首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leukocyte-specific beta(2) integrin lymphocyte function-associated antigen-1 (LFA-1) (alpha(L)/beta(2)) mediates activation-dependent adhesion to intercellular adhesion molecule (ICAM)-1. In leukocytes, LFA-1 requires activation by intracellular messengers to bind ICAM-1. We observed malfunctioning of LFA-1 activation in leukemic T cells and K562-transfected cells. This defective inside-out integrin activation is only restricted to beta(2) integrins, since beta(1) integrins expressed in K562 readily respond to activation signals, such as phorbol 12-myristate 13-acetate. To unravel these differences in inside-out signaling between beta(1) and beta(2) integrins, we searched for amino acids in the beta(2) cytoplasmic domain that are critical in the activation of LFA-1. We provide evidence that substitution of a single amino acid (L732R) in the beta(2) cytoplasmic DLRE motif, creating the DRRE motif, is sufficient to completely restore PMA responsiveness of LFA-1 expressed in K562. In addition, an intact TTT motif in the C-terminal domain is necessary for the acquired PMA responsiveness. We observed that restoration of the PMA response altered neither LFA-1 affinity nor the phosphorylation status of LFA-1. In contrast, strong differences were observed in the capacity of LFA-1 to form clusters, which indicates that inside-out activation of LFA-1 strongly depends on cytoskeletal induced receptor reorganization that was induced by activation of the Ca(2+)-dependent protease calpain.  相似文献   

2.
CD98 is a multifunctional heterodimeric membrane protein involved in the regulation of cell adhesion as well as amino acid transport. We show that CD98 cross-linking persistently activates Rap1 GTPase in a LFA-1-dependent manner and induces LFA-1/ICAM-1-mediated cell adhesion in lymphocytes. Specific phosphatidylinositol-3-kinase (PI3K) inhibitors suppressed both LFA-1 activation and Rap1GTP generation, and abrogation of Rap1GTP by retroviral over-expression of a specific Rap1 GTPase activating protein, SPA-1, totally inhibited the LFA-1/ICAM-1-mediated cell adhesion. These results suggest that CD98 cross-linking activates LFA-1 via the PI3K signaling pathway and induces accumulation of Rap1GTP in a LFA-1-dependent manner, which in turn mediates the cytoskeleton-dependent cell adhesion process.  相似文献   

3.
A central region of the beta2 integrin subunit, RN (residues D300 to C459), was replaced by the equivalent sequences from beta1 and beta7 to give the chimeras beta2RN1 and beta2RN7. Whilst the former construct failed to form heterodimer at the cell surface with alphaL, the later of these could be expressed together with the alphaL subunit to form a variant LFA-1. Based on recent modelling work, the RN region consists of two parts, one is the C-terminal end of the putative A-domain (RB, residues D300 to A359), and the other the mid-region (BN, residues Y360 to C459). Chimeras exchanging the two component regions were made. Of the four resultant chimeras, only the beta2RB1 chimera failed to support LFA-1 expression. Thus the beta1 specific residues of this region affect the interaction with the alphaL subunit. Whereas the alphaL/beta2RB7 LFA-1 variant is wildtype like with respect to ICAM-1 adhesion, the alphaLbeta2BN1 and alphaLbeta2BN7, as well as the alphaLbeta2RN7, variants are more adhesive than the wildtype. These results suggest that an authentic beta2 mid-region is, in part, required for maintaining the LFA-1 in a resting state.  相似文献   

4.
LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) are members of the beta2 integrins involved in leukocyte function during immune and inflammatory responses. We aimed to determine a minimized beta2 subunit that forms functional LFA-1 and Mac-1. Using a series of truncated beta2 variants, we showed that the subregion Q23-D300 of the beta2 subunit is sufficient to combine with the alphaL and alphaM subunits intracellularly. However, only the beta2 variants terminating after Q444 promote cell surface expression of LFA-1 and Mac-1. Thus, the major cysteine-rich region and the three highly conserved cysteine residues at positions 445, 447, and 449 of the beta2 subunit are not required for LFA-1 and Mac-1 surface expression. The surface-expressed LFA-1 variants are constitutively active with respect to ICAM-1 adhesion and these variants express the activation reporter epitope of the mAb 24. In contrast, surface-expressed Mac-1, both the wild type and variants, require 0. 5 mM MnCl2 for adhesion to denatured BSA. These results suggest that the role of the beta2 subunit in LFA-1- and Mac-1-mediated adhesion may be different.  相似文献   

5.
Chemokines presented on endothelial tissues instantaneously trigger LFA-1-mediated arrest on ICAM-1 via rapid inside-out and outside-in (ligand-driven) LFA-1 activation. The GTPase RhoA was previously implicated in CCL21-triggered LFA-1 affinity triggering in murine T lymphocytes and in LFA-1-dependent adhesion strengthening to ICAM-1 on Peyer's patch high endothelial venules stabilized over periods of at least 10 s. In this study, we show that a specific RhoA 23/40 effector region is vital for the initial LFA-1-dependent adhesions of lymphocytes on high endothelial venules lasting 1-3 s. Blocking the RhoA 23/40 region in human T lymphocytes in vitro also impaired the subsecond CXCL12-triggered LFA-1-mediated T cell arrest on ICAM-1 by eliminating the rapid induction of an extended LFA-1 conformational state. However, the inflammatory chemokine CXCL9 triggered robust LFA-1-mediated T lymphocyte adhesion to ICAM-1 at subsecond contacts independently of the RhoA 23/40 region. CXCL9 did not induce conformational changes in the LFA-1 ectodomain, suggesting that particular chemokines can activate LFA-1 through outside-in post ligand binding stabilization changes. Like CXCL9, the potent diacylglycerol-dependent protein kinase C agonist PMA was found to trigger LFA-1 adhesiveness to ICAM-1 also without inducing integrin extension or an a priori clustering and independently of the RhoA 23/40 region. Our results collectively suggest that the 23/40 region of RhoA regulates chemokine-induced inside-out LFA-1 extension before ligand binding, but is not required for a variety of chemokine and non-chemokine signals that rapidly strengthen LFA-1-ICAM-1 bonds without an a priori induction of high-affinity extended LFA-1 conformations.  相似文献   

6.
We show that CC chemokines induced a sustained increase in monocyte adhesion to intercellular adhesion molecule-1 that was mediated by Mac-1 (alphaMbeta2) but not lymphocyte function-associated antigen-1 (LFA-1; alphaLbeta2). In contrast, staining for an activation epitope revealed a rapid and transient up-regulation of LFA-1 activity by monocyte chemotactic protein-1 (MCP-1) in monocytes and Jurkat CCR2 chemokine receptor transfectants or by stromal-derived factor-1alpha in Jurkat cells. Differential kinetics for activation of Mac-1 (sustained) and LFA-1 (transient) avidity in response to stromal-derived factor-1alpha were confirmed by expression of alphaM or alphaL in alphaL-deficient Jurkat cells. Moreover, expression of chimeras containing alphaL and alphaM cytoplasmic domain exchanges indicated that alpha cytoplasmic tails conferred the specific mode of regulation. Coexpressing alphaM or chimeras in mutant Jurkat cells with a "gain of function" phenotype that results in constitutively active LFA-1 demonstrated that Mac-1 was not constitutively active, whereas constitutive activity was mediated via the alphaL cytoplasmic tail, implying the presence of distinct signaling pathways for LFA-1 and Mac-1. Transendothelial chemotaxis of monocytes in response to MCP-1 was dependent on LFA-1; however, Mac-1 was involved at MCP-1 concentrations stimulating its avidity, showing differential contributions of beta2 integrins. Our data suggest that a specific regulation of beta2 integrin avidity by chemokines may be important in leukocyte extravasation and may be triggered by distinct activation pathways transduced via the alpha subunit cytoplasmic domains.  相似文献   

7.
To identify the intracellular signals which increase the adhesiveness of leukocyte function-associated antigen 1 (LFA-1), we established an assay system for activation-dependent adhesion through LFA-1/intercellular adhesion molecule 1 ICAM-1 using mouse lymphoid cells reconstituted with human LFA-1 and then introduced constitutively active forms of signaling molecules. We found that the phorbol myristate acetate (PMA)-responsive protein kinase C (PKC) isotypes (alpha, betaI, betaII, and delta) or phosphatidylinositol-3-OH kinase (PI 3-kinase) itself activated LFA-1 to bind ICAM-1. H-Ras and Rac activated LFA-1 in a PI 3-kinase-dependent manner, whereas Rho and R-Ras had little effect. Unexpectedly, Rap1 was demonstrated to function as the most potent activator of LFA-1. Distinct from H-Ras and Rac, Rap1 increased the adhesiveness independently of PI 3-kinase, indicating that Rap1 is a novel activation signal for the integrins. Rap1 induced changes in the conformation and affinity of LFA-1 and, interestingly, caused marked LFA-1/ICAM-1-mediated cell aggregation. Furthermore, a dominant negative form of Rap1 (Rap1N17) inhibited T-cell receptor-mediated LFA-1 activation in Jurkat T cells and LFA-1/ICAM-1-dependent cell aggregation upon differentiation of HL-60 cells into macrophages, suggesting that Rap1 is critically involved in physiological processes. These unique functions of Rap1 in controlling cellular adhesion through LFA-1 suggest a pivotal role as an immunological regulator.  相似文献   

8.
Although essential for T cell function, the identity of the T cell receptor (TCR) "inside-out" pathway for the activation of lymphocyte function-associated antigen 1 (LFA-1) is unclear. SKAP1 (SKAP-55) is the upstream regulator needed for TCR-induced RapL-Rap1 complex formation and LFA-1 activation. In this paper, we show that SKAP1 is needed for RapL binding to membranes in a manner dependent on the PH domain of SKAP1 and the PI3K pathway. A SKAP1 PH domain-inactivating mutation (i.e. R131M) markedly impaired RapL translocation to membranes for Rap1 and LFA-1 binding and the up-regulation of LFA-1-intercellular adhesion molecule 1 (ICAM-1) binding. Further, N-terminal myr-tagged SKAP1 for membrane binding facilitated constitutive RapL membrane and Rap1 binding and effectively substituted for PI3K and TCR ligation in the activation of LFA-1 in T cells.  相似文献   

9.
The lymphocyte function-associated molecule 1 (LFA-1, CD11a/CD18) is an integrin that mediates adhesion of immune cells by interaction with two members of the Ig superfamily, ICAM-1 and ICAM-2. LFA-1 consists of an alpha subunit (Mr = 180,000) and a beta subunit (Mr = 95,000). We report here the isolation and expression of the murine alpha subunit cDNA (GenBank accession no. M60778). The deduced sequence comprises a 1061 amino acid extracellular domain, a 29 amino acid transmembrane region, and a 50 amino acid cytoplasmic domain. It has a 72% amino acid identity with its human counterpart and 34% identity with the murine Mac-1 alpha subunit. The murine LFA-1 alpha subunit could be expressed on the cell surface of a fibroblastoid cell line, COS, by cotransfection with either the human or murine beta subunit cDNA.  相似文献   

10.
In T-lymphocytes the Ras-like small GTPase Rap1 plays an essential role in stimulus-induced inside-out activation of integrin LFA-1 (alpha(L)beta(2)) and VLA-4 (alpha(4)beta(1)). Here we show that Rap1 is also involved in the direct activation of these integrins by divalent cations or activating antibodies. Inhibition of Rap1 either by Rap GTPase-activating protein (RapGAP) or the Rap1 binding domain of RalGDS abolished both Mn(2+)- and KIM185 (anti-LFA-1)-induced LFA-1-mediated cell adhesion to intercellular adhesion molecule 1. Mn(2+)- and TS2/16 (anti-VLA-4)-induced VLA-4-mediated adhesion were inhibited as well. Interestingly, both Mn(2+), KIM185 and TS2/16 failed to induce elevated levels of Rap1GTP. These findings indicate that available levels of GTP-bound Rap1 are required for the direct activation of LFA-1 and VLA-4. Pharmacological inhibition studies demonstrated that both Mn(2+)- and KIM185-induced adhesion as well as Rap1-induced adhesion require intracellular calcium but not signaling activity of the MEK-ERK pathway. Moreover, functional calmodulin signaling was shown to be a prerequisite for Rap1-induced adhesion. From these results we conclude that in addition to stimulus-induced inside-out activation of integrins, active Rap1 is required for cell adhesion induced by direct activation of integrins LFA-1 and VLA-4. We suggest that Rap1 determines the functional availability of integrins for productive binding to integrin ligands.  相似文献   

11.
To elucidate the role of the cytoskeleton regulating avidity or affinity changes in the leukocyte adhesion receptor lymphocyte function-associated antigen-1 (LFA-1) (alpha(L)beta(2)), we generated mutant cytoplasmic LFA-1 receptors and expressed these into the erythroleukemic cell line K562. We determined whether intercellular adhesion molecule-1 (ICAM-1)-mediated adhesion of LFA-1, lacking parts of its cytoplasmic tails, is regulated through receptor diffusion/clustering and/or by altered ligand binding affinity. All cytoplasmic deletion mutants that lack the complete beta(2) cytoplasmic tail and/or the conserved KVGFFKR sequence in the alpha(L) cytoplasmic tail were constitutively active and expressed high levels of the activation epitopes NKI-L16 and M24. Surprisingly, whereas these mutants showed a clustered cell surface distribution of LFA-1, the ligand-binding affinity as measured by titration of soluble ligand ICAM-1 remained unaltered. The notion that redistribution of LFA-1 does not alter ligand-binding affinity is further supported by the finding that disruption of the cytoskeleton by cytochalasin D did not alter the binding affinity nor adhesion to ICAM-1 of these mutants. Most cytoplasmic deletion mutants that spontaneously bound ICAM-1 were not capable to spread on ICAM-1, demonstrating that on these mutants LFA-1 is not coupled to the actin cytoskeleton. From these data we conclude that LFA-1-mediated cell adhesion to ICAM-1 is predominantly regulated by receptor clustering and that affinity alterations do not necessarily coincide with strong ICAM-1 binding.  相似文献   

12.
The adhesive function of integrins is regulated through cytoplasmic signaling. The present study was performed to investigate the relevance of cytoplasmic signaling and cytoskeletal assembly to integrin-mediated adhesion induced by chemokines. Adhesion of T cells induced by chemokines macrophage inflammatory protein (MIP)-1alpha and MIP-1beta was inhibited by pertussis toxin, wortmannin, and cytochalasin B, suggesting that both G protein-sensitive phosphatidylinositol (PI) 3-kinase activation and cytoskeletal assemblies are involved. The chemokine-induced T cell adhesion could be mimicked by expression of small G proteins, fully activated H-RasV12, or H-RasV12Y40C mutant, which selectively binds to PI 3-kinase, in T cells, inducing activated form of LFA-1alpha and LFA-1-dependent adhesion to ICAM-1. H-Ras expression also induced F-actin polymerization which colocalized with profilin in T cells. Adult T cell leukemia (ATL) cells spontaneously adhered to ICAM-1, which depended on endogenous MIP-1alpha and MIP-1beta through activation of G protein-sensitive PI 3-kinase. H-Ras signal pathway, leading to PI 3-kinase activation, also induced active configuration of LFA-1 and LFA-1-mediated adhesion of ATL cells, whereas expression of a dominant-negative H-Ras mutant failed to do. Profilin-dependent spontaneous polymerization of F-actin in ATL cells was reduced by PI 3-kinase inhibitors. In this paper we propose that H-Ras-mediated activation of PI 3-kinase can be involved in induction of LFA-1-dependent adhesion of T cells, which is relevant to chemokine-mediated signaling, and that profilin may form an important link between chemokine- and/or H-Ras-mediated signals and F-actin polymerization, which results in triggering of LFA-1 on T cells or leukemic T cells.  相似文献   

13.
In order to identify a binding site for ligand intercellular adhesion molecule-1 (ICAM-1) on the beta 2 integrin lymphocyte function-associated antigen-1 (LFA-1), protein fragments of LFA-1 were made by in vitro translation of a series of constructs which featured domain-sized deletions starting from the N-terminus of the alpha subunit of LFA-1. Monoclonal antibodies and ICAM-1 were tested for their ability to bind to these protein fragments. Results show that the putative divalent cation binding domains V and VI contain an ICAM-1 binding site. A series of consecutive peptides covering these domains indicated two discontinuous areas as specific contact sites: residues 458-467 in domain V and residues 497-516 in domain VI. A three-dimensional model of these domains of LFA-1 was constructed based on the sequence similarity to known EF hands. The two regions critical for the interaction of LFA-1 with ICAM-1 lie adjacent to each other, the first next to the non-functional EF hand in domain V and the second coinciding with the potential divalent cation binding loop in domain VI. The binding of ICAM-1 with the domain V and VI region in solution was not sensitive to divalent cation chelation. In short, a critical motif for ICAM-1 binding to the alpha subunit of LFA-1 is shared between two regions of domains V and VI.  相似文献   

14.
The LFA-1 integrin is crucial for the firm adhesion of circulating leukocytes to ICAM-1-expressing endothelial cells. In the present study, we demonstrate that LFA-1 can arrest unstimulated PBL subsets and lymphoblastoid Jurkat cells on immobilized ICAM-1 under subphysiological shear flow and mediate firm adhesion to ICAM-1 after short static contact. However, LFA-1 expressed in K562 cells failed to support firm adhesion to ICAM-1 but instead mediated K562 cell rolling on the endothelial ligand under physiological shear stress. LFA-1-mediated rolling required an intact LFA-1 I-domain, was enhanced by Mg2+, and was sharply dependent on ICAM-1 density. This is the first indication that LFA-1 can engage in rolling adhesions with ICAM-1 under physiological shear flow. The ability of LFA-1 to support rolling correlates with decreased avidity and impaired time-dependent adhesion strengthening. A beta2 cytoplasmic domain-deletion mutant of LFA-1, with high avidity to immobilized ICAM-1, mediated firm arrests of K562 cells interacting with ICAM-1 under shear flow. Our results suggest that restrictions in LFA-1 clustering mediated by cytoskeletal attachments may lock the integrin into low-avidity states in particular cellular environments. Although low-avidity LFA-1 states fail to undergo adhesion strengthening upon contact with ICAM-1 at stasis, these states are permissive for leukocyte rolling on ICAM-1 under physiological shear flow. Rolling mediated by low-avidity LFA-1 interactions with ICAM-1 may stabilize rolling initiated by specialized vascular rolling receptors and allow the leukocyte to arrest on vascular endothelium upon exposure to stimulatory endothelial signals.  相似文献   

15.
The beta 2 integrin lymphocyte function-associated antigen 1 (LFA-1) mediates activation-dependent adhesion of lymphocytes. To investigate whether lymphocyte-specific elements are essential for LFA-1 function, we expressed LFA-1 in the erythroleukemic cell line K562, which expresses only the integrin very late antigen 5. We observed that LFA-1-expressing K562 cannot bind to intercellular adhesion molecule 1-coated surfaces when stimulated by phorbol 12-myristate 13-acetate (PMA), whereas the LFA-1-activating antibody KIM185 markedly enhanced adhesion. Because the endogenously expressed beta 1 integrin very late antigen 5 is readily activated by PMA, we investigated the role of the cytoplasmic domain of distinct beta subunits in regulating LFA-1 function. Transfection of chimeric LFA-1 receptors in K562 cells reveals that replacement of the beta 2 cytoplasmic tail with the beta 1 but not the beta 7 cytoplasmic tail completely restores PMA responsiveness of LFA-1, whereas a beta 2 cytoplasmic deletion mutant of LFA-1 is constitutively active. Both deletion of the beta 2 cytoplasmic tail or replacement by the beta 1 cytoplasmic tail alters the localization of LFA-1 into clusters, thereby regulating LFA-1 activation and LFA-1-mediated adhesion to intercellular adhesion molecule 1. These data demonstrate that distinct signaling routes activate beta 1 and beta 2 integrins through the beta-chain and hint at the involvement of lymphocyte-specific signal transduction elements in beta 2 and beta 7 integrin activation that are absent in the nonlymphocytic cell line K562.  相似文献   

16.
The small GTPase, Rap1, is a potent activator of leukocyte integrins and enhances the adhesive activity of lymphocyte function-associated antigen-1 (LFA-1) when stimulated by the T cell receptor (TCR) or chemokines. However, the mechanism by which Rap1 is activated remains unclear. Here, we demonstrate that phospholipase C (PLC)-gamma1 plays a critical role in the signaling pathway leading to Rap1 activation triggered by the TCR. In Jurkat T cells, TCR cross-linking triggered persistent Rap1 activation, and SDF-1 (CXCL12) activated Rap1 transiently. A phospholipase C inhibitor, U73122, abrogated Rap1 activation triggered by both the TCR and SDF-1 (CXCL12). PLC-gamma1-deficient Jurkat T cells showed a marked reduction of TCR-triggered Rap1 activation and adhesion to intercellular adhesion molecule-1 (ICAM-1) mediated by LFA-1. In contrast, SDF-1-triggered Rap1 activation and adhesion were not affected in these cells. Transfection of these cells with an expression plasmid encoding PLC-gamma1 restored Rap1 activation by the TCR and the ability to adhere to ICAM-1, accompanied by polarized LFA-1 surface clustering colocalized with regulator of adhesion and polarization enriched in lymphoid tissues (RAPL). Furthermore, when expressed in Jurkat cells, CalDAG-GEFI, a calcium and diacylglycerol-responsive Rap1 exchange factor, associated with Rap1, and resulted in enhanced Rap1 activation and adhesion triggered by the TCR. Our results demonstrate that TCR activation of Rap1 depends on PLC-gamma1. This activity is likely to be mediated by CalDAG-GEFI, which is required to activate LFA-1.  相似文献   

17.
Integrins are adhesion receptors that are crucial to the functions of multicellular organisms. Integrin-mediated adhesion is a complex process that involves both affinity regulation and cytoskeletal coupling, but the molecular mechanisms behind this process have remained incompletely understood. In this study, we report that the phosphorylation of each cytoplasmic domain of the leukocyte function-associated antigen-1 integrin mediates different modes of integrin activation. alpha Chain phosphorylation on Ser1140 is needed for conformational changes in the integrin after chemokine- or integrin ligand-induced activation or after activation induced by active Rap1 (Rap1V12). In contrast, the beta chain Thr758 phosphorylation mediates selective binding to 14-3-3 proteins in response to inside-out activation through the T cell receptor, resulting in cytoskeletal rearrangements. Thus, site-specific phosphorylation of the integrin cytoplasmic domains is important for the dynamic regulation of these complex receptors in cells.  相似文献   

18.
Species restrictions in immune cell interactions have been demonstrated both in Ag-specific responses of T lymphocytes and the phenomenon of natural attachment. To determine the possible contribution of adhesion receptors to these restrictions, we have studied binding between the murine and human homologues of LFA-1 (CD11a/CD18) and ICAM employing purified human LFA-1 and ICAM-1 (CD54) bound to solid substrates. Murine cell lines bind to purified human LFA-1 through ICAM-1 and at least one other counter-receptor. This provides evidence for multiple counter-receptors for LFA-1 in the mouse as well as in the human. In contrast to binding of murine ICAM-1 to human LFA-1, murine LFA-1 does not bind to human ICAM-1. The species specificity maps to the LFA-1 alpha subunit, because mouse x human hybrid cells expressing the human alpha subunit associated with a mouse beta subunit bind to human ICAM-1, whereas those with a human beta subunit associated with a murine alpha subunit do not. Increased adhesiveness for ICAM-1 stimulated by phorbol esters could be demonstrated for hybrid LFA-1 molecules with human alpha and murine beta subunits.  相似文献   

19.
S D Marlin  T A Springer 《Cell》1987,51(5):813-819
Lymphocyte function-associated antigen 1 (LFA-1) is a leukocyte cell surface glycoprotein that promotes intercellular adhesion in immunological and inflammatory reactions. It is an alpha beta complex that is structurally related to receptors for extracellular matrix components, and thus belongs to the integrin family. ICAM-1 (intercellular adhesion molecule-1) is a distinct cell surface glycoprotein. Its broad distribution, regulated expression in inflammation, and involvement in LFA-1-dependent cell-cell adhesion have suggested that ICAM-1 may be a ligand for LFA-1. We have purified ICAM-1 and incorporated it into artificial supported lipid membranes. LFA-1+ but not LFA-1- cells bound to ICAM-1 in the artificial membranes, and the binding could be specifically inhibited by anti-ICAM-1 treatment of the membranes or by anti-LFA-1 treatment of the cells. The cell binding to ICAM-1 required metabolic energy production, an intact cytoskeleton, and the presence of Mg2+ and was temperature dependent, characteristics of LFA-1- and ICAM-1-dependent cell-cell adhesion.  相似文献   

20.
Jevnikar Z  Obermajer N  Kos J 《IUBMB life》2011,63(9):686-693
The adhesion molecule lymphocyte function-associated antigen (LFA)-1 plays a key role in immune surveillance and response. Its conformation is spatially and temporally regulated, enabling adhesion and deadhesion during T-cell migration. LFA-1 adhesion to its major ligand intercellular adhesion molecule 1 is controlled by adaptor proteins which bind the cytoplasmic tail of the β (2) subunit. Cathepsin X, a cysteine carboxypeptidase, promotes T-cell migration and morphological changes by cleaving the β (2) cytoplasmic tail of LFA-1. In this way, it modulates the affinity of LFA-1 for structural adaptors talin-1 and α-actinin-1 and enables the stepwise transition between intermediate and high-affinity conformations of LFA-1, an event that is necessary for effective T-cell function. Cathepsin X regulation that would allow precise modulation of LFA-1 affinity has a great potential for anti-LFA-1 therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号