首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Metabolic adjustments occur with weight loss that may contribute to a high rate of weight regain. We have previously observed in obesity-prone, obese rats that weight reduction is accompanied by a suppression in resting metabolic rate beyond what would be predicted for the change in metabolic mass. In the present study, we examine if this adjustment in metabolic efficiency is affected by the length of time in weight maintenance and if it contributes to the propensity to regain after weight loss. Twenty-four-hour, nonresting, and resting energy expenditure (REE) were obtained by indirect calorimetry and normalized to metabolic mass estimated by dual-energy X-ray absorptiometry. A 10% loss in body weight in weight-reduced rats was accompanied by a 15% suppression in adjusted REE. This enhancement in metabolic efficiency was not altered with either 8 or 16 wk of weight maintenance, but it did resolve when the forced control of intake was removed and the weight was regained. The rate of weight regain increased with the time in weight maintenance and was exceptionally high early during the relapse period. During this high rate of weight gain, the suppression in REE persists while consumption increases to a level that is higher than when they were obese. In summary, an enhanced metabolic efficiency and an elevated appetite both contribute (60% and 40%, respectively) to a large potential energy imbalance that, when the forcible control of energy intake is relieved, becomes actualized and results in an exceptionally high rate of weight regain.  相似文献   

3.
Influence of caloric restriction and exercise on tumorigenesis in rats   总被引:1,自引:0,他引:1  
Underfeeding or caloric restriction have been shown to inhibit the growth of spontaneous, transplanted, or chemically induced tumors in rats and mice. At 40% caloric restriction, growth of 7,12-dimethylbenz(a)anthracene-induced mammary and 1,2-dimethylhydrazine-induced colonic tumors is inhibited significantly even when the restricted diet contains twice as much fat as the control diet. Some inhibitory effects become evident even at 10% caloric restriction. In studies involving high fat diets, we find that rats receiving 20% fat ad libitum exhibit significantly higher 7,12-dimethylbenz(a)anthracene-induced mammary tumor incidence, multiplicity, and weight than rats ingesting the same amount of fat daily, but in a diet containing 25% fewer calories. In a study of intermittent ad libitum and restrictive feedings, chemically induced tumorigenicity varies inversely with feed efficiency. Exercise has also been shown to inhibit tumor growth. Sedentary rats fed ad libitum have a 108% higher incidence of 1,2-dimethylhydrazine-induced colon tumors than rats fed ad libitum but subjected to vigorous treadmill exercise. Caloric flux (either reduced intake or increased outflow) appears to reduce tumorigenicity in rodents.  相似文献   

4.
Caloric restriction (CR) has been associated with health benefits and these effects have been attributed, in part, to modulation of oxidative status by CR; however, data are still controversial. Here, we investigate the effects of seventeen weeks of chronic CR on parameters of oxidative damage/modification of proteins and on antioxidant enzyme activities in cardiac and kidney tissues. Our results demonstrate that CR induced an increase in protein carbonylation in the heart without changing the content of sulfhydryl groups or the activities of superoxide dismutase and catalase (CAT). Moreover, CR caused an increase in CAT activity in kidney, without changing other parameters. Protein carbonylation has been associated with oxidative damage and functional impairment; however, we cannot exclude the possibility that, under our conditions, this alteration indicates a different functional meaning in the heart tissue. In addition, we reinforce the idea that CR can increase CAT activity in the kidney. [BMB Reports 2012; 45(11): 671-676]  相似文献   

5.
Caloric restriction (CR) reduces tumor incidence and retards aging in laboratory animals, including non-human primates. Because of the relationships among mutation, disease susceptibility, and aging, we investigated whether or not CR affects the accumulation of somatic cell mutations in aging animals. Starting at approximately 2 months of age, male CD rats (Harlan Sprague-Dawley-derived) were placed on different levels of dietary intake: ad libitum (AL) feeding, and 90% (10% CR), 75% (25% CR) and 60% (40% CR) of the total calories consumed by AL animals. At 3, 6, 12, and 24 months after the beginning of CR, Hprt mutant frequencies (MFs) were determined. The MFs measured in spleen lymphocytes from AL and CR rats sacrificed at 3 months of dietary restriction were similar for all dietary groups. However, the MFs at 6, 12, and 24 months of CR were significantly higher in AL-fed rats compared with animals on 40% CR: (4.5+/-0.4)x10(-6) versus (3.3+/-0.3)x10(-6) (P=0.032) in 6 months CR rats; (10.3+/-2.3)x10(-6) versus (7.3+/-1.2)x10(-6) in 12 months CR rats (P=0.04), and (18.3+/-3.2)x10(-6) versus (7.8+/-1.0)x10(-6) (P=0.001) in 24 months CR rats. In addition, rats receiving 25% CR for 24 months had a MF, (10.7+/-2.0)x10(-6), between the 40% CR and AL rats. Multiplex PCR of the Hprt gene in mutant clones from 12 and 24 months 40% CR rats and the corresponding AL rats detected deletions in 42% of CR mutants and 19% of AL mutants. Because of the difference in Hprt MF in the two groups, the estimated MF associated with deletions in CR rats was similar to the deletion MF in AL rats. This observation implies that the lower MF in CR rats is due to a reduction in smaller Hprt mutations (i.e. base substitutions and frameshifts). The pattern of smaller Hprt mutations from AL rats suggests that many were produced by reactive oxygen species (ROS). The results indicate that CR reduces the accumulation of spontaneous somatic cell mutation in aging rats, especially those caused by base substitutions and frameshifts.  相似文献   

6.
The effect of either chronic noise or water restriction on body weight gain and weight of several glands and organs has been studied in male Wistar rats. The results indicate that chronic noise does not affect the relative weight of glands and organs but it induces a slight decrease in body weight gain. Water restriction provokes a strong decrease in body weight gain and relative weight of the liver while it increases significantly the relative weight of other glands and organs as a likely consequence of the decrease in body mass. Chronic noise does not seems to be a strong stress and it markedly differs from water restriction which is not appropriate as a model of chronic stress.  相似文献   

7.
8.
Amylin infusion reduces food intake and slows body weight gain in rodents. In obese male rats, amylin (but not pair feeding) caused a preferential reduction of fat mass with protein preservation despite equal body weight loss in amylin-treated (fed ad libitum) and pair-fed rats. In the present study, the effect of prior or concurrent food restriction on the ability of amylin to cause weight loss was evaluated. Retired female breeder rats were maintained on a high-fat diet (40% fat) for 9 wk. Prior to drug treatment, rats were either fed ad libitum or food restricted for 10 days to lose 5% of their starting body weight. They were then subdivided into treatment groups that received either vehicle or amylin (100 microgxkg(-1)xday(-1) via subcutaneous minipump) and placed under either a restricted or ad libitum feeding schedule (for a total of 8 treatment arms). Amylin 1) significantly reduced body weight compared with vehicle under all treatment conditions, except in always restricted animals, 2) significantly decreased percent body fat in all groups, and 3) preserved lean mass in all groups. These results indicate that amylin's anorexigenic and fat-specific weight loss properties can be extended to a variety of nutritive states in female rats.  相似文献   

9.
10.
Mature male Sprague-Dawley (SD) and Long-Evans (LE) rats were instrumented with telemetry transmitters for measurement of heart rate (HR) and housed in room calorimeters for assessment of food intake and oxygen consumption (Vo(2)) at standard laboratory temperatures (23 degrees C) to examine physiological responses to caloric restriction (CR; 60% of baseline ad libitum calories for 2 wk) and refeeding. Ad libitum controls had stable food intake (84-88 kcal/day) and gained weight at rates of 3-4 g/day. Groups from both strains assigned to CR exhibited similar patterns of weight loss and reductions in Vo(2) and HR. Upon refeeding, SD rats exhibited a mild, transient hyperphagic response (1 day) accompanied by sustained suppression of Vo(2) and HR that remained evident 8 days after refeeding. In contrast, LE rats exhibited sustained daily hyperphagia that persisted 8 days after refeeding and was accompanied by a complete restoration of HR and Vo(2). The lower HR and Vo(2) observed during refeeding in SD rats were not due to reduced locomotor activity. The results reveal a strain-dependent divergent response to recovery from CR. We conclude that during recovery from CR, homeostatic stimulation of appetite or suppression of energy expenditure may occur selectively to restore body weight.  相似文献   

11.
12.
This study investigated sex‐specific effects of repeated stress and food restriction on food intake, body weight, corticosterone plasma levels and expression of corticotropin‐releasing factor (CRF) in the hypothalamus and relaxin‐3 in the nucleus incertus (NI). The CRF and relaxin‐3 expression is affected by stress, and these neuropeptides produce opposite effects on feeding (anorexigenic and orexigenic, respectively), but sex‐specific regulation of CRF and relaxin‐3 by chronic stress is not fully understood. Male and female rats were fed ad libitum chow (AC) or ad libitum chow and intermittent palatable liquid Ensure without food restriction (ACE), or combined with repeated food restriction (60% chow, 2 days per week; RCE). Half of the rats were submitted to 1‐h restraint stress once a week. In total, seven weekly cycles were applied. The body weight of the RCE stressed male rats significantly decreased, whereas the body weight of the RCE stressed female rats significantly increased compared with the respective control groups. The stressed female RCE rats considerably overate chow during recovery from stress and food restriction. The RCE female rats showed elevated plasma corticosterone levels and low expression of CRF mRNA in the paraventricular hypothalamic nucleus but not in the medial preoptic area. The NI expression of relaxin‐3 mRNA was significantly higher in the stressed RCE female rats compared with other groups. An increase in the expression of orexigenic relaxin‐3 and misbalanced hypothalamic‐pituitary‐adrenal axis activity may contribute to the overeating and increased body weight seen in chronically stressed and repeatedly food‐restricted female rats .  相似文献   

13.
Caloric restriction mimetics (CRMs) have been developed to mimic the effects of caloric restriction (CR). However, research reports for the effects of CRMs are often times inconsistent across different research groups. Therefore, in this study, we compared seven identified CRMs which extend the lifespans of various organisms including caffeine, curcumin, dapsone, metformin, rapamycin, resveratrol, and spermidine to CR for mitochondrial function in a single model, Saccharomyces cerevisiae. In this organism, rapamycin extended chronological lifespan (CLS), but other CRMs failed to extend CLS. Rapamycin enhanced mitochondrial function like CR did, but other CRMs did not. Both CR and rapamycin worked on mitochondrial function, but they worked at different windows of time during the chronological aging process.  相似文献   

14.
C reactive protein (CRP) values in blood are a good indicator of the likelihood of acute coronary and cerebral events in both healthy subjects and patients with coronary artery disease. This indicates that atherosclerotic lesions rich in inflammatory cells and cytokines are more likely to produce acute events either through vasospasm and/or thrombosis and also can be readily detected through elevations in CRP when measured using a high sensitivity assay (hsCRP). However the arterial wall is only one potential source of cytokines which induce CRP production. Fat cells also produce cytokines, in particular IL-6 which induces the synthesis of CRP by the liver. Obesity, especially abdominal obesity, is associated with elevations of hsCRP. This may be of pathogenic significance as CRP stimulates the uptake of LDL by macrophages, induces complement activation which may cause cellular damage in the artery, and enhances monocyte production of tissue factor, thus enhancing the risk of thrombosis. Caloric restriction and weight loss lowers IL-6 and CRP levels and may beneficially suppress an immune response. Whether particular dietary macronutrients or micronutrients alter IL-6 or CRP is unknown but this issue is clearly becoming more important.  相似文献   

15.
Decreased immune function associated with aging has been demonstrated in both humans and animals. We hypothesize that reactive oxygen species (ROS)-mediated damage to biological macromolecules may contribute to compromised immune response during aging. In this study, we compared the levels of lipid peroxidation and oxidatively modified proteins in plasma and splenocytes, and the mitogen-induced T lymphocyte proliferation in ad lib-fed (AL) and caloric restricted (CR) Fischer 344 × BNF1 male rats at the ages of 5, 18, and 31 months. The results show that AL rats exhibit an age-related decrease in proliferative response of splenic lymphocytes to phytohemagglutinin (PHA) and concanavalin A (Con A). This functional decline in T-lymphocytes during aging is inversely correlated to the levels of both lipid peroxidation and protein carbonyl in the plasma and splenic lymphocytes. Caloric restriction, however, can partially reverse the age-dependent decrease in T lymphocyte proliferation and significantly reduce lipid peroxidation and protein carbonyl contents in plasma and splenocytes. The above observations support the hypothesis that the age-associated declines in immune function are related to the oxidative modification of biological macromolecules, which in turn may lead to enzyme inactivation, membrane disruption, and cell senescence. One of the mechanisms by which caloric restriction reverses declined immune function in aged rats is hypothesized to be through reduction in ROS production and thereby protection of cellular macromolecules against oxidative damage.  相似文献   

16.
Dietary restriction increases life span and delays the development of age-related diseases in rodents. We have recently demonstrated that chronic dietary restriction is beneficial on recovery of heart function following ischemia. We studied whether the metabolic basis of this benefit is associated with alterations in mitochondrial respiration. Male Wistar rats were assigned to an ad libitum-fed (AL) group and a food restricted (FR) group, in which food intake was reduced to 55% of the amount consumed by the AL group. Following an 8-month period of restricted caloric intake, isolated working hearts perfused with glucose and high levels of fatty acids were subjected to global ischemia followed by reperfusion. At the end of reperfusion, total heart mitochondria was respiration was assessed in the presence of pyruvate, tricarboxylic acid intermediates, and palmitoylcarnitine. Recovery of heart function following ischemia was greater in FR hearts compared to AL hearts. Paralleling these changes in heart function was in increase in state 3 respiration with pyruvate. The respiratory control ratios in the presence of pyruvate and tricarboxylic acid intermediates were higher in FR hearts compared to AL hearts, indicating well-coupled mitochondria. Overall energy production, expressed as the ADP:O ratio and the oxidative phosphorylation rate, was also improved in FR hearts. Our results indicate that the beneficial effect of FR on recovery of heart function following ischemia is associated with changes in mitochondrial respiration.  相似文献   

17.
The trafficking of dietary fat was assessed in obesity-prone (OP) and obesity-resistant (OR) male and female rats. Test meals containing [1-(14)C]palmitate were delivered through gastric feeding tubes while rats consumed a high-carbohydrate diet (HCD) or after 5 days of a high-fat diet (HFD). Over the subsequent 24 h, the appearance of (14)C was followed in the GI tract, skeletal muscles (SM), liver, adipose tissues (AT), and expired CO(2). There was no difference in the production of (14)CO(2) between OP and OR rats consuming a HCD. However, after 5 days on HFD, OR rats produced significantly more (14)CO(2) after the test meal than OP rats (P < 0.001 females, P = 0.03 males). The differential oxidation of dietary fat between OP and OR rats on HFD was not due to differences in absorption but rather was associated with preferential disposition of tracer to AT in OP rats. Measurements of lipoprotein lipase in part explained increased tracer uptake by AT in OP rats but were not consistent with increased SM tracer uptake in OR rats. Surprisingly, female rats oxidized more tracer than male rats irrespective of phenotype or diet. These results are consistent with the notion that differences in the partitioning of dietary fat between storage in AT and oxidation in SM and liver that develop shortly after the introduction of a HFD may in part underlie the differential tendency for OR and OP rats to gain weight on this diet.  相似文献   

18.
Oxidative stress has been proposed as the pathogenic mechanism linking insulin resistance with endothelial dysfunction during diabetes. The present study investigated the attenuation of plasma dyslipidemia and oxidative damage by caloric restriction in experimental diabetes. Forty male Wistar rats were divided into ad libitum and calorie-restricted groups. The calorie-restricted group was subjected to 30% caloric restriction for 63 days before induction of diabetes to 50% of both groups. Caloric restriction significantly (p<0.01) reduced the body weights, reactive oxygen species (ROS), catalase, total cholesterol levels and non-significantly reduced SOD activities in non-diabetic and diabetic rats. Caloric restriction was also found to improve blood glucose levels, glycated hemoglobin, malondialdehyde, triglyceride, oxidized glutathione and reduced glutathione levels and significantly (p<0.05) increased GPx and GR activities in the experimental animals. The non-diabetic rats fed ad libitum had the most significant increases in body weight which could be due to dyslipidemia. These results indicate that dietary caloric restriction attenuates the oxidative damage and dyslipidemia exacerbated during diabetes as evidenced by the significant reduction in their body weights, ROS, total cholesterol levels and the increases in GPx activity and redox status.  相似文献   

19.
Numerous physiological and molecular changes accompany dietary restriction (DR), which has been a major impediment to elucidating the causal basis underlying DR's many health benefits. Two major metabolic responses to DR that potentially underlie many of these changes are the body temperature (T(b)) and body weight (BW) responses. These responses also represent an especially difficult challenge to uncouple during DR. We demonstrate in this study, using two recombinant inbred (RI) panels of mice (the LXS and LSXSS) that naturally occurring genetic variation serves as a powerful tool for modulating T(b) and BW independently during DR. The correlation coefficient between the two responses was essentially zero, with R = -0.04 in the LXS and -0.03 in the LSXSS, the latter averaged across replicate cohorts. This study is also the first to report that there is highly significant (P = 10(-10)) strain variation in the T(b) response to DR in the LXS (51 strains tested), with strain means ranging from 2 to 4 degrees C below normal. The results suggest that the strain variation in the T(b) response to DR is largely due to differences in the rate of heat loss rather than heat production (i.e., metabolic rate). This variation can thus be used to assess the long-term effects of lower T(b) independent of BW or metabolic rate, as well as independent of food intake and motor activity as previously shown. These results also suggest that murine genetic variation may be useful for uncoupling many more responses to DR.  相似文献   

20.
The inability to maintain body weight within prescribed ranges occurs in a significant portion of the human spinal cord injury (SCI) population. Using a rodent model of long-term high thoracic (spinal level T3) spinal cord transection (TX), we aimed to identify derangements in body weight, body composition, plasma insulin, glucose tolerance, and metabolic function, as measured by uncoupling protein 1 (UCP1) expression in interscapular brown adipose tissue (IBAT). Sixteen weeks after SCI, body weights of injured female rats stabilized and were significantly lower than surgical control animals. At the same time point, SCI rats had a significantly lower whole body fat:lean tissue mass ratio than controls, as measured indirectly by NMR. Despite lower body weight and fat mass, the cumulative consumption of standard laboratory chow (4.0 kcal/g) and mean energy intake (kcal.day(-1).100 g body wt(-1)) of chronic SCI rats was significantly more than controls. Glucose tolerance tests indicated a significant enhancement in glucose handling in 16-wk SCI rats, which were coupled with lower serum insulin levels. The post mortem weight of gonadal and retroperitoneal fat pads was significantly reduced after SCI and IBAT displayed significantly lower real-time PCR expression of UCP1 mRNA. The reduced fat mass and IBAT UCP1 mRNA expression are contraindicative of the cumulative caloric intake by the SCI rats. The prolonged postinjury loss of body weight, including fat mass, is not due to hypophagia but possibly to permanent changes in gastrointestinal transit and absorption, as well as whole body homeostatic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号