首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the study was to calculate the magnitude of the instantaneous muscular power output at the hip, knee and ankle joints during ergometer cycling at different work loads and speeds. Six healthy subjects pedalled a weight-braked cycle ergometer at 0, 120 and 240 W at a constant speed of 60 rpm. The subjects also pedalled at 40, 60, 80 and 100 rpm against the same resistance, giving power outputs of 80, 120, 160 and 200 W respectively. The subjects were filmed with a cine-film camera, and pedal reaction forces were recorded from a force transducer mounted in the pedal. The muscular work for the hip, knee and ankle joint muscles was calculated using a model based upon dynamic mechanics and described elsewhere. The total work during one pedal revolution significantly increased with increased work load but did not increase with increased pedalling rate at the same braking force. The relative proportions of total positive work at the hip, knee and ankle joints were also calculated. Hip and ankle extension work proportionally decreased with increased work load. Pedalling rate did not change the relative proportion of total work at the different joints.  相似文献   

2.
The effects on heart rate, oxygen uptake, and pulmonary ventilation of muscular exercises, including both dynamic contractions, either simple or combined, were studied in 4 male subjects, aged 21 to 23 years. The dynamic work consisted in cycling on an ergometric bicycle at three power levels: 40, 80, and 100 W. The static work consisted in pushing against, pulling and holding with the arms a 6, 9, 12, or 18 kg load. The physiological effects are expressed as cardiac cost (delta HR), oxygen cost (delta VO2) and ventilation cost (delta V). The physiological cost of the combined work increases according to the cycling power and to the isometric load developed. A statistical analysis shows that the costs of combined work are not different from the sum of the costs of the static and dynamic contractions measured separately. Thus, the physiological responses to the combinations investigated are of an additive type.  相似文献   

3.
The static load component in muscle work   总被引:2,自引:0,他引:2  
By citing examples from actual work situations and discussing the concept of muscular endurance and fatigue this paper is intended to provide an account of past and current research on the "static" component of muscular load during work. By amplitude probability distribution analysis of electromyographic signals it is possible to estimate the "static level" of muscular load during work. Electromyographic studies of job rotation between different assembly tasks in electronic industries often show that there are quantitatively and qualitatively only small differences in muscular load between different tasks.  相似文献   

4.
Current physiological criteria for limiting work in hot conditions are frequently based on responses to mainly dynamic work (eg treadmill walking). Their applicability to industrial situations containing mixed static and dynamic work is questioned, since the physiological responses to static work are different from those of dynamic work. Each of eight subjects attempted a one hour uphill treadmill walk (mainly dynamic work), and an uphill treadmill walk whilst intermittently carrying a 20 kg weight in the arms (mixed static and dynamic work). The external work rates in the two conditions were equal, effected by lowering the treadmill gradient in the loaded condition. Experiments were conducted in a hot climate (33 degrees C dry bulb, 25 degrees C wet bulb). Oxygen consumption, minute ventilation, sweat rate and rated perceived exertion were all significantly higher (p less than 0.001) for the mixed static and dynamic work than for the dynamic work. This was also the case for heart rate and forearm skin temperature (p less than 0.01), and for auditory canal temperature (p less than 0.05). There was no significant difference between the two types of work for mean skin temperature, calf skin temperature and chest skin temperature. These results show that for the same external work, physiological strain and perceived exertion are greater for mixed static and dynamic work (carrying a load in the arms) than for mainly dynamic work (walking on a treadmill). They suggest that it is not appropriate to make direct comparisons of laboratory studies based on dynamic work, with practical situations containing mixed static and dynamic work in the heat.  相似文献   

5.
Soldiers regularly transport loads weighing >20 kg at slow speeds for long durations. These tasks elicit high energetic costs through increased positive work generated by knee and ankle muscles, which may increase risk of muscular fatigue and decrease combat readiness. This study aimed to determine how modifying where load is borne changes lower-limb joint mechanical work production, and if load magnitude and/or walking speed also affect work production. Twenty Australian soldiers participated, donning a total of 12 body armor variations: six different body armor systems (one standard-issue, two commercially available [cARM1-2], and three prototypes [pARM1-3]), each worn with two different load magnitudes (15 and 30 kg). For each armor variation, participants completed treadmill walking at two speeds (1.51 and 1.83 m/s). Three-dimensional motion capture and force plate data were acquired and used to estimate joint angles and moments from inverse kinematics and dynamics, respectively. Subsequently, hip, knee, and ankle joint work and power were computed and compared between armor types and walking speeds. Positive joint work over the stance phase significantly increased with walking speed and carried load, accompanied by 2.3–2.6% shifts in total positive work production from the ankle to the hip (p < 0.05). Compared to using cARM1 with 15 kg carried load, carrying 30 kg resulted in significantly greater hip contribution to total lower-limb positive work, while knee and ankle work decreased. Substantial increases in hip joint contributions to total lower-limb positive work that occur with increases in walking speed and load magnitude highlight the importance of hip musculature to load carriage walking.  相似文献   

6.
7.
Power output and work in different muscle groups during ergometer cycling   总被引:1,自引:0,他引:1  
The aim of this study was to calculate the magnitude of the instantaneous muscular power output at the hip, knee and ankle joints during ergometer cycling. Six healthy subjects pedalled a weight-braked bicycle ergometer at 120 watts (W) and 60 revolutions per minute (rpm). The subjects were filmed with a cine camera, and pedal reaction forces were recorded from a force transducer mounted in the pedal. The muscular work at the hip, knee and ankle joint was calculated using a model based upon dynamic mechanics described elsewhere. The mean peak concentric power output was, for the hip extensors, 74.4 W, hip flexors, 18.0 W, knee extensors, 110.1 W, knee flexors, 30.0 W and ankle plantar flexors, 59.4 W. At the ankle joint, energy absorption through eccentric plantar flexor action was observed, with a mean peak power of 11.4 W and negative work of 3.4 J for each limb and complete pedal revolution. The energy production relationships between the different major muscle groups were computed and the contributions to the total positive work were: hip extensors, 27%; hip flexors, 4%; knee extensors, 39%; knee flexors, 10%; and ankle plantar flexors 20%.  相似文献   

8.
Changes in sweat rate on the palm and on the general body surface in response to stepwise increases and decreases in work load during exercise on a bicycle ergometer were examined in relation to body temperature and heart rate in six male subjects (three trained and three untrained), in an attempt to evaluate thermal and nonthermal factors responsible for those changes. In all the untrained subjects, a transient, marked increase in palmar sweat rate was observed upon an abrupt increase (and occasionally upon an abrupt decrease) in work, while an increase in sweat rate on the general body surface was also rapid and marked. On the other hand, in all the trained subjects, palmar sweat rate was low and hardly showed a substantial increase in response to an abrupt increase in work load, to which sweating on the general body surface responded slowly by a gradual increase. While sweat rate on the general body surface showed a significant correlation with esophageal temperature and with heart rate, palmar sweat rate was not correlated with esophageal temperature but was significantly correlated with heart rate. Moreover, repeated increases and decreases in work load often led to progressive weakening of palmar sweating due apparently to the development of habituation. The present results suggest that responses of sweating to stepwise changes in work load are not solely dependent upon the thermoregulatory mechanism but are affected considerably by increase and decrease in psychic excitement and/or those in discharges of the sympathetic nervous system accompanying changes in work load.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Systemic hemodynamic responses to exercise (e.g., heart rate, blood pressure) depend on the relative intensity, the active muscle mass, and the mode of exercise. It is not known whether regional vasomotor responses follow the same pattern. To answer this question, in five men we examined cutaneous vascular responses to dynamic and isometric exercise of two legs, one leg, one arm, and one hand, each at high and low work loads. Skin blood flow was monitored by laser-Doppler flowmetry (LDF) at the forearm. Mean arterial pressure (MAP) was measured each minute. Cutaneous vascular conductance (CVC) was indexed as LDF/MAP. Reductions in CVC during the 1st min of dynamic exercise were statistically significant for two-leg exercise at either level and for one-leg exercise at the higher level. Dynamic exercise of smaller muscle groups at either intensity was not associated with significant changes in CVC. The reduction in CVC correlated with external work load (r = 0.75). Work load relative to the capacity of a given muscle group had no identifiable role in the response of CVC to dynamic exercise but did have a role in the increase in MAP at the beginning of exercise. Isometric exercise did not have a measurable effect on CVC regardless of the muscle group or the intensity of the exercise. We conclude that the level of external work determines the redistribution of blood flow from skin to active muscle. Furthermore, absolute rather than relative work and dynamic rather than isometric modes of exercise are the dominant factors.  相似文献   

10.
The paper sought to determine the exercise intensity where the slow component of oxygen uptake (Vo(2)) first appears in decremental work load exercise (DLE). Incremental work load exercise (ILE) was performed with an increment rate of 15 watts (W) per minute. In DLE, power outputs were decreased by 15 W per minute, from 120 (DLE(120)), 160 (DLE(160)), 200 (DLE(200)) and 240 (DLE(240)) W, respectively. The slopes of Vo(2) against the power output were obtained in the lower section from 0 to 50 W in all DLEs, and in the upper section from 80 to 120 W in DLE(160) and from 100 to 150 W in DLE(200) and DLE(240). The power output at exhaustion in ILE was 274 +/- 20 W. The power output at the ventilatory threshold (VT) obtained in ILE was 167 +/- 22 W. The initial power output in DLE(160) was near the power output at VT. The slopes obtained in the upper sections were 11.4 +/- 0.9 ml x min(-1) x W(-1)1 in DLE(160), 12.8 +/- 0.8 ml x min(-1) x W(-1) in DLE(200), and 14.8 +/- 1.1 ml x min(-1) x W(-1) in DLE(240). The slope obtained in DLE(120) was 10.9 +/- 0.6 ml x min(-1). There were no differences in slope between the upper and lower sections in DLE(160) but there were significant differences in slopes between the upper and lower sections in DLE(200) and DLE(240). Thus, the slow component, which could be observed as a steeper slope in DLE, began to increase when the initial power output in DLE was near to VT.  相似文献   

11.
A dynamometer for measurement under static and dynamic conditions is presented. At different load levels, force, velocity, work and power can be measured in explosive leg extensions. Measurements on 53 subjects at different load levels (0-125.5 kg) were carried out. Peak power ranged from 2611 to 1746 W, force from 1351 to 1899 N, velocity from 1.61 to 0.89 m X s-1 and work from 329 to 605 J. Between trial correlation coefficients ranged from 0.72 to 0.95. The dynamometer is compared with others, and it is concluded that data obtained by this dynamometer have a greater practical validity.  相似文献   

12.
The purpose of the present study was to clarify the acute effect of dynamic stretching exercise on muscular performance during concentric dynamic constant external resistance (DCER, formally called isotonic) muscle actions under various loads. Concentric DCER leg extension power outputs were measured in 12 healthy male students after 2 types of pretreatment. The pretreatments were: (a) dynamic stretching treatment including 2 types of dynamic stretching exercises of leg extensors and the other 2 types of dynamic stretching exercises simulating the leg extension motion (2 sets of 15 times each with 30-second rest periods between sets; total duration: about 8 minutes), and (b) nonstretching treatment by resting for 8 minutes in a sitting position. Loads during measurement of the power output were set to 5, 30, and 60% of the maximum voluntary contractile (MVC) torque with isometric leg extension in each subject. The power output after the dynamic stretching treatment was significantly (p < 0.05) greater than that after the nonstretching treatment under each load (5% MVC: 468.4 +/- 102.6 W vs. 430.1 +/- 73.0 W; 30% MVC: 520.4 +/- 108.5 W vs. 491.0 +/- 93.0 W; 60% MVC: 487.1 +/- 100.6 W vs. 450.8 +/- 83.7 W). The present study demonstrated that dynamic stretching routines, such as dynamic stretching exercise of target muscle groups and dynamic stretching exercise simulating the actual motion pattern, significantly improve power output with concentric DCER muscle actions under various loads. These results suggested that dynamic stretching routines in warm-up protocols enhance power performance because common power activities are carried out by DCER muscle actions under various loads.  相似文献   

13.
Cardiorespiratory reflex responses during the initial phase of dynamic and static contraction of hindlimb muscles were studied in anesthetized dogs. Muscle contractions were elicited by stimulating the femoral and gastrocnemius nerves at 3 and 100 Hz with the intensity of 2.0-2.5 times the motor threshold for a 20-s period. Rhythmic contractions caused a decrease in arterial pressure (Pa) and heart rate (HR) and increased pulmonary ventilation (VE) by increasing frequency (f) without significantly changing VT. Tetanic contractions provoked an increase in Pa and HR and a hyperpnea resulting from a rise in both f and VT. Similar responses were also obtained in anesthetized dogs with carotid sinuses denervated and cervical vagi cut. The abrupt increase in VE at the start of both types of exercise was not associated with immediate significant decreases in end-tidal CO2 values. These two patterns of cardiocirculatory and respiratory responses were closely similar to those reported in anesthetized rabbits in previous studies. Both patterns of responses were reflexes initiated by activation of muscle receptors verified by interrupting the afferents from the contracting muscles. It is concluded that, during dynamic and static work, two distinct muscular reflex mechanisms might exert their drives, related to the muscular metabolic rate, on the circulatory and respiratory function.  相似文献   

14.
Ten healthy subjects from 17 to 23 years old participated in the study. The subjects had to hold the ergograph load with their right hand thus fulfilling a static work. The effort magnitude was 50 per cent of maximal value of voluntary strength. The subjects pressed the button on the ergograph handle with their thumb depending on the experimental conditions and held it for 0.8 or 2.5 s. The work with each interval included three conditions: interval estimation without static load (SL), the same with the SL and after SL. At the end of experiment the subjects worked with the interval of 2.5 s under the conditions of maximally long SL holding as far as it would go. An increase of reaction time (RT) was observed at the transition from simple button pressing to interval estimation. RT tended to increase with prolongation of a standard interval. SL did not influence significantly the RT value if it did not cause the general fatigue. A gradual increase of interval estimations was observed under the influence of SL the interval of 0.8 s being estimated more accurately. Estimation of various intervals was supposed to reflect different mechanisms of their perception. Estimation of the interval of 0.8 s was based on the memory trace processes and that of 2.5 s interval was connected with conditioned reflex activity. Apparently SL did not influence interval estimation directly but by changing the functional state of the subject's organism it predetermined a prolongation of the interval estimations.  相似文献   

15.
Muscle fatigue is both multifactorial and task dependent. Electrical stimulation may assist individuals with paralysis to perform functional activities [functional electrical stimulation (FES), e.g., standing or walking], but muscle fatigue is a limiting factor. One method of optimizing force is to use stimulation patterns that exploit the catchlike property of skeletal muscle [catchlike-inducing trains (CITs)]. Although nonisometric (dynamic) contractions are important parts of both normal physiological activation of skeletal muscles and FES, no previous studies have attempted to identify the effect that the load being lifted by a muscle has on the fatigue produced. This study examined the effects of load on fatigue during dynamic contractions and the augmentation produced by CITs as a function of load. Knee extension in healthy subjects was electrically elicited against three different loads. The highest load produced the least excursion, work, and average power, but it produced the greatest fatigue. CIT augmentation was greatest at the highest load and increased with fatigue. Because CITs were effective during shortening contractions for a variety of loads, they may be of benefit during FES applications.  相似文献   

16.
The time-course of heart rate, blood lactate, and ventilatory gas exchange was studied during an incremental exercise test on cycloergometer in order to ascertain whether heart rate deflection occurred at the same load as the second lactate S[La]2) and ventilatory (SV2) thresholds. Twelve moderately trained subjects, 22 to 30 years old, participated in the study. The initial power setting was 30 W for 3 min with successive increases of 30 W every min except at the end of the test where the increase was reduced to 20 and 10 W.min-1. Ventilatory flow (VE), oxygen uptake (VO2), carbon dioxide production (VCO2, ventilatory equivalents of O2 (EO2 = VE/VO2) and CO2 (ECO2 = VE/VCO2), and heart rate (HR) were determined during the last 20 s of every min. Venous blood samples were drawn at the end of each stage of effort and analyzed enzymatically for lactate concentration ([La]). The HR deflection, S[La]2, and SV2 were represented graphically by two investigators using a double blind procedure. Following the method proposed by Conconi et al. 1982, the deflection in HR was considered to begin at the point beyond which the increase in work intensity exceeded the increase in HR and the linearity of the work rate/HR relationship was lost. S[La]2 corresponded to the second breaking point of the lactate time-course curve (onset of blood lactate accumulation) and SV2 was identified at the second breaking point in the increase in VE and ventilatory equivalent for O2 uptake accompanied by a concomitant increase in ventilatory equivalent for CO2 output. We observed that the deflection point in HR was present only in 7 subjects. The work load, VO2, HR, and [La] levels at which heart rate departed from linearity did not differ significantly from those determined with S[La]2 ans SV2. The VO2 and HR values at HR deflection point were significantly correlated with those measured at S[La]2 and SV2. It is concluded that deflection in heart rate does not always occur, and when it does, it coincides with the second lactate and ventilatory gas exchange thresholds. It can thus be used for the determination of optimal intensity for individualized aerobic training.  相似文献   

17.
Mental stress was induced by the Stroop colour word task (CW task) and the effects on the micro-circulation and electromyography (EMG) in the upper portion of the trapezius muscle were studied during a series of fatiguing, standardized static contractions. A lowered blood flow of the skin recorded continuously by laser-Doppler flowmetry (LDF) was used as a stress indicator in addition to an elevated heart rate. Muscle blood flow was recorded continuously by LDF using a single optical fibre placed inside the muscle, and related to surface EMG. A group of 20 healthy women of different ages was examined. Recordings were made during a 50-min period in the following sequence: a 10-min series of alternating 1-min periods of rest and stepwise increased contraction induced by keeping the arms straight and elevated at 30, 60, 90 and 135° with a 1-kg load carried in each hand; a 10-min recovery period without load; a repeated contraction series with simultaneous performance of the CW task; a second 10-min recovery period, and a second contraction series without CW task. Signal processing was done on line by computer. The LDF and root mean square (rms)-EMG values were calculated, as well as the EMG mean power frequency (MPF) for fatigue. The CW-task added to the contraction series caused an increase in the heart rate accompanied by a decrease in the blood flow to the skin and a 30% increase in the blood flow in the exercising muscle. Both returned to normal during the subsequent recovery period and showed normal levels during the final contraction series without CW. The rms-EMG showed a 20% increase that persisted during the final contraction series performed without CW. There was no influence on MPF. This CW has previously been shown to evoke an increased secretion of adrenaline from the adrenal medullae to the blood. The increased blood flow in the exercising muscle would therefore appear to have been caused by -adrenoceptor vasodilatation, and the fall in the blood flow in the skin by -adrenoceptor vasoconstriction. The findings may have implications for work situations characterized by repetitive static loads to the shoulder muscles and psychological stress.  相似文献   

18.
The purposes of this study were to clarify the effects of static stretching for 30 seconds and dynamic stretching on leg extension power. Eleven healthy male students took part in this study. Each subject performed static stretching and dynamic stretching on the 5 muscle groups in the lower limbs and nonstretching on separate days. Leg extension power was measured before and after the static stretching, dynamic stretching, and nonstretching. No significant difference was found between leg extension power after static stretching (1788.5 +/- 85.7 W) and that after nonstretching (1784.8 +/- 108.4 W). On the other hand, leg extension power after dynamic stretching (2022.3 +/- 121.0 W) was significantly (p < 0.01) greater than that after nonstretching. These results suggest that static stretching for 30 seconds neither improves nor reduces muscular performance and that dynamic stretching enhances muscular performance.  相似文献   

19.
The purpose of the present study was to clarify the effect of static stretching on muscular performance during concentric isotonic (dynamic constant external resistance [DCER]) muscle actions under various loads. Concentric DCER leg extension power outputs were assessed in 12 healthy male subjects after 2 types of pretreatment. The pretreatments included (a) static stretching treatment performing 6 types of static stretching on leg extensors (4 sets of 30 seconds each with 20-second rest periods; total duration 20 minutes) and (b) nonstretching treatment by resting for 20 minutes in a sitting position. Loads during assessment of the power output were set to 5, 30, and 60% of the maximum voluntary contractile (MVC) torque with isometric leg extension in each subject. The peak power output following the static stretching treatment was significantly (p < 0.05) lower than that following the nonstretching treatment under each load (5% MVC, 418.0 +/- 82.2 W vs. 466.2 +/- 89.5 W; 30% MVC, 506.4 +/- 82.8 W vs. 536.4 +/- 97.0 W; 60% MVC, 478.6 +/- 77.5 W vs. 523.8 +/- 97.8 W). The present study demonstrated that relatively extensive static stretching significantly reduces power output with concentric DCER muscle actions under various loads. Common power activities are carried out by DCER muscle actions under various loads. Therefore, the result of the present study suggests that relatively extensive static stretching decreases power performance.  相似文献   

20.
The present study examined the short-term effects of loaded half squats (HSs) and loaded jump squats (JSs) with low and moderate loads on the squat jump (SJ) and the countermovement jump (CMJ) performance using a contrast training approach. Ten men (mean +/- SD age, 23 +/- 1.8 years) performed the HS and JS exercises twice with loads of 30% of 1 repetition maximum (1RM) (HS30% and JS30%, respectively) and 60% of 1RM (HS60% and JS60%, respectively). On each occasion, 3 sets of 5 repetitions with 3 minutes of rest were performed as fast as possible. Vertical jump performance was measured before exercise, 1 minute after each set, and at the fifth and 10th minutes of recovery. The CMJ increased significantly after the first and second set (3.9%; p < 0.05) compared with preexercise values following the JS30% protocol and 3.3% after the second and third sets of the JS60% protocol. Following the HS60% protocol, CMJ increased after the first and the second sets (3.6%; p < 0.05) compared with preexercise values, whereas SQ increased only after the first set (4.9%; p < 0.05) in this condition. These data show that contrast loading with the use of low and moderate loads can cause a short-term increase in CMJ performance. The applied loads do not seem to present different short-term effects after loaded JSs. When the classic form of dynamic HS exercise is performed, however, at least a moderate load (60% of 1RM) needs to be applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号