首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nuclear inclusion protein b (NIb) genes of three Potato virus Y isolates PVY-SD1 (O strain), PVY-SD4 (N strain), PVY-SD5 (NTN strain), and Tobacco etch virus isolate TEV-SD1 in Shandong Province were cloned and sequenced. Sequence analysis showed that the sequence homology of the entire NIb gene among the four viruses ranged from 65% to 95%. Hairpin RNA (hpRNA) constructs were designed based on five conserved regions derived from PVY-SD1 and introduced into tobacco plants. After asexual propagation, the transgenic plants were analyzed for resistance to PVY-SD1, PVY-SD4, PVY-SD5, and TEV-SD1. We obtained resistance ratios of 26.2%, 22.7%, 36.4%, 20.3%, and 21.7% to PVY-SD1. When inoculated with the PVY-SD5 virus, the transgenic plants had resistance ratios ranging from 2.4% to 15.9%, but no resistance at all to the other viruses, PVY-SD4 and TEV-SD1. No correlation was found between resistance of transgenic plants and the transgene copy numbers. Northern blot and small interfering RNA (siRNA) analysis demonstrated that the resistance was attributable to RNA silencing. Genetic analysis demonstrated that virus resistance was stably inherited in progeny T1 and T2. These results indicate that the siRNA molecules against conserved regions can confer virus resistance but are restricted to viruses with more than 90% sequence homology.  相似文献   

3.
4.
5.
RNA interference (RNAi), a conserved RNA‐mediated gene regulatory mechanism in eukaryotes, plays an important role in plant growth and development, and as an antiviral defence system in plants. As a counter‐strategy, plant viruses encode RNAi suppressors to suppress the RNAi pathways and consequently down‐regulate plant defence. In geminiviruses, the proteins AC2, AC4 and AV2 are known to act as RNAi suppressors. In this study, we have designed a gene silencing vector using the features of trans‐acting small interfering RNA (tasiRNA), which is simple and can be used to target multiple genes at a time employing a single‐step cloning procedure. This vector was used to target two RNAi suppressor proteins (AC2 and AC4) of the geminivirus, Tomato leaf curl New Delhi virus (ToLCNDV). The vector containing fragments of ToLCNDV AC2 and AC4 genes, on agro‐infiltration, produced copious quantities of AC2 and AC4 specific siRNA in both tobacco and tomato plants. On challenge inoculation of the agro‐infiltrated plants with ToLCNDV, most plants showed an absence of symptoms and low accumulation of viral DNA. Transgenic tobacco plants were raised using the AC2 and AC4 tasiRNA‐generating constructs, and T1 plants, obtained from the primary transgenic plants, were tested for resistance separately against ToLCNDV and Tomato leaf curl Gujarat virus. Most plants showed an absence of symptoms and low accumulation of the corresponding viruses, the resistance being generally proportional to the amounts of siRNA produced against AC2 and AC4 genes. This is the first report of the use of artificial tasiRNA to generate resistance against an important plant virus.  相似文献   

6.
Hypersensitive resistance (HR) to strains O and C of Potato virus Y (PVY, genus Potyvirus) is conferred by potato genes Nytbr and Nctbr, respectively; however, PVY N strains overcome these resistance genes. The viral helper component proteinases (HCpro, 456 amino acids) from PVYN and PVYO are distinguished by an eight‐amino‐acid signature sequence, causing HCpro to fold into alternative conformations. Substitution of only two residues (K269R and R270K) of the eight‐amino‐acid signature in PVYN HCpro was needed to convert the three‐dimensional (3D) model of PVYN HCpro to a PVYO‐like conformation and render PVYN avirulent in the presence of Nytbr, whereas four amino acid substitutions were necessary to change PVYO HCpro to a PVYN‐like conformation. Hence, the HCpro conformation rather than other features ascribed to the sequence were essential for recognition by Nytbr. The 3D model of PVYC HCpro closely resembled PVYO, but differed from PVYN HCpro. HCpro of all strains was structurally similar to β‐catenin. Sixteen PVYN605‐based chimeras were inoculated to potato cv. Pentland Crown (Nytbr), King Edward (Nctbr) and Pentland Ivory (Nytbr/Nctbr). Eleven chimeras induced necrotic local lesions and caused no systemic infection, and thus differed from both parental viruses that infected King Edward systemically, and from PVYN605 that infected Pentland Crown and Pentland Ivory systemically. These 11 chimeras triggered both Nytbr and Nctbr and, in addition, six induced veinal necrosis in tobacco. Further, specific amino acid residues were found to have an additive impact on necrosis. These results shed new light on the causes of PVY‐related necrotic symptoms in potato.  相似文献   

7.
A tobacco calmodulin-related protein, rgs-CaM, interacts with viral suppressors of RNA silencing and modulates host RNA silencing. Plants overexpressing the rgs-CaM gene were crossed with plants exhibiting sense transgene-induced RNA silencing (S-PTGS) or inverted repeat-induced RNA silencing (IR-PTGS). S44 plants harboring a sense transgene encoding a tobacco microsomal ω-3 fatty acide desaturase (NtFAD3) exhibited the S-PTGS phenotype. The frequency of the S-PTGS phenotype incidence was nearly 100 % in the hemizygous S44 plants, but was reduced to 30 % in crossbred plants with an rgs-CaM-overexpressing transgenic line. The remaining 70 % of crossbred plants successfully overexpressed the NtFAD3 transgene, and the amount of NtFAD3 small interfering RNAs (siRNAs) was largely decreased. In contrast, overexpression of rgs-CaM did not suppress siRNA production in the IR-PTGS that targeted the NtFAD3 gene. These results indicated that rgs-CaM suppresses RNA silencing at a step upstream of siRNA production and does not interfere with the later steps of RNA silencing, including siRNA-mediated RNA degradation.  相似文献   

8.
9.
Orobanche cumana is a holoparasitic plant that attaches to host–plant roots and seriously reduces the yield of sunflower (Helianthus annuus L.). Effective control methods are lacking with only a few known sources of genetic resistance. In this study, a seed-soak agroinoculation (SSA) method was established, and recombinant tobacco rattle virus vectors were constructed to express RNA interference (RNAi) inducers to cause virus-induced gene silencing (VIGS) in sunflower. A host target gene HaTubulin was systemically silenced in both leaf and root tissues by the SSA–VIGS approach. Trans-species silencing of O. cumana genes were confirmed for 10 out of 11 target genes with silencing efficiency of 23.43%–92.67%. Knockdown of target OcQR1, OcCKX5, and OcWRI1 genes reduced the haustoria number, and silencing of OcEXPA6 caused further phenotypic abnormalities such as shorter tubercles and necrosis. Overexpression of OcEXPA6 caused retarded root growth in alfalfa (Medicago sativa). The results demonstrate that these genes play an important role in the processes of O. cumana parasitism. High-throughput small RNA (sRNA) sequencing and bioinformatics analyses unveiled the distinct features of target gene-derived siRNAs in O. cumana such as siRNA transitivity, strand polarity, hotspot region, and 21/22-nt siRNA predominance, the latter of which was confirmed by Northern blot experiments. The possible RNAi mechanism is also discussed by analyzing RNAi machinery genes in O. cumana. Taken together, we established an efficient host-induced gene silencing technology for both functional genetics studies and potential control of O. cumana. The ease and effectiveness of this strategy could potentially be useful for other species provided they are amenable to SSA.

Knockdown of several parasitism-related genes endows sunflower with resistance to invading broomrape.  相似文献   

10.
The structural flexibility of RNA interference (RNAi)-triggering nucleic acids suggests that the design of unconventional RNAi trigger structures with novel features is possible. Here, we report a cross-shaped RNA duplex structure, termed quadruple interfering RNA (qiRNA), with multiple target gene silencing activity. qiRNA triggers the simultaneous down-regulation of four cellular target genes via an RNAi mechanism. In addition, qiRNA shows enhanced intracellular delivery and target gene silencing over conventional siRNA when complexed with jetPEI, a linear polyethyleneimine (PEI). We also show that the long antisense strand of qiRNA is incorporated intact into an RNA-induced silencing complex (RISC). This novel RNA scaffold further expands the repertoire of RNAi-triggering molecular structures and could be used in the development of therapeutics for various diseases including viral infections and cancer.  相似文献   

11.
The reaction of several cultivated potato varieties (Solarium tuberosum L.) to three strains of tobacco etch potyvirus (TEV-F, TEV-Mex21 and TEV-ATCC) and the reaction of several pepper lines (Capsicum annuum L. and C. chinense L.) to two strains of potato Y potyvirus (PVYO and PVYN) and one strain of potato A potyvirus (PVA-M) was tested. The potato varieties included in this study carried resistance genes against PVY, PVA and potato V potyvirus, but all were susceptible to TEV and developed mottle and mosaic symptoms. TEV was readily transmitted by mechanical inoculation from tobacco and potato to potato, whereas transmission from pepper to potato occurred infrequently. TEV was transmitted through potato tubers, and from pepper to potato plants by aphids. Lack of detectable systemic infection following graft-inoculation indicated extreme resistance to PVYO and PVA in several pepper lines. No pepper line was systemically infected with PVYN following mechanical inoculation (graft-inoculation was not carried out with PVYN). The development of necrotic lesions following mechanical and graft-inoculation indicated hypersensitive response to PVYO in several pepper lines which resembled the resistance responses to these potyvirus strains in potato. Results of this study together with previous work indicate that C. annuum cv. Avelar is resistant to four potyviruses [PVY, PVA, pepper mottle potyvirus (PepMoV) and some isolates of TEV]; C. annuum cv. Criollo de Morelos and C. chinense PI 152225 and PI 159236 are resistant to three potyviruses (PVY, PepMoV and PVA; and PVY, PepMoV and TEV, respectively); C. annuum 9093–1 and 92016–1 are resistant to PVY and PepMoV; and C. annuum cv. Jupiter and C. annuum cv. RNaky are resistant to PVYN and PVA.  相似文献   

12.
The application of RNA-mediated resistance against Cucumber mosaic virus (CMV) by using single transgene constructs generally results in only a small portion of resistant individuals. Inverted repeat constructs encoding self-complementary double-stranded RNA have been demonstrated a potential way to obtain RNA-mediated resistance at high efficiency. To test this observation as a possible method for high frequency induction of CMV resistance, Nicotiana benthamiana plants were transformed with transgenes designed to produce double strand RNA molecules of CMV RNA 2 or coat protein (CP) gene sequences. Seventy-five percent of the tested R0 plants transformed with an RNA 2-derived inverted repeat construct (1534 nt CMV sequence) showed extreme resistance to CMV, while a lower percentage of resistance (30%) was observed in R0 lines transformed with a similar construct of a shorter viral RNA 2 sequence (490 nt). The resistance level conferred by CP sequences was also efficient by using a dsRNA construct, reaching a level of 50%. Self-pollinated (S1) progenies obtained from most resistant R0 plants all showed resistance levels of 100%, perfectly correlating with the expression of transgenic siRNAs. The results indicate that the use of inverted repeat viral transgenes is a highly efficient approach to obtain CMV resistant transgenic plants. Consequently, only a handful of transgenic plants will have to be generated using such constructs for successful resistance, which enables the implementation of this protocol for crops that are difficult to transform, such as ornamental plants in which CMV is an important pathogen.  相似文献   

13.
Enzai Du  Jingyun Fang 《Oecologia》2014,174(3):883-892
Plants are frequently attacked by both pathogens and insects, and an attack from one can induce plant responses that affect resistance to the other. However, we currently lack a predictive framework for understanding how pathogens, their vectors, and other herbivores interact. To address this gap, we have investigated the effects of a viral infection in the host plant on both its aphid vector and non-vector herbivores. We tested whether the infection by three different strains of Potato virus Y (PVYNTN, PVYNO and PVYO) on tomato plants affected: (1) the induced plant defense pathways; (2) the abundance and fecundity of the aphid vector (Macrosiphum euphorbiae); and (3) the performance of two non-vector species: a caterpillar (Trichoplusia ni) and a beetle (Leptinotarsa decemlineata). While infection by all three strains of PVY induced the salicylate pathway, PVYNTN induced a stronger and longer response. Fecundity and density of aphids increased on all PVY-infected plants, suggesting that the aphid response is not negatively associated with salicylate induction. In contrast, the performance of non-vector herbivores positively correlated with the strength of salicylate induction. PVYNTN infection decreased plant resistance to both non-vector herbivores, increasing their growth rates. We also demonstrated that the impact of host plant viral infection on the caterpillar results from host plant responses and not the effects of aphid vector feeding. We propose that pathogens chemically mediate insect–plant interactions by activating the salicylate pathway and decreasing plant resistance to chewing insects, which has implications for both disease transmission and insect community structure.  相似文献   

14.
Hypersensitive resistance (HR) is an efficient defense strategy in plants that restricts pathogen growth and can be activated during host as well as non-host interactions. HR involves programmed cell death and manifests itself in tissue collapse at the site of pathogen attack. A novel hypersensitivity gene, Ny-1, for resistance to Potato virus Y (PVY) was revealed in potato cultivar Rywal. This is the first gene that confers HR in potato plants both to common and necrotic strains of PVY. The locus Ny-1 mapped on the short arm of potato chromosome IX, where various resistance genes are clustered in Solanaceous genomes. Expression of HR was temperature-dependent in cv. Rywal. Strains PVYO and PVYN, including subgroups PVYNW and PVYNTN, were effectively localized when plants were grown at 20°C. At 28°C, plants were systemically infected but no symptoms were observed. In field trials, PVY was restricted to the inoculated leaves and PVY-free tubers were produced. Therefore, the gene Ny-1 can be useful for potato breeding as an alternative donor of PVY resistance, because it is efficacious in practice-like resistance conferred by Ry genes.  相似文献   

15.
In plants RNA silencing is a host defense mechanism against viral infection, in which double‐strand RNA is processed into 21–24‐nt short interfering RNA (siRNA). Silencing spreads from cell to cell and systemically through a sequence‐specific signal to limit the propagation of the virus. To counteract this defense mechanism, viruses encode suppressors of silencing. The P1 protein encoded by the rice yellow mottle virus (RYMV) displays suppression activity with variable efficiency, according to the isolates that they originated from. Here, we show that P1 proteins from two RYMV isolates displaying contrasting suppression strength reduced local silencing induced by single‐strand and double‐strand RNA in Nicotiana benthamiana leaves. This suppression was associated with a slight and a severe reduction in 21‐ and 24‐nt siRNA accumulation, respectively. Unexpectedly, cell‐to‐cell movement and systemic propagation of silencing were enhanced in P1‐expressing Nicotiana plants. When transgenically expressed in rice, P1 proteins induced specific deregulation of DCL4‐dependent endogenous siRNA pathways, whereas the other endogenous pathways were not affected. As DCL4‐dependent pathways play a key role in rice development, the expression of P1 viral proteins was associated with the same severe developmental defects in spikelets as in dcl4 mutants. Overall, our results demonstrate that a single viral protein displays multiple effects on both endogenous and exogenous silencing, not only in a suppressive but also in an enhancive manner. This suggests that P1 proteins play a key role in maintaining a subtle equilibrium between defense and counter‐defense mechanisms, to insure efficient virus multiplication and the preservation of host integrity.  相似文献   

16.
17.
18.
19.
The degradation of a selected mRNA species by RNA interference requires a high degree of homology between the short interfering or short hairpin RNA (si or shRNA) and its target. Recent reports have demonstrated that the number and location of nucleotide mismatches affect the activity of si/shRNA. Here, we systematically examined the effect of single nucleotide mutations in all 21 positions of an effective shRNA that targets the gag gene of HIV-1. We found that all mutant shRNAs exerted RNAi activity but were less effective in gene silencing compared to the wild-type gag shRNA. The most pronounced reduction in function was observed with mutations in the central and 5′ regions of the shRNA. Our results demonstrate that optimal gene silencing requires perfect homology between shRNA and the chosen target, but that a variable degree of silencing occurs, depending upon the precise location of nucleotide mismatches.  相似文献   

20.
Considerable interest has been focused on inducing RNA interference (RNAi) in neurons to study gene function and identify new targets for disease intervention. Although small interfering RNAs (siRNAs) have been used to silence genes in neurons, in vivo delivery of RNAi remains a major challenge limiting its applications. We have developed a highly efficient method for in vivo gene silencing in dorsal root ganglia (DRG) using replication-defective herpes simplex viral (HSV-1) vectors. HSV-mediated delivery of short-hairpin RNA (shRNA) targeting reporter genes resulted in highly effective and specific silencing in neuronal and non-neuronal cells in culture and in the DRG of mice in vivo including in a transgenic mouse model. We further establish proof of concept by demonstrating in vivo silencing of the endogenous trpv1 gene. These data are the first to show silencing in DRG neurons in vivo by vector-mediated delivery of shRNA. Our results support the utility of HSV vectors for gene silencing in peripheral neurons and the potential application of this technology to the study of nociceptive processes and in pain gene target validation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号