首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sexes often differ in the reproductive trait limiting their fitness, an observation known as Bateman's principle. In many species, females are limited by their ability to produce eggs while males are limited by their ability to compete for and successfully fertilize those eggs. As well as promoting the evolution of sex-specific reproductive strategies, this difference may promote sex differences in other life-history traits due to their correlated effects. Sex differences in disease susceptibility and immune function are common. Two hypotheses based on Bateman's principle have been proposed to explain this pattern: that selection to prolong the period of egg production favors improved immune function in females, or that the expression of secondary sexual characteristics reduces immune function in males. Both hypotheses predict a relatively fixed pattern of reduced male immune function, at least in sexually mature individuals. An alternative hypothesis is that Bateman's principle does not dictate fixed patterns of reproductive investment, but favors phenotypically plastic reproductive strategies with males and females adaptively responding to variation in fitness-limiting resource availability. Under this hypothesis, neither sex is expected to possess intrinsically superior immune function, and immunological sex differences may vary in different environments. We demonstrate that sex-specific responses to experimental manipulation of fitness-limiting resources affects both the magnitude and direction of sex differences in immune function in Drosophila melanogaster. In the absence of sexual interactions and given abundant food, the immune function of adults was maximized in both sexes and there was no sex difference. Manipulation of food availability and sexual activity resulted in female-biased immune suppression when food was limited, and male-biased immune suppression when sexual activity was high and food was abundant. The immunological cost to males of increased sexual activity was found to be due in part to reduced time spent feeding. We suggest that for species similarly limited in their reproduction, phenotypic plasticity will be an important determinant of sex differences in immune function and other life-history traits.  相似文献   

2.
Most studies on size–fitness relationships focus on females and neglect males. Here, we investigated how body size of both sexes of an aphid parasitoid, Aphidius ervi Haliday, affected the reproductive fitness. Reproductive fitness was generally positively correlated with body size for both sexes in this species. Large individuals of both sexes had greater longevity, large males fathered more progeny, and large females had higher fecundity, parasitism, and greater ability in host searching and handling. We demonstrated in this study that size effects of males and females were asymmetric on different reproductive fitness parameters. With increasing body size females gained more than males in longevity and fecundity while males gained more than females in the number of female progeny. Regardless of female size, large males sustained a female-biased population longer than small males. These results suggest that male body size should also be considered in the quality control of mass-rearing programs and the evaluation of parasitoid population growth.  相似文献   

3.
Sexual selection theory proposes that males suffer reduced immune function and increased parasitism as costs of expressing sexual signals. Life‐history theory proposes that females suffer the same costs because of inherent trade‐offs between reproduction and self‐maintenance. Mechanistically, each theory invokes an energetic trade‐off, although few experiments have directly compared these costs of reproduction between the sexes as a result of fundamental sex differences in the nature of reproductive investment and a tendency for each theory to focus on a single sex. To test whether males and females experience comparable costs of reproduction in terms of energetics, immune function, and parasitism, we used gonadectomy to eliminate most aspects of reproductive investment in wild brown anole lizards (Anolis sagrei) of both sexes. We compared these nonreproductive males and females with intact, reproductive controls with respect to stored energy (fat bodies), immune function (swelling response to phytohemagglutinin), and the prevalence and intensity of infection by four types of parasite (gastric nematodes, intestinal nematodes, faecal coccidia, and ectoparasitic mites). Gonadectomized anoles experienced dramatic increases in fat storage that were accompanied by decreases in the prevalence of intestinal nematodes and in the intensity of coccidia infection. These costs of reproduction were comparable between males and females, although neither sex exhibited the predicted increase in immune function after gonadectomy. Our results suggest that, despite fundamental sex differences in the nature of reproductive investment, both male and female anoles experience similar costs of reproduction with respect to energy storage and some aspects of parasitism.  相似文献   

4.
If a female mates with a male of a closely related species, her fitness is likely to decline. Consequently, females may develop behavioral mechanisms to avoid mating with heterospecific males. In some species, one such mechanism is for adult females to learn to discriminate against heterospecific males after exposure to such males. We have previously shown that adult, female Syrian hamsters (Mesocricetus auratus) learn to discriminate against male Turkish hamsters (Mesocricetus brandti) after exposure to a single heterospecific male during 8 days across a wire-mesh barrier. Here we repeated that experiment but this time we exposed female Turkish hamsters to a male Syrian hamster for 8 days and then measured sexual and aggressive behaviors towards that heterospecific male and towards a conspecific male. In contrast to female Syrian hamsters, female Turkish hamsters did not differ in their latency to go into lordosis or in any measure of aggression towards either type of male. Female Turkish hamsters spent less time in lordosis with the heterospecific male, but the percentage of trials in which females copulated with conspecific and heterospecific males did not differ. When comparing females from both species that had been exposed to a heterospecific male for 8days, female Syrian hamsters copulated less and were more aggressive towards the heterospecific male compared to the behavior of female Turkish hamsters. We discuss how this asymmetric response between females of the two species may be due to the much larger geographical range of Turkish hamsters compared to Syrian hamsters.  相似文献   

5.
Melanin‐based plumage ornaments have been shown to play an important role in male–male competition, but also influence inter‐sexual communication. Consequently, ornaments may be associated with reproductive effort of both males and females. Females mated to males with larger melanin ornaments may acquire access to better territories or benefit from increased paternal care. Here we investigated whether the melanin‐based breast‐band of male and female Bar‐throated Apalis Apalis thoracica is a signal of information about its bearer and is associated with male and female reproductive effort. Breast‐band size was a highly variable morphometric trait in both sexes, but only in males was it associated with body mass. We then assessed whether male and female breast‐band size predicted maternal and paternal investment. Egg mass increased with male breast‐band size, but decreased with female breast‐band size. Whether females adjust maternal hormone allocation in response to their partner's ornamentation remains a contentious issue. We found that yolk testosterone and androstenedione concentrations were not predicted by male ornamentation or body mass. Finally, males with larger breast‐bands provided their mates with more food, allowing those females to spend more time incubating. Reproductive effort of both parents is therefore predicted by their own and their mate's ornamentation in Bar‐throated Apalis, and thus breast‐band size potentially acts as a signal of reproductive performance in both sexes. These results highlight the need for more comprehensive analyses of a relationship between melanin‐based ornaments and fitness, incorporating multiple behavioural variables associated with reproductive effort.  相似文献   

6.
Summary Schoener (1971) proposed that the reproductive demands of animals should be important in shaping their foraging behavior because fitness is affected. He defined two forager types: energy maximizers (reproductive success depends on energetic intake) and time minimizers (reproductive success depends on time spent in activities other than foraging), and suggested that females most often illustrate the former and males the latter. We tested whether mating activities influence the foraging behavior of Uca panacea, and the predictions that females would be energy maximizers because of their reproductive strategy and that males would also be energy maximizers because of their courtship activity. Time allocated to foraging by 800 male and female fiddler crabs (at two sites) was quantified; no significant difference in foraging time was found between the sexes. Both male and female crabs allotted a large portion of their time to foraging because both sexes depend on stored energy during their reproductive bouts. Our results show that the particular forager type can be predicted based on reproductive demands, but a forager type can not always be assigned to a particular sex without consideration of all important ecological and physiological factors determining reproductive success.  相似文献   

7.
Females are often subjected to unwanted mating advances from males. Such advances can be costly to both parties. The short‐term costs of harassment to females have been widely explored in the literature; however, few studies have measured the direct fitness costs. Moreover, male costs are seldom considered. Conventional wisdom would lead us to hypothesise that sexual harassment is costly; thus, when males and females are housed together, harassment should reduce foraging, growth and reproductive output and may disrupt social interactions. This study quantified harassment costs in both sexes by observing behavioural responses and long‐term effects of unsolicited mating in a controlled setting. Sexually mature guppies were subjected to two housing treatments: equal sex ratios or single‐sex groups. The effects of male harassment on males and females were assessed by measuring behaviour, growth rate and the number of offspring produced over a period of 6 mo. Contrary to our expectations, our results indicated no significant differences in foraging and growth rates between mixed‐ and single‐sex shoals for either sex. Moreover, there was no significant difference in fry production between mixed‐ and all‐female shoals. Large males showed higher mortality when housed with females. Both sexes showed a reduction in shoaling when in mixed‐sex groups. Thus, there appear to be few direct costs of harassment for females in natural, mixed‐sex shoals, but males appear to bear significant harassment costs. The study provides insights into reproductive behaviour and life‐history traits.  相似文献   

8.
Immune function is better in females than in males of many vertebrate species, and this dimorphism has been attributed to the presence of immunosuppressive androgens in males. We investigated the influence of sex steroid hormones on immune function in male and female Siberian hamsters. Previous studies indicated that immune function was impaired in male and female hamsters housed under short-day photoperiods when androgen and estrogen concentrations were virtually undetectable. In experiment 1, animals were gonadally intact, gonadectomized (gx), or gx with hormone replacement. Females exhibited the expected increase in antibody production over males, independent of hormone treatment condition, whereas male and female gx animals exhibited decreased lymphocyte proliferation to the T cell mitogen, phytohemagglutinin (PHA) compared with intact animals, and this effect was reversed in gx hamsters following testosterone and estradiol treatment, respectively. In experiment 2, testosterone, dihydrotestosterone, and estradiol all enhanced cell-mediated immunity in vitro, suggesting that sex steroid hormones may be enhancing immune function through direct actions on immune cells. In experiment 3, an acute mitogen challenge of lipopolysaccharide significantly suppressed lymphocyte proliferation to PHA in intact males but not females, suggesting that males may be less reactive to a subsequent mitogenic challenge than females. Contrary to evidence in many species such as rats, mice, and humans, these data suggest that sex steroid hormones enhance immunity in both male and female Siberian hamsters.  相似文献   

9.
Although it is axiomatic that males and females differ in relation to many aspects of reproduction related to physiology, morphology and behaviour, relatively little is known about possible sex differences in the response to cues from the environment that control the timing of seasonal breeding. This review concerns the environmental regulation of seasonal reproduction in birds and how this process might differ between males and females. From an evolutionary perspective, the sexes can be expected to differ in the cues they use to time reproduction. Female reproductive fitness typically varies more as a function of fecundity selection, while male reproductive fitness varies more as a function sexual selection. Consequently, variation in the precision of the timing of egg laying is likely to have more serious fitness consequences for females than for males, while variation in the timing of recrudescence of the male testes and accompanying territory establishment and courtship are likely to have more serious fitness consequences for males. From the proximate perspective, sex differences in the control of reproduction could be regulated via the response to photoperiod or in the relative importance and action of supplementary factors (such as temperature, food supply, nesting sites and behavioural interactions) that adjust the timing of reproduction so that it is in step with local conditions. For example, there is clear evidence in several temperate zone avian species that females require both supplementary factors and long photoperiods in order for follicles to develop, while males can attain full gonadal size based on photoperiodic stimulation alone. The neuroendocrine basis of these sex differences is not well understood, though there are many candidate mechanisms in the brain as well as throughout the entire hypothalamo-pituitary-gonadal axis that might be important.  相似文献   

10.
The immune system is an energetically expensive self-maintenance complex that, given the risks of parasitism, cannot be carelessly compromised. Life-history theory posits that trade-offs between fitness components, such as self-maintenance and reproduction, vary between genders and age classes depending on their expected residual lifetime reproductive success, and seasonally as energetic requirements change. Using ruff (Philomachus pugnax), a bird with two genetically distinct male morphs, we demonstrate here a decrease in male immunocompetence during the breeding season, greater variance in immune response among males than females, immunosenescence in both sexes and male morphs, and a seasonal shift in the age range required to detect senescence. Using a phytohaemagglutinin delayed hypersensitivity assay, we assessed cell-mediated immunity (CMI) of males of typical breeding age during the breeding and nonbreeding seasons, and of a larger sample that included females and birds of a greater age range during the non-breeding period. CMI was higher for breeding-aged males in May than in November, but the increase was not related to age or male morph. In November, mean CMI did not differ between the sexes, but the variance was higher for males than for females, and there were no differences in mean or variance between the two male morphs. For both sexes and male morphs, CMI was lower for young birds than for birds of typical breeding ages, and it declined again for older birds. In males, senescence was detected in the non-breeding season only when very old birds were included. These results, generally consistent with expectations from life-history theory, indicate that the immune system can be involved in multifarious trade-offs within a yearly cycle and along an individual's lifetime, and that specific predictions about means and variances in immune response should be considered in future immunoecological research.  相似文献   

11.
The “sicker sex” idea summarizes our knowledge of sex biases in parasite burden and immune ability whereby males fare worse than females. The theoretical basis of this is that because males invest more on mating effort than females, the former pay the costs by having a weaker immune system and thus being more susceptible to parasites. Females, conversely, have a greater parental investment. Here we tested the following: a) whether both sexes differ in their ability to defend against parasites using a natural host-parasite system; b) the differences in resource allocation conflict between mating effort and parental investment traits between sexes; and, c) effect of parasitism on survival for both sexes. We used a number of insect damselfly species as study subjects. For (a), we quantified gregarine and mite parasites, and experimentally manipulated gregarine levels in both sexes during adult ontogeny. For (b), first, we manipulated food during adult ontogeny and recorded thoracic fat gain (a proxy of mating effort) and abdominal weight (a proxy of parental investment) in both sexes. Secondly for (b), we manipulated food and gregarine levels in both sexes when adults were about to become sexually mature, and recorded gregarine number. For (c), we infected male and female adults of different ages and measured their survival. Males consistently showed more parasites than females apparently due to an increased resource allocation to fat production in males. Conversely, females invested more on abdominal weight. These differences were independent of how much food/infecting parasites were provided. The cost of this was that males had more parasites and reduced survival than females. Our results provide a resource allocation mechanism for understanding sexual differences in parasite defense as well as survival consequences for each sex.  相似文献   

12.
It has been documented that social isolation imparts deleterious effects on gregarious rodents species,but caging in group imparts such effects on solitary rodents. This study was attempted at examining how kinship to affect body weight,behavioral interaction,mate choice and fitness when we caged male and female rat-like hamsters Tscheskia triton in pair,a solitary species. We found that females paired with nonsibling males became heavier than the females paired with sibling males,but both agonistic and amicable behavior between paired males and females did not differ between sibling and nonsibling groups. This indicated that kinship might reduce females' obesity in response to forced cohabitation,and dissociation might exist between physiological and behavioral responses. Furthermore,binary choice tests revealed that social familiarity between either siblings or nonsiblings decreased their investigating time spent in opposite sex conspecific of cage mates and/or their scents as compared with those of nonmates,suggesting effects of social association on mate and kin selection of the hamsters. On the other side,both females and males caged in pair with siblings show a preference between unfamiliar siblings or their scents and the counterparts of nonsiblings after two month separation,indicating that the kin recognition of the hamsters might also rely on phenotype matching. In addition,cohabitation (or permanent presence of fathers) elicited a lower survival of pups in nonsibling pairs than sibling pairs,but did not affect litter size,suggesting that kinship affects fitness when housing male and female ratlike hamsters together. Therefore,inbreeding might be adapted for rare and endangered animals.  相似文献   

13.
The activity budgets and daily activity rhythms of Varecia rubra were examined over an annual cycle according to season and reproductive stage. Given the relatively high reproductive costs and patchy food resources of this species, I predicted that V. rubra would 1) travel less and feed more during seasonal resource scarcity in an attempt to maintain energy balance, and 2) show sex differences in activity budgets due to differing reproductive investment. Contrary to the first prediction, V. rubra does not increase feeding time during seasonal food scarcity; rather, females feed for a consistent amount of time in every season, whereas males feed most during the resource-rich, hot dry season. The results are consistent with other predictions: V. rubra travels less in the resource-scarce cold rainy season, and there are some pronounced sex differences, with females feeding more and resting less than males in every season and in every reproductive stage except gestation. However, there are also some provocative similarities between the sexes when activity budgets are examined by reproductive stage. During gestation, female and male activity budgets do not differ and appear geared toward energy accumulation: both sexes feed and rest extensively and travel least during this stage. During lactation, activity budgets are geared toward high energy expenditure: both sexes travel most and in equal measure, and rest least, although it remains the case that females feed more and rest less than males. These similarities between female and male activity budgets appear related to cooperative infant care. The high energetic costs of reproduction in V. rubra females may require that they allot more time to feeding year round, and that their overall activity budget be more directly responsive to seasonal climate change, seasonal food distribution, and reproductive schedules.  相似文献   

14.
不同性别和年龄的大仓鼠对黄鼬气味的反应   总被引:2,自引:0,他引:2  
将雌性成体和雌雄亚成体大仓鼠 (Cricetulustriton)长期 (4周 )暴露给过量的黄鼬 (Mustelasibirica)肛腺分泌物 ,观察其行为和生理状态的变化 ,并通过与我们以前有关黄鼬气味对成年雄鼠影响的研究结果进行比较 ,表明黄鼬气味对不同性别和不同年龄大仓鼠的胁迫效应和生殖抑制存在差异。发现黄鼬气味对雌性大仓鼠的影响较雄性小 ,对亚成体的影响较成体小 ,这与雌性和未成年动物对各种胁迫因素的反应更敏感的普遍现象相反。在成年鼠中 ,雌雄鼠的攻击行为都受到黄鼬气味的抑制 ;但天敌气味使雌性的胁腺膨大 ,对胁腺标记和肾上腺大小无影响 ;成年雄鼠的肾上腺膨大 ,胁腺萎缩 ,标记减少。在亚成体中 ,除了雄性胁腺受到抑制(与成年雄鼠相同 )外 ,雌雄鼠的肾上腺和雌性的胁腺未受影响。亚成体实验鼠的体重都比对照组低 ,但成年鼠的体重未受影响。另外 ,与以往对其它鼠类的研究结果一致 ,天敌气味并不影响成年鼠的生殖器官 ,却抑制了未成年雄鼠的附睾和未成年雌鼠的子宫。这些差异可能和生理基础的性二态以及可能面临的被捕食风险大小有关  相似文献   

15.
Mating causes considerable alterations in female physiology and behaviour, and immune gene expression, partly due to proteins transferred from males to females during copulation. The magnitude of these phenotypic changes could be driven by the genotypes of males and females, as well as their interaction. To test this, we carried out a series of genotype‐by‐genotype (G × G) experiments using Drosophila melanogaster populations from two distant geographical locations. We expected lines to have diverged in male reproductive traits and females to differ in their responses to these traits. We examined female physiological and behavioural post‐mating responses to male mating traits, that is behaviour and ejaculate composition, in the short to mid‐term (48 hr) following mating. We then explored whether a sexually transferred molecule, sex peptide (SP), is the mechanism behind our observed female post‐mating responses. Our results show that the genotypes of both sexes as well as the interaction between male and female genotypes affect mating and post‐mating reproductive traits. Immune gene expression of three candidate genes increased in response to mating and was genotype‐dependent but did not show a G × G signature. Males showed genotype‐dependent SP expression in the 7 days following eclosion, but female genotypes showed no differential sensitivity to the receipt of SP. The two genotypes demonstrated clear divergence in physiological traits in short‐ to mid‐term responses to mating, but the longer‐term consequences of these initial dynamics remain to be uncovered.  相似文献   

16.
Detection of female mating status using chemical signals and cues   总被引:1,自引:0,他引:1  
Males of many species choose their mate according to the female's reproductive status, and there is now increasing evidence that male fitness can depend on this discrimination. However, females will also aim to regulate their mating activity so as to maximize their own fitness. As such, both sexes may attempt to dictate the frequency and timing of female mating, reflecting the potentially different costs of female signaling to both sexes. Here, I review evidence that chemical cues and signals are used widely by males to discriminate between mated and unmated females, and explore the mechanisms by which female odour changes post‐mating. There is substantial empirical evidence that mated and unmated females differ in their chemical profile, and that this variation provides males with information on a female's mating status. Although there appears to be large variation among species regarding the mechanisms by which female odour is altered post‐mating, the transfer of male substances to females during or subsequent to copulation appear to play a major role. This transfer of substances by males may be part of their strategy to suppress reproduction by competing males, particularly in species where females mate more than once.  相似文献   

17.
Understanding the effects of male and female age on reproductive success is vital to explain the evolution of life history traits and sex‐specific aging. A general prediction is that pre‐/postmeiotic aging processes will lead to a decline in the pre‐ and postcopulatory abilities of both males and females. However, in as much the sexes have different strategies to optimize their fitness, the decline of reproductive success late in life can be modulated by social context, such as sex ratio, in a sex‐specific manner. In this study, we used Drosophila melanogaster to investigate whether sex ratio at mating modulates age effects on male and female reproductive success. As expected, male and female age caused a decrease in reproductive success across male‐biased and female‐biased social contexts but, contrary to previous findings, social context did not modulate age‐related fitness decline in either of the two sexes. We discuss these results in the light of how sex ratio might modulate pre‐/postcopulatory abilities and the opportunity for inter‐ and intrasexual competition in D. melanogaster, and generally suggest that social context effects on these processes are likely to be species specific.  相似文献   

18.
Abstract 1. Conspicuousness to mates can bring benefits to both males (increased mating success) and females (reduced search costs), but also brings costs (e.g. increased predation and parasitism). Assassin bugs, Rhinocoris tristis, lay egg clutches either on exposed stems or hidden under leaves. Males guard eggs against parasitoids. Guarding males are attractive to females who add subsequent clutches to the brood. This is an excellent opportunity to study the effects of conspicuousness on the fitness of males and females. 2. Using viable eggs in a multi‐clutch brood as a correlate of fitness, the present study examined whether laying eggs on stems affected (1) female fitness, through exposure to parasitism and cannibalism, and (2) male fitness, through attracting further females. 3. Stem broods were more parasitised. However, males on stems accumulated more mates and more eggs, a net benefit even accounting for parasitism. The eggs gained from being on a stem were cannibalised. By contrast, higher mortality on stems suggests that females should gain by ovipositing on leaves. To the extent that egg viability represents fitness, male and female interests may therefore differ. This suggests a potential for sexual conflict that may affect other species with male care. 4. Despite higher costs, females actually initiated more broods, and subsequently added bigger clutches to broods, on stems than under leaves. This suggests either that viable eggs do not reflect fitness, or that females laid in unfavourable locations. The key is now to address lifetime fitness, since unmeasured factors may affect offspring viability post‐hatching, and to investigate who controls the location of oviposition in R. tristis.  相似文献   

19.
The influence of parasites on host reproduction has been widely studied in natural and experimental conditions. Most studies, however, have evaluated the parasite impact on female hosts only, neglecting the contribution of males for host reproduction. This omission is unfortunate as sex‐dependent infection may have important implications for host–parasite associations. Here, we evaluate for the first time the independent and nonindependent effects of gender infection on host reproductive success using the kissing bug Mepraia spinolai and the protozoan Trypanosoma cruzi as model system. We set up four crossing treatments including the following: (1) both genders infected, (2) both genders uninfected, (3) males infected—females uninfected, and (4) males uninfected—females infected, using fecundity measures as response variables. Interactive effects of infection between sexes were prevalent. Uninfected females produced more and heavier eggs when crossed with uninfected than infected males. Uninfected males, in turn, sired more eggs and nymphs when crossed with uninfected than infected females. Unexpectedly, infected males sired more nymphs when crossed with infected than uninfected females. These results can be explained by the effect of parasitism on host body size. As infection reduced size in both genders, infection on one sex only creates body size mismatches and mating constraints that are not present in pairs with the same infection status. Our results indicate the fitness impact of parasitism was contingent on the infection status of genders and mediated by body size. As the fecundity impact of parasitism cannot be estimated independently for each gender, inferences based only on female host infection run the risk of providing biased estimates of parasite‐mediated impact on host reproduction.  相似文献   

20.
Conflicts between females and males over reproductive decisions are common . In Drosophila, as in many other organisms, there is often a conflict over how often to mate. The mating frequency that maximizes male reproductive success is higher than that which maximizes female reproductive success . In addition, frequent mating reduces female lifespan and reproductive success , a cost that is mediated by male ejaculate accessory gland proteins (Acps) . We demonstrate here that a single Acp, the sex peptide (SP or Acp70A), which decreases female receptivity and stimulates egg production in the first matings of virgin females , is a major contributor to Acp-mediated mating costs in females. Females continuously exposed to SP-deficient males (which produce no detectable SP ) had significantly higher fitness and higher lifetime reproductive success than control females. Hence, rather than benefiting both sexes, receipt of SP decreases female fitness, making SP the first identified gene that is likely to play a central role in sexual conflict.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号