance, LF, HF, and LF/HF for the adjustment of the skewness of distribution. We found that the normal pregnant group had a lower R-R value and HF but had a higher LF/HF and LF% compared with the nonpregnant group. The preeclamptic group had lower HF but higher LF/HF compared with either the normal pregnant or nonpregnant group. Our results suggest that normal pregnancy is associated with a facilitation of sympathetic regulation and an attenuation of parasympathetic influence of heart rate, and such alterations are enhanced in preeclamptic pregnancy.  相似文献   

10.
The goal of this study was to determine the baroreflex influence on systolic arterial pressure (SAP) and pulse interval (PI) variability in conscious mice. SAP and PI were measured in C57Bl/6J mice subjected to sinoaortic deafferentation (SAD, n = 21) or sham surgery (n = 20). Average SAP and PI did not differ in SAD or control mice. In contrast, SAP variance was enhanced (21 +/- 4 vs. 9.5 +/- 1 mmHg2) and PI variance reduced (8.8 +/- 2 vs. 26 +/- 6 ms2) in SAD vs. control mice. High-frequency (HF: 1-5 Hz) SAP variability quantified by spectral analysis was greater in SAD (8.5 +/- 2.0 mmHg2) compared with control (2.5 +/- 0.2 mmHg2) mice, whereas low-frequency (LF: 0.1-1 Hz) SAP variability did not differ between the groups. Conversely, LF PI variability was markedly reduced in SAD mice (0.5 +/- 0.1 vs. 10.8 +/- 3.4 ms2). LF oscillations in SAP and PI were coherent in control mice (coherence = 0.68 +/- 0.05), with changes in SAP leading changes in PI (phase = -1.41 +/- 0.06 radians), but were not coherent in SAD mice (coherence = 0.08 +/- 0.03). Blockade of parasympathetic drive with atropine decreased average PI, PI variance, and LF and HF PI variability in control (n = 10) but had no effect in SAD (n = 6) mice. In control mice, blockade of sympathetic cardiac receptors with propranolol increased average PI and decreased PI variance and LF PI variability (n = 6). In SAD mice, propranolol increased average PI (n = 6). In conclusion, baroreflex modulation of PI contributes to LF, but not HF PI variability, and is mediated by both sympathetic and parasympathetic drives in conscious mice.  相似文献   

11.
Pregnancy is associated with blunted reflex responses to cardiac and arterial baroreceptor stimulation. We tested the hypothesis that arterial baroreceptor afferent discharge is attenuated in response to a pressure stimulus in pregnant rats. Multifiber aortic depressor nerve activity (ADNA), mean arterial pressure (MAP), and heart rate were measured in anesthetized (pentobarbital sodium, 35 mg/kg ip) late-pregnant and virgin rats in response to increases ?phenylephrine (PE), 1.5-24 microg. kg(-1). min(-1) and 1-16 microg/kg and decreases ?sodium nitroprusside (SNP), 5-80 microg. kg(-1). min(-1) and 0.05-16 microg/kg in MAP. Resting MAP was lower in pregnant rats, but changes in MAP were similar to those in virgin rats during both PE and SNP administration. ADNA was significantly attenuated in pregnant animals during both PE and SNP infusions (P < 0.05) due to a more rapid adaptation to the pressure stimulus. Bolus drug administration evoked similar changes in MAP and ADNA in both groups; however, the maximum decrease in ADNA was achieved at the lowest dose of SNP in pregnant rats. Thus baroreceptor afferent discharge is attenuated in pregnant rats, and this involves a more rapid adaptation to a pressure stimulus.  相似文献   

12.
Recent studies have shown that nitric oxide (NO) biosynthesis increases in pregnancy and that inhibition of nitric oxide synthase (NOS) induces some pathological processes characteristic of preeclampsia. The current project sought to study the effect of the NOS inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 10 microg x min(-1), sc for 7 days) on plasma volume, plasma atrial natriuretic factor (ANF), plasma endothelin-1 (ET), and plasma renin activity (PRA) during gestation in conscious rats. NOS inhibition caused mean arterial pressure to increase in both virgin and 21-day pregnant rats. Plasma volume fell in the pregnant rats [L-NAME, 4.5 +/- 0.3 mL x 100 g(-1) body wt. (n = 7) vs. D-NAME, 6.8 +/- 0.2 mL x 100 g(-1) body wt. (n = 10); P < 0.05] but not in the virgin rats [L-NAME, 4.3 +/- 0.1 mL x 100 g(-1) body wt. (n = 6) vs. D-NAME, 4.8 +/- 0.2 mL x 100 g(-1) body wt. (n = 8)]. There was no effect of NOS inhibition on plasma ANF levels or PRA in either the virgin or pregnant rats. However, L-NAME did decrease plasma ET levels in the pregnant rats [L-NAME, 19.6 +/- 1.6 pg x mL(-1) (n = 8) vs. D-NAME, 11.6 +/- 2.5 pg x mL(-1) (n = 9); P < 0.05]. Our results confirm that NO is involved in cardiovascular homeostasis in pregnancy; NOS inhibition selectively reduces plasma volume in pregnant rats, thus mimicking a major pathophysiological perturbation of preeclampsia. However, it does not induce the hormonal changes characteristic of preeclampsia, namely the decrease in PRA and increase in plasma ET and ANF levels.  相似文献   

13.
Heart failure is associated with autonomic imbalance, and this can be evaluated by a spectral analysis of heart rate variability. However, the time course of low-frequency (LF) and high-frequency (HF) heart rate variability changes, and their functional correlates during progression of the disease are not exactly known. Progressive heart failure was induced in 16 beagle dogs over a 7-wk period by rapid ventricular pacing. Spectral analysis of heart rate variability and respiration, echocardiography, hemodynamic measurements, plasma atrial natriuretic factor, and norepinephrine was obtained at baseline and every week, 30 min after pacing interruption. Progressive heart failure increased heart rate (from 91 +/- 4 to 136 +/- 5 beats/min; P < 0.001) and decreased absolute and normalized (percentage of total power) HF variability from week 1 and 2, respectively (P < 0.01). Absolute LF variability did not change during the study until it disappeared in two dogs at week 7 (P < 0.05). Normalized LF variability increased in moderate heart failure (P < 0.01), leading to an increased LF-to-HF ratio (P < 0.05), but decreased in severe heart failure (P < 0.044; week 7 vs. week 5). Stepwise regression analysis revealed that among heart rate variables, absolute HF variability was closely associated with wedge pressure, right atrial and pulmonary arterial pressure, left ventricular ejection fraction and volume, ratio of maximal velocity of early (E) and atrial (A) mitral flow waves, left atrial diameter, plasma norepinephrine, and atrial natriuretic peptide (0.45 < r < 0.65, all P < 0.001). In tachycardia-induced heart failure, absolute HF heart rate variability is a more reliable indicator of cardiac dysfunction and neurohumoral activation than LF heart rate variability.  相似文献   

14.
The present study examined the effects of baroreceptor loading and unloading on the various rhythms present in the renal sympathetic nerve activity (RSNA) of 10 conscious rats. Short-lasting (4-5 min), steady-state decreases (from -10 to -40 mmHg) and increases (from 5 to 30 mmHg) in arterial pressure (AP) were induced by the intravenous infusion of sodium nitroprusside and phenylephrine, respectively. The relationship between changes in AP level and RSNA total power (fast Fourier transform analysis; 0-25 Hz) was characterized by an inverse sigmoid function. Basal AP was located 6.3 mmHg above AP at the midrange of the curve, that is, near the lower plateau. Sigmoid relationships were also observed for spectral powers in the low (LF, 0.030-0.244 Hz), respiratory (0.79-2.5 Hz) and high-frequency (HF, 2.5-25 Hz) bands. In contrast, in the MF band (0.27-0.76 Hz) containing oscillations associated with Mayer waves, the AP-RSNA power relationship showed a bell curve shape with a maximum at 21 mmHg below basal AP. Similarly, changes in RSNA power at the frequency of the heart beat were well characterized by a bell curve reaching a maximum at 22 mmHg below basal AP. Under baseline conditions, LF, MF, respiratory and HF powers contributed approximately 3, 10, 18, and 69% of the total RSNA power, respectively. The pulse-synchronous oscillation of RSNA accounted for only 11 +/- 1% of HF power. The contribution of HF power to total power did not change consistently with AP changes. Therefore, most of the baroreflex-induced changes in RSNA are mediated by changes in the amplitude of fast, irregular fluctuations.  相似文献   

15.
Sildenafil induces vasodilation and is used for treating erectile dysfunction. Although its influence on resting heart function appears to be minimal, recent studies suggest that sildenafil can increase sympathetic activity. We therefore tested whether sildenafil injected into the central nervous system alters the autonomic control of the cardiovascular system in conscious rats. The effect of sildenafil citrate injected into the lateral cerebral ventricle was evaluated in conscious rats by means of the recording of lumbar sympathetic nerve activity (LSNA), spectral analysis of systolic arterial pressure and heart rate variability, spontaneous baroreflex sensitivity, and baroreflex control of LSNA. Intracerebroventricular (ICV, 100 microg /5 microl) administration of sildenafil caused remarkable tachycardia without significant change in basal arterial pressure and was associated with a conspicuous increase (47 +/- 14%) in LSNA. Spectral analysis demonstrated that systolic arterial pressure oscillations in the low frequency (LF) range were increased (from 6.3 +/- 1.5 to 12.8 +/- 3.8 mmHg(2)), whereas the high frequency (HF) range was not affected by ICV administration of sildenafil. Sildenafil increased pulse interval oscillations at LF and decreased them at HF. The LF-HF ratio increased from 0.04 +/- 0.01 to 0.17 +/- 0.06. Spontaneous baroreflex sensitivity measured by the sequence method and the baroreflex relationship between mean arterial pressure and LSNA were not affected by ICV administration of sildenafil. In conclusion, sildenafil elicited an increase in sympathetic nerve activity that is not baroreflex mediated, suggesting that this drug is able to elicit an autonomic imbalance of central origin. This finding may have implications for understanding the cardiovascular outcomes associated with the clinical use of this drug.  相似文献   

16.
The mechanisms generating high- frequency (HF) and low-frequency (LF) blood pressure variability (BPV) are reasonably well understood. However, little is known about the origin of very low-frequency (VLF) BPV. We tested the hypothesis that VLF BPV is generated by L-type Ca(2+) channel-dependent mechanisms. In conscious rats, arterial blood pressure was recorded during control conditions (n = 8) and ganglionic blockade (n = 7) while increasing doses (0.01-5.0 mg.100 micro l(-1).h(-1)) of the L-type Ca(2+) channel blocker nifedipine were infused intravenously. VLF (0.02-0.2 Hz), LF (0.2-0.6 Hz), and HF (0.6-3.0 Hz) BPV were assessed by spectral analysis of systolic blood pressure. During control conditions, nifedipine caused dose-dependent declines in VLF and LF BPV, whereas HF BPV was not affected. At the highest dose of nifedipine, VLF BPV was reduced by 86% compared with baseline, indicating that VLF BPV is largely mediated by L-type Ca(2+) channel-dependent mechanisms. VLF BPV appeared to be relatively more dependent on L-type Ca(2+) channels than LF BPV because lower doses of nifedipine were required to significantly reduce VLF BPV than to reduce LF BPV. Ganglionic blockade markedly reduced VLF and LF BPV and abolished the nifedipine-induced dose-dependent declines in VLF and LF BPV, suggesting that VLF and LF BPV require sympathetic activity to be evident. In conclusion, VLF BPV is largely mediated by L-type Ca(2+) channel-dependent mechanisms. We speculate that VLF BPV is generated by myogenic vascular responses to spontaneously occurring perturbations of blood pressure. Other factors, such as sympathetic nervous system activity, may elicit a permissive effect on VLF BPV by increasing vascular myogenic responsiveness.  相似文献   

17.
This work was performed to elucidate whether growth hormone (GH)-mediated loss of adipose tissue and responses in plasma insulin and leptin are modulated by diet composition. 12-month-old rats were first fed a high-fat (HF) diet or a low-fat (LF) diet for 14 weeks. After that, GH or saline was administered to rat groups that were maintained on either HF or LF diets or that were switched from the HF to the LF diet. All 6 groups had free access to food. One additional saline group was pair-fed with the GH group that was switched from the HF to the LF diet. The caloric consumption of this latter group was also translated to yet another GH group receiving restricted amounts of the HF diet. GH was given in a total dose of 4 mg/kg/d for three weeks. After sacrifice, blood was collected and tissues were excised. In groups injected with saline, the weight of excised adipose tissue was 60 +/- 4.7, 41 +/- 3.8 and 50 +/- 4.5 g in animals that continued with the HF diet, LF diet, or that were switched from HF to LF, respectively. Corresponding figures after GH treatment were significantly (p < 0.05) decreased to 38 +/- 2.7, 30 +/- 2.3, and 31 +/- 2.7 g, respectively. Pair-feeding had no effect, whereas only 26 +/- 3.0 g of adipose tissue was retrieved in rats fed restricted amounts of HF diet while receiving GH. In this group, plasma insulin and leptin were also significantly (p < 0.05) depressed compared with other GH groups, especially to the group fed the unrestricted HF diet (203 +/- 35 vs. 1345 +/- 160 pmol/l and 9.3 +/- 1.2 vs. 31 +/- 4.4 micro g/l). In conclusion, this study shows that GH mediates breakdown of adipose tissue under a variety of dietary conditions, and that induction of hyperinsulinemia can be prevented if GH treatment is combined with restricted feeding of a diet which is relatively low in carbohydrates and rich in fat. This will also promote a fall of plasma leptin.  相似文献   

18.
Exercise training improves arterial baroreflex control in heart failure (HF) rabbits. However, the mechanisms involved in the amelioration of baroreflex control are unknown. We tested the hypothesis that exercise training would increase the afferent aortic depressor nerve activity (AODN) sensitivity in ischemic-induced HF rats. Twenty ischemic-induced HF rats were divided into trained (n = 11) and untrained (n = 9) groups. Nine normal control rats were also studied. Power spectral analysis of pulse interval, systolic blood pressure, renal sympathetic nerve activity (RSNA), and AODN were analyzed by means of autoregressive parametric spectral and cross-spectral algorithms. Spontaneous baroreflex sensitivity of heart rate (HR) and RSNA were analyzed during spontaneous variation of systolic blood pressure. Left ventricular end-diastolic pressure was higher in HF rats compared with that in the normal control group (P = 0.0001). Trained HF rats had a peak oxygen uptake higher than untrained rats and similar to normal controls (P = 0.01). Trained HF rats had lower low-frequency [1.8 +/- 0.2 vs. 14.6 +/- 3 normalized units (nu), P = 0.0003] and higher high-frequency (97.9 +/- 0.2 vs. 85.0 +/- 3 nu, P = 0.0005) components of pulse interval than untrained rats. Trained HF rats had higher spontaneous baroreceptor sensitivity of HR (1.19 +/- 0.2 vs. 0.51 +/- 0.1 ms/mmHg, P = 0.003) and RSNA [2.69 +/- 0.4 vs. 1.29 +/- 0.3 arbitrary units (au)/mmHg, P = 0.04] than untrained rats. In HF rats, exercise training increased spontaneous AODN sensitivity toward normal levels (trained HF rats, 1,791 +/- 215; untrained HF rats, 1,150 +/- 158; and normal control rats, 2,064 +/- 327 au/mmHg, P = 0.05). In conclusion, exercise training improves AODN sensitivity in HF rats.  相似文献   

19.
We established characteristics of power spectral analysis of heart rate variability, and assessed the diurnal variations of autonomic nervous function in guinea pigs. For this purpose, an electrocardiogram (ECG) was recorded for 24 hr from conscious and unrestrained guinea pigs using a telemetry system. There were two major spectral components, at low frequency (LF) and high frequency (HF) bands, in the power spectrum of HR variability. On the basis of these data, we defined two frequency bands of interest: LF (0.07-0.7 Hz) and HF (0.7-3.0 Hz). The power of LF was higher than that of HF in the normal guinea pigs. Atropine significantly reduced power at HF. Propranolol also significantly reduced power at LF. Furthermore, the decrease in the parasympathetic mechanism produced by atropine was reflected in a slight increase in the LF/HF ratio. The LF/HF ratio appeared to follow the reductions of sympathetic activity produced by propranolol. Autonomic blockade studies indicated that the HF component reflected parasympathetic activity and the LF/HF ratio seemed to be a convenient index of autonomic balance. Nocturnal patterns, in which the values of heart rate in the dark phase (20:00-06:00) were higher than those in the light phase (06:00-20:00), were observed. However, the HF, LF and the LF/HF ratio showed no daily pattern. These results suggest that the autonomic nervous function in guinea pigs has no clear circadian rhythmicity. Therefore, this information may be useful for future studies concerning the autonomic nervous function in this species.  相似文献   

20.
实验在氯醛糖加氨基甲酸乙酯麻醉的新西兰兔上进行。记录血压,心率,心电图和心率变异性频谱分析。电刺激减压神经,疑核和右侧迷走神经外周端,均引起心率和血压下降,总变异性,低频成分,高频成分,LF/HF比值和极代频成分增大。静脉注射阿托品可使上述反应显著减小,而静脉注射心得安仅可阻断DN和NA所致LF的增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号