首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Broomrapes (Orobanche and Phelipanche spp) are parasitic plants responsible for important crop losses, and efficient procedures to control these pests are scarce. Biological control is one of the possible strategies to tackle these pests. Arbuscular Mycorrhizal (AM) fungi are widespread soil microorganisms that live symbiotically with the roots of most plant species, and they have already been tested on sorghum for their ability to reduce infestation by witchweeds, another kind of parasitic plants. In this work AM fungi were evaluated as potential biocontrol agents against Orobanche cumana, a broomrape species that specifically attacks sunflower. When inoculated simultaneously with O. cumana seeds, AM fungi could offer a moderate level of protection against the broomrape. Interestingly, this protection did not only rely on a reduced production of parasitic seed germination stimulants, as was proposed in previous studies. Rather, mycorrhizal root exudates had a negative impact on the germination of O. cumana induced by germination stimulants. A similar effect could be obtained with AM spore exudates, establishing the fungal origin of at least part of the active compounds. Together, our results demonstrate that AM fungi themselves can lead to a reduced rate of parasitic seed germination, in addition to possible effects mediated by the mycorrhizal plant. Combined with the other benefits of AM symbiosis, these effects make AM fungi an attractive option for biological control of O. cumana.  相似文献   

2.
Despite highly specialized pollination strategies, hybridization is a common phenomenon among Mediterranean deceptive orchids. Food-deceptive species sire a progeny of F1 unfertile plants, which work as a late post-zygotic barrier. Conversely, when pre-zygotic barriers of sexually deceptive (Ophrys) species are absent, the hybrids are fertile and an extensive introgression may occur. Here, we have performed molecular analysis and hand pollination treatments to characterize a hybrid zone of two food-deceptive species, O. mascula and O pauciflora. Hybrids (called O. × colemanii) have shown different amounts of parental nrDNA, strongly supporting that they are F2 and/or successive hybrid generations. Comparable high levels of reproductive success have been detected in natural conditions and in experimental crosses suggesting the absence of effective reproductive barriers either between hybrids, either between hybrids and parental species. In light of ecological and distributional features of O. × colemanii across its distribution range, we hypothesize that these populations have originated by secondary contact in the periglacial belt of Apennines. Moreover, the rare and localized O. pauciflora could benefit a genetic enrichment by hybridizing with a widespread related species. O. × colemanii is not a dead end population, but may have a role as potential reserve of adaptive variability and is an unusual stage along the speciation process.  相似文献   

3.
The performance of first‐generation hybrids determines to a large extent the long‐term outcome of hybridization in natural populations. F1 hybrids can facilitate further gene flow between the two parental species, especially in animal‐pollinated flowering plants. We studied the performance of reciprocal F1 hybrids between Rhinanthus minor and R. major, two hemiparasitic, annual, self‐compatible plant species, from seed germination to seed production under controlled conditions and in the field. We sowed seeds with known ancestry outdoors before winter and followed the complete life cycle until plant death in July the following season. Germination under laboratory conditions was much lower for the F1 hybrid formed on R. major compared with the reciprocal hybrid formed on R. minor, and this confirmed previous results from similar experiments. However, this difference was not found under field conditions, which seems to indicate that the experimental conditions used for germination in the laboratory are not representative for the germination behaviour of the hybrids under more natural conditions. The earlier interpretation that F1 hybrid seeds formed on R. major face intrinsic genetic incompatibilities therefore appears to be incorrect. Both F1 hybrids performed at least as well as and sometimes better than R. minor, which had a higher fitness than R. major in one of the two years in the greenhouse and in the field transplant experiment. The high fitness of the F1 hybrids confirms findings from naturally mixed populations, where F1 hybrids appear in the first year after the two species meet, which leads to extensive advanced‐hybrid formation and introgression in subsequent generations.  相似文献   

4.
The kelp Undariopsis peterseniana (Kjellman) Miyabe et Okamura is warm water tolerant and consequently there is currently considerable interest in developing commercial cultivation techniques for this species in Korea. Undaria is an important species for both the abalone industry and for commercial seaweed mariculture. In an attempt to extend the culture period of Undaria we bred and cultured hybrid kelp that is a cross between free-living gametophytes of U. peterseniana and Undariopsis pinnatifida. The morphological characteristics of the F1 hybrid sporophytes were intermediate between those of the parent plants having shallow pinnated blades and forming both sorus and sporophyll. A F2 generation was produced by isolating zoospores from sorus and sporophyll separately from a F1 hybrid thallus. Using free-living gametophyte seeding and standard on-growing techniques, F0 (female U. pinnatifida and male U. peterseniana), F1, and F2 gametophytes were cultured from December 2011 to May 2013. The morphological differences between the F1 and F2 generations were assessed. The F2 hybrids were found to have longer pinnate blades and narrower midribs than the F1 hybrid and only formed sporophylls. Growth and morphology of F2 hybrids originating from the sporophyll or sorus of the F1 hybrids were not morphologically different from each other. Both of the F2 hybrids exhibited late maturation, with the early stages of sporophylls appearing in April. This late maturation of F2 hybrids is beneficial in the development of hybrid strains that extend the period of availability of Undaria for abalone feed and cultivation in Korea.  相似文献   

5.

Background and Aims

A fundamental element in the evolution of obligate root-parasitic angiosperms is their ability to germinate only in response to chemical stimulation by roots, to ensure contact with a nearby nourishing host. The aim of this study was to explore inheritance of the unique germination control in this group of plants.

Methods

Analysis was made of the segregation of spontaneous (non-induced) germination that appeared in hybrid progenies derived from crosses between Orobanche cernua and O. cumana, which, like all other Orobanche species, are totally dependent on chemical stimulation for the onset of germination, and show negligible spontaneous germination in their natural seed populations.

Key Results and Conclusions

F1 and F2 seeds did not germinate in the absence of chemical stimulation, but significant spontaneous germination was found in some F3 seed families. This indicates that the prevention of non-induced germination in Orobanche seeds, i.e. dependence on an external chemical stimulation for seed germination, is genetically controlled, that this genetic control is expressed in a seed tissue with maternal origin (presumably the perisperm that originates from the nucellus) and that genetic variation for this trait exists in Orobanche species. Similar segregation results were obtained in reciprocal crosses, suggesting that stimulated germination is controlled by nuclear genes.  相似文献   

6.
Orobanche cumana Wallr. (sunflower broomrape) is a devastating root parasitic weed, causing enormous crop losses worldwide. The question was whether or not switchgrass has the potential to be a ‘trap crop’ for O. cumana control. To answer this question, the field experiments, pot experiments, and laboratory experiments were conducted in this study. The ability of nine switchgrass (Panicum virgatum L.) cultivars to induce O. cumana seeds germination was tested. Results indicated that root extracts shoot extracts, rhizosphere soil, and root exudates from switchgrass induced O. cumana germination. Ability to induce germination varied significantly among growing stages, with the earlier part of growing season (grown for 2 weeks) generally inducing the highest O. cumana germination rates. The methanol was a more suitable solvent than distilled water for extracting germination stimulants from switchgrass plants. Ten-fold dilutions of the extracts generally induced higher germination rates than either undiluted or 100-fold dilutions. The germination rates of O. cumana seeds in shoot extracts treatments were positively correlated with those in the root extracts (R2 = 0.6397; p < 0.01) and negatively correlated with those in the rhizosphere soil treatments ( R2 = 0.4433; p < 0.05). In conclusion, it is believed that switchgrass is a potential trap crop for the control of root parasitic weed O. cumana.  相似文献   

7.
In order to estimate the potential of gene flow between wheat (Triticum æstivum L.) and jointed goatgrass (Aegilops cylindrica Host.), we carried out mixed pollinations in experimental and natural conditions. A set of species-specific RAPD (random amplified polymorphic DNA) and microsatellite markers were used to detect the presence of parental markers in the progeny of the plants used in these experiments. No hybrids were found within the offsprings of the plants used for the greenhouse experiments, while 85 Ae. cylindrica×T. æstivum hybrids were found within 2400 analyzed F1 plants resulting from the field pollinations. The hybridization rates for individuals of different populations of the wild species differed considerably: 1% for two populations known for more than 90 years versus 7% for a newly discovered population. Most of the hybrids were completely sterile, but five of them produced 13 seeds (BC1) by backcross with Ae. cylindrica. Twelve seeds germinated and generated viable and partly fertile plants. About 25% of the wheat specific RAPD markers were found in the BC1 plants, indicating that introgression of wheat DNA into Ae. cylindrica is possible. In addition, one microsatellite marker, known to be situated on the D genome (a genome shared by both species), was also found in the BC1 plants.  相似文献   

8.
Heterosis refers to the improved agronomic performance of F1 hybrids relative to their parents. Although this phenomenon is widely employed to increase biomass, yield, and stress tolerance of plants, the underlying molecular mechanisms remain unclear. To dissect the metabolic fluctuations derived from genomic and/or environmental differences contributing to the improved biomass of F1 hybrids relative to their parents, we optimized the growth condition for Arabidopsis thaliana F1 hybrids and their parents. Modest but statistically significant increase in the biomass of F1 hybrids was observed. Plant samples grown under the optimized condition were also utilized for integrated omics analysis to capture specific changes in the F1 hybrids. Metabolite profiling of F1 hybrids and parent plants was performed using gas chromatography-mass spectrometry. Among the detected 237 metabolites, 2-oxoglutarate (2-OG) and malate levels were lower and the level of aspartate was higher in the F1 hybrids than in each parent. In addition, microarray analysis revealed that there were 44 up-regulated and 12 down-regulated genes with more than 1.5-fold changes in expression levels in the F1 hybrid compared to each parent. Gene ontology (GO) analyses indicated that genes up-regulated in the F1 hybrids were largely related to organic nitrogen (N) process. Quantitative PCR verified that glutamine synthetase 2 (AtGLN2) was upregulated in the F1 hybrids, while other genes encoding enzymes in the GS-GOGAT cycle showed no significant differences between the hybrid and parent lines. These results suggested the existence of metabolic regulation that coordinates biomass and N metabolism involving AtGLN2 in F1 hybrids.  相似文献   

9.
Fusarium oxysporum Schlecht. f.sp. orthoceras (Appel & Wollenw.) Bilai, a potential biocontrol agent against Orobanche cumana Wallr.,was formulated into two granular forms, wheatflour kaolin (`Pesta') granules and sodium alginatepellets. The formulations were compared in terms ofeffectiveness for mitigating O. cumanaparasitism in sunflower and shelf-life forstorage. `Pesta' granules reduced the emergence of O. cumana shoots by 64% while sodium alginatepellets did not reduce the emergence rate but increased thepercentage of diseased O. cumana plants.Calculated efficacy of the application was better for`Pesta' granules. Viability of the formulatedmaterial tested in the laboratory was higher in sodium alginatepellets than in the `Pesta' formulation.However, a loss of virulence after six months of storage wasalso observed in sodium alginate pellets in agreenhouse experiment.  相似文献   

10.
J. S. Parker 《Chromosoma》1975,52(1):89-101
The annual species Hypochoeris glabra (2n = 10) and the perennial H. radicata (2n = 8) hybridise readily in nature and in experiment. During meiosis in F1 hybrids the maximum association is a chain of seven and a bivalent indicating that at least three interchanges differentiate the two genomes. The nucleolar chromosomes in the two species are homologous and form a ring bivalent. They are, however, differentiated since in the F1 hybrid only one nucleolar-organiser region is expressed. Although chromosomal differentiation reduces the egg fertility of F1 hybrids to about 1%, viable backcross hybrids to H. radicata as pollen parent have been experimentally produced and occur in natural populations. Backcrosses with 8, 9 and rarely 13 chromosomes are found and those with 2n = 8 are fully interfertile with H. radicata. Gene flow may therefore take place in natural populations across an aneuploid barrier. The direction of gene flow in Hypochoeris is probably unidirectional from the annual to the perennial.  相似文献   

11.
In order to understand the ongoing evolutionary relationships between species, it is important to elucidate patterns of natural hybridization. In the zone where two species are sympatrically distributed, we examined 274 individuals of Magnolia stellata, Magnolia salicifolia, and their putative hybrids by means of 16 nuclear and three chloroplast microsatellite markers. Hybrid classes of individuals were estimated by admixture analyses. Morphological traits were also investigated for 64 of the 274 individuals. Admixture analyses revealed that 66 of the 274 individuals were classified as hybrids, comprising 17 F1 and 19 F2 individuals, 27 backcrosses to M. salicifolia, and 3 individuals of unknown origin. Morphological data from the 64 individuals agreed well with their genetic admixture rates. Spatial locations of F1 and F2 hybrids at the study site were intermediate between the two purebred species, indicating that the site preferences of hybrids are intermediate. The occurrences of F2 and backcross hybrids indicate that F1 hybrids are fertile. The chloroplast DNA haplotypes of all F1 hybrids corresponded to those detected in M. salicifolia, so that maternal parents of the F1 hybrids were all M. salicifolia. Furthermore, no hybrid individuals derived from a backcross to M. stellata were detected. These results suggest that the direction of hybridization and the subsequent introgression have been quite asymmetric and that the introgression occurred from M. stellata into M. salicifolia.  相似文献   

12.
Intergenomic F1 hybrids between L. auratum x L. henryi and their BC1 progeny were investigated through genomic in situ hybridization technique (GISH) to determine their potential value in lily breeding. We confirmed that F1 intergenomic hybrids possessed a set of chromosomes (x=12) from both parents and that flowers of the F1 auratum × henryi hybrid showed an intermediate morphological phenotype. Pollen size, viability and germination ability were measured through microscopic observations. F1 intergenomic hybrids produced a relevant frequency of 2n-gametes, which were successfully used to perform crosses with Oriental hybrids, resulting in the triploid Oriental Auratum Henryi (OAuH) hybrid. Twenty BC1 plants were generated by crossing between four different Oriental hybrid cultivars and F1 AuH hybrids using an in vitro embryo rescue technique, after which the genome constitution and chromosome composition were analyzed by GISH. All plants were triploid, showing 12 from female parents (diploid Oriental hybrid) and 24 from male parents (diploid F1 AuH hybrid). Overall, 16 out of 20 BC1 progeny possessed recombinant chromosomes with 1-5 crossover sites per plant. Cytological analysis of 20 BC1 plants by GISH verified that the occurrence of 2n pollen formation in all F1 AuH hybrids was derived from the FDR (first division restitution) mechanism, in which the genome composition of all BC1 plants possess 12 Oriental + 12 L. auratum + 12 L. henryi chromosomes. Allotriploids derived from the AuH hybrid were used as female for crossing with the diploid Oriental hybrid cultivar ''Sorbonne'' and considerable numbers of plants (0-6.5 plants per ovary) were only obtained when female OAuH (BC1) triploids were used. Taken together, the results of this study indicate that production and analysis of F1 AuH hybrids and their progeny through sexual polyploidization can be useful for efficient creation of important horticultural traits.  相似文献   

13.
Rhinanthus minor andRhinanthus angustifolius are known to hybridize in mixed populations in nature. These hybridization events can have important evolutionary consequences. The development and use of species-specific RAPD and ISSR markers allowed the detection of hybrid individuals not always distinguishable with morphological characters. Two mixed populations of different ages were studied. In a young mixed 2-year-old population, both individuals of the two parental species and F1 hybrids were found using genetic analysis, showing that hybridization occurred rapidly. Flower morphology of F1 hybrids was too variable to distinguish all these hybrids from the parental species. This morphological variability of F1 hybrids was also confirmed in artificial crosses in the greenhouse. In an old and no longer mixed 30-year-old population, onlyR. angustifolius plants and a few genetically introgressed individuals close toR. angustifolius were present. Genetic markers showed traces of past hybridization and introgression. Unidirectional introgression ofR. minor intoR. angustifolius with the complete disappearance ofR. minor from this population was observed.  相似文献   

14.
Long , Robert W. (Ohio Wesleyan U., Delaware.) Natural and artificial hybrids of Helianthus Maximiliani × H. grosseserratus. Amer. Jour. Bot. 46(10): 687–692. Illus. 1959.—An investigation of the occurrence of natural hybridization in two perennial sunflowers, Helianthus Maximiliani and H. grosseserratus, was begun in 1950. Subsequently, artificial F1, F2, and first and second backcross generations were produced. Fertility and vigor were high in all these plants, but F1 plants appeared to excel the others in these characteristics. Observations in the experimental garden were supplemented by examination of chromosomes in pollen mother cells, comparisons of herbarium collections, and study of wild populations. Evidence pointed to close genetic relationship of the species and to the occurrence of natural hybridization in areas of distributional overlap. In 1957 and 1958, field work in these areas resulted in the scoring of 18 natural populations, 3 of which consisted of both parental species plus putative F1 hybrids. Two explanations are offered to account for the seeming absence of introgression. The results support the conclusion that natural hybridization leads to the establishment of F1 hybrids and that introgression does not occur to any significant extent. Although both species display a high degree of interfertility, they are distinct morphologically. For this reason, it is advisable to maintain them as separate species.  相似文献   

15.
Many plants are adapted to an eroded landscape with a large proportion of virgin soil. Open and disturbed soils are today almost only restricted to agricultural fields with high loads of fertilizers. We conducted a pot experiment in order to investigate growth and nutritional constraints of one calcicole species, Anisantha (syn. Bromus) tectorum, and one calcifuge species, Rumex acetosella, in decalcified topsoil and recently exposed calcareous subsoil from a field experiment in sandy grassland. In the pot experiment we implemented one treatment where we limed topsoil with CaCO3 to the same amount as in subsoil.The subsoil had approximately 10% CaCO3 and both species grew less in this soil compared to the topsoil, which had less than 1% CaCO3. Germination rate of A. tectorum was higher in subsoil than in topsoil or limed topsoil. P fertilization of the limed topsoil counteracted the negative liming effect for A. tectorum, but only partly so for R. acetosella. P fertilization of subsoil increased the shoot biomass of A. tectorum, but not of R. acetosella. P concentration in plants was not reduced when growing on subsoil or limed topsoil compared to topsoil. The results show that lime addition may reduce the P availability also to calcicole species such as A. tectorum and we found indications for that Ca toxicity may be a causing factor for the calcifuge behavior of R. acetosella. The significance of the results for conservation management practices in sandy grasslands is discussed.  相似文献   

16.
Gupta SB  Gupta P 《Genetics》1973,73(4):605-612
The F1 hybrids of Nicotiana suaveolens (subgenus Petunioides, 2n = 32) and N. glutinosa (subgenus Tabacum, 2n = 24), were examined during their development, from seedlings to mature plants. It was observed that in the hybrids, there was a progressive change of dominant N. glutinosa morphological characteristics towards those of N. suaveolens, in leaf shape, stem, flower color and branching pattern. A study of mitotic chromosomes in the root-tips and in very young anthers of the mature plants indicated a significantly high average frequency of aberrant mitotic anaphases (bridges and fragments, 12% and 11% respectively). As a consequence of this phenomenon, variability in the number and size of chromosomes was observed in the PMC's and in mitotic metaphases (29-24 chromosomes). In order to establish whether the N. glutinosa chromosomes were preferentially lost, a karyological study of the parents and their F1 hybrids was carried out and it was established that the F1 hybrids were losing N. glutinosa chromosomes preferentially. A mechanism was suggested for the loss of these chromosomes by means of a chromatid type of breakage-fusion-bridge cycle (b-f-b cycle) and initiation of the b-f-b cycle in the hybrid due to an interaction of the regulatory mechanism of DNA replication in the haploid genomes of the parental species. However, loss of these chromosomes owing to interaction of certain genes from the two parental species cannot be ruled out.  相似文献   

17.

Background and Aims

Heteromorphy in flowers has a profound effect on breeding patterns within a species, but little is known about how it affects reproductive barriers between species. The heterostylous genus Primula is very diverse in the Himalaya region, but hybrids there have been little researched. This study examines in detail a natural hybrid zone between P. beesiana and P. bulleyana.

Methods

Chloroplast sequencing, AFLP (amplified fragment length polymorphism) markers and morphological comparisons were employed to characterize putative hybrids in the field, using synthetic F1s from hand pollination as controls. Pollinator visits to parent species and hybrids were observed in the field. Hand pollinations were conducted to compare pollen tube growth, seed production and seed viability for crosses involving different morphs, species and directions of crossing.

Key Results

Molecular data revealed all hybrid derivatives examined to be backcrosses of first or later generations towards P. bulleyana: all had the chloroplast DNA (cpDNA) of this species. Some individuals had morphological traits suggesting they were hybrids, but they were genetically similar to P. bulleyana; they might have been advanced generation backcrosses. Viable F1s could not be produced with P. bulleyana pollen on P. beesiana females, irrespective of the flower morphs used. Within-morph crosses for each species had very low (<10 %) seed viability, whereas crosses between pin P. bulleyana (female) and pin P. beesiana had a higher seed viability of 30 %. Thus genetic incompatibility mechanisms back up mechanical barriers to within-morph crosses in each species, but are not the same between the two species. The two species share their main pollinators, and pollinators were observed to fly between P. bulleyana and hybrids, suggesting that pollinator behaviour may not be an important isolating factor.

Conclusions

Hybridization is strongly asymmetric, with P. bulleyana the only possible mother and all detected hybrids being backcrosses in this direction. Partial ecological isolation and inhibition of heterospecific pollen, and possibly complete barriers to F1 formation on P. beesiana, may be enough to make F1 formation very rare in these species. Therefore, with no F1 detected, this hybrid zone may have a finite life span as successive generations become more similar to P. bulleyana.  相似文献   

18.
The predominantly allopatric species of the genusPicradeniopsis, P. oppositifolia andP. woodhousei, are distinct in morphological, in phenolic and terpeniod chemical, and in cytological aspects (n = 24 andn = 12, respectively). In an area of sympatry in northeastern New Mexico, interbreeding occurs frequently with the production of morphologically intermediate hybrids. Morphological and phenolic chemical data from 191 plants in 40 isolated parental populations and from 91 plants in four hybrid populations are of limited value in determining the nature of this hybridization, but meiotic configurations of 12II and 12I and low pollen viabilities of 1–11% in the hybrids indicate that they are all of the F1 generation (with one possible backcross). The absence of observed introgression, and therefore the absence of gene flow between the two taxa, strengthens the case for taxonomic recognition of two species in the genus. Comparisons of the morphology, phenolic and terpenoid chemistry, and cytology of parents and F1 hybrids suggest that the tetraploid,P. oppositifolia, has arisen by allopolyploidy from a cross betweenP. woodhousei and an unknown diploid species. An extrapolated morphological and chemical reconstruction of this putative diploid parent is advanced.  相似文献   

19.
The genetic relationships of Nuphar japonica, N. oguraensis, N. subintegerrima and two morphologically intermediate plant groups (J-O and J-S) found in central to western Japan were investigated. Allozyme analyses (analysis of allele frequencies and principal coordinate analysis, based on shared allele distance among the 162 multi-locus genotypes) showed the three Nuphar species to be distinguished, and indicated that the intermediate plant groups were genetically intermediate either between two or among three of these species. Natural hybridization and introgression were found to have occurred among these three species in central to western Japan, producing genetically varied intermediate plant groups. Many of the intermediate plants (74.4% of the total numbers of genotypes of the intermediate plants) did not show additive combinations of parental allozymes, which were expected in F1 hybrids. The absence of characteristic parental bands suggested that sexual reproduction had continued among the hybrids beyond the F1.  相似文献   

20.
In northeastern North America, an important wetland invader is the cattail Typha × glauca, a hybrid of native Typha latifolia and introduced Typha angustifolia. Although intensively studied in localized wetlands around the Great Lakes, the distributions of the hybrid and its parental species across broad spatial scales are poorly known. We obtained genotypes from plants collected from 61 sites spanning two geographical regions. The first region, near the Great Lakes and St. Lawrence Seaway (GLSL), has experienced substantial Typha increases over the last century, whereas more modest increases have occurred in the second region across Nova Scotia, New Brunswick, and Maine (NSNB). We found that hybrids predominate in the GLSL region, thriving in both disturbed and undisturbed habitats, and are expanding at the expense of both parental species. In contrast, the native T. latifolia is by far the most common of the three taxa across all habitat types in the NSNB region. We found no evidence that the formation of backcrossed and advanced-generation hybrids is limited by the reproductive barriers that are evident in F1 hybrids. However, although backcrossed individuals arise in both regions, they are much less common than F1 hybrids, which may explain why the parental species boundary remains. We conclude that F1 hybrids are playing a key role in the invasion of wetlands in the GLSL region, whereas their low frequency in the NSNB region may explain why Typha appears to be much less invasive further east. An improved understanding of these contrasting patterns of distribution is necessary before we can accurately predict future wetland invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号