首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
The technique based on monitoring oxygen consumption was applied to study 12 alkyl- and methoxy-substituted p-hydroquinones (QH(2)) as a chain-breaking antioxidant during the oxidation of styrene and methyl linoleate (ML) in bulk as well as ML oxidation in micellar solution of sodium dodecyl sulfate (SDS) at 37 degrees C. The antioxidant activities of QH(2) were characterized by two parameters: the rate constant k(1) for reaction of QH(2) with the peroxy radical LO(2)*: QH(2)+LO(2)*-->QH*+LOOH and the stoichiometric factor of inhibition, f, which shows how many kinetic chains may be terminated by one molecule of QH(2). In the case of styrene and ML oxidation in bulk, f values never exceed two; for the majority of QH(2), f was found to be significantly less than two due to the interaction of QH* with molecular oxygen. In the absence of superoxide dismutase (SOD), all the studied QH(2) displayed a very moderate if any antioxidant capability during ML oxidation in SDS micelles. When 20U/ml SOD was added, the majority of QH(2) showed a pronounced ability to inhibit ML oxidation, f parameter being ca. one. The features of QH(2) as an antioxidant in aqueous environment are suggested to associate with the reactivity of semiquinone (Q*(-)). Q*(-) reacts readily with molecular oxygen with formation of superoxide (O(2)*(-)); further reactions of O(2)*(-) result in fast depleting QH(2) and chain propagation. The addition of SOD results in purging a reaction mixture from O(2)*(-) and, as a corollary, in depressing undesirable reactions with the participation of O(2)*(-). With all the oxidation models, QH(2) were found to be very reactive to LO(2)*. The rate constants k(1) decreased progressively when going from the oxidation of styrene to ML oxidation in bulk and further to ML oxidation in SDS micelles.  相似文献   

2.
Alpha-tocopherol was reacted with 1-palmitoyl-2-[(9Z,11E)-(S)-13-hydroperoxy-9,11-octadecadienoyl]-3-sn-phosphatidylcholine (13-PLPC-OOH) in the presence of a lipid-soluble iron chelate, Fe(III) acetylacetonate, in methanol at 37 degrees C. The reaction product was isolated and identified as a mixture of 1-palmitoyl-2-[(10E)-(12S,13S)-9-(8a-dioxy-alpha-tocopherone)-12,13-epoxy-10-octadecenoyl]-3-sn-phosphatidylcholine and 1-palmitoyl-2-[(9Z)-(12S,13S)-11-(8a-dioxy-alpha-tocopherone)-12,13-epoxy-9-octadecenoyl]-3-sn-phosphatidylcholine (TOO-epoxyPLPC), in which the 12,13-epoxyperoxyl radicals derived from 13-PLPC-OOH attacked the 8a-position of the alpha-tocopheroxyl radical. The iron and ascorbate-catalyzed reaction of 13-PLPC-OOH with alpha-tocopherol in phosphatidylcholine (PC) liposomes was assessed by measuring the reaction products of alpha-tocopherol. When 13-PLPC-OOH and alpha-tocopherol were added in saturated dimyristoyl-PC liposomes, the products were TOO-epoxyPLPC, alpha-tocopherylquinone, and epoxy-alpha-tocopherylquinones. In 1-palmitoyl-2-linoleoyl-PC (PLPC) liposomes, alpha-tocopherol could react with both the 13-PLPC-OOH derived 12,13-epoxyperoxyl radicals and the PLPC-derived peroxyl radicals and formed the addition products together with alpha-tocopherylquinone and epoxy-alpha-tocopherylquinones. Therefore, the iron-catalyzed decomposition of phospholipid hydroperoxides primarily produces epoxyperoxyl radicals, which react with the 8a-carbon centered radical of alpha-tocopherol in liposomal systems.  相似文献   

3.
The events accompanying the inhibitory effect of α-tocopherol and/or ascorbate on the peroxidation of soybean L-α-phosphatidylcholine liposomes, which are an accepted model of biological membranes, were investigated by electron paramagnetic resonance, optical and polarograpic methods. The presence of α-tocopherol radical in the concentration range 10?8–10?7 M was detected from its EPR spectrum during the peroxidation of liposomes, catalysed by the Fe3+-triethylnetatramine complex. The α-tocopherol radical, generated in the phosphatidylcholine bilayer, is accessible to ascorbic acid, present in the aqueous phase at physiological concentrations. Ascorbic acid regenerates from it the α-tocopherol itself. A kinetic rate constant of about 2·105 M?·s?1 was estimated from the reaction as it occurs under the adopted experimental conditions. The scavenging effect of α-tocopherol on lipid peroxidation is maintained as long a ascorbic acid is present.  相似文献   

4.
5.
Resveratrol (3,5,4'-trans-trihydroxystibene) is a natural phytoalexin present in grapes and red wine, which possesses a variety of biological activities including antioxidative activity. To find more active antioxidants, with resveratrol as the lead compound, we synthesized resveratrol analogues, i.e., 3,4,3',4'-tetrahydroxy-trans-stilbene (3,4,3',4'-THS), 3,4,4'-trihydroxy-trans-stilbene (3,4,4'-THS), 2,4,4'-trihydroxy-trans-stilbene (2,4,4'-THS), 3,3'-dimethoxy-4,4'-dihydroxy-trans-stilbene (3,3'-DM-4,4'-DHS), 3,4-dihydroxy-trans-stilbene (3,4-DHS), 4,4'-dihydroxy-trans-stilbene (4,4'-DHS), 3,5-dihydroxy-trans-stilbene (3,5-DHS) and 2,4-dihydroxy-trans-stilbene (2,4-DHS). Antioxidative effects of resveratrol and its analogues against free-radical-induced peroxidation of human low density lipoprotein (LDL) were studied. The peroxidation was initiated either by a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH), or by cupric ion (Cu(2+)). The reaction kinetics were monitored either by the uptake of oxygen and the depletion of alpha-tocopherol (TOH) presented in the native LDL, or by the formation of thiobarbituric acid reactive substances (TBARS). Kinetic analysis of the antioxidation process demonstrates that these trans-stilbene derivatives are effective antioxidants against both AAPH- and Cu(2+)-induced LDL peroxidation with the activity sequence of 3,4,3',4'-THS approximately 3,3'-DM-4,4'-DHS>3,4-DHS approximately 3,4,4'-THS>2,4,4'-THS>resveratrol approximately 3,5-DHS>4,4'-DHS approximately 2,4-HS, and 3,4,3',4'-THS approximately 3,4-DHS approximately 3,4,4'-THS>3,3'-DM-4,4'-DHS>4,4'-DHS>resveratrol approximately 2,4-HS>2,4,4'-THS approximately 3,5-DHS, respectively. Molecules bearing ortho-dihydroxyl or 4-hydroxy-3-methoxyl groups possess significantly higher antioxidant activity than those bearing no such functionalities.  相似文献   

6.
Isolated rat hepatocytes exposed to CCl4 showed a stimulated formation of malonaldehyde after only 30–60 min incubation. Conversely, the onset of hepatocyte death was a relatively late event, being significant only after 2–3 h of treatment. A cause–effect relationship between the two phenomena has been demonstrated by using hepatocytes isolated from rats pretreated with alpha-tocopherol. Comparable results were obtained in vivo where supplementation with alpha-tocopherol 15 h before CCl4 dosing induced a partial or complete protection against the drug's necrogenic effect, depending on the concentration of the haloalkane used. Moreover, the vitamin supplementation prevented the CCl4-induced increase of liver total calcium content, probably by blocking alterations in the liver cell plasma membranes due to lipid peroxidation.  相似文献   

7.
The efficiencies of sinapic acid and its derivatives syringic acid, syringaldehyde, three sinapoyl esters (ethyl, propyl, butyl sinapates), 4-vinylsyringol and sinapine were investigated for prevention of lipid peroxidation in correlation with their interactions with model lipid membrane systems. Significant antioxidant activities of propyl and butyl sinapates were seen by fluorimetric assay in phosphatidylcholine liposomes as model membrane using C11-BODIPY581/591 lipophilic fluorescent probe. The sinapic acid esters also had the highest impact on membrane structural properties, as observed by differential scanning calorimetry and fluorescence polarisation measurements. The greatest protection of phospholipids from peroxidation by these esters correlated well with their polarity and insertion into the lipid bilayer.  相似文献   

8.
The principal antioxidant in human LDL, α-tocopherol, is converted to the α-tocopheroxyl radical after reaction with peroxyl radicals or Cu2+, and, if it does not terminate with peroxyl radicals, could initiate lipid peroxidation; a phenomenon called ‘tocopherol mediated peroxidation’. Only in the presence of Cu2+ and low levels of lipid hydroperoxides was an α-tocopherol dependent decrease in the resistance of LDL to oxidation detected. This suggests that tocopherol mediated peroxidation will probably not contribute significantly as a pro-oxidant process in those individuals most at risk of developing atherosclerosis through an oxidative mechanism.  相似文献   

9.
The onset of the lipoprotein secretory block provoked by CCl4 in the whole animal was monitored after purification of liver Golgi membranes. Both lipid transit through the apparatus and hexosylation of the lipoprotein are markedly inhibited 5-15 min after poisoning. Pre-treating the animal with alpha-tocopherol, shown to prevent lipid peroxidation without modifying the covalent binding due to CCl4 metabolites, affords little protection against lipid accumulation in the Golgi, but total preservation of galactosyl transferase activity. While haloalkylation therefore appears to be the major mechanism of damage in the early phases of CCl4-induced derangement of lipid secretion, lipid peroxidation is probably more involved later; this is indicated by the marked, though never complete, protection against fatty liver afforded at 24 h after CCl4 poisoning by supplementation of the membrane with alpha-tocopherol.  相似文献   

10.
Spectrin strengthens the red cell membrane through its direct association with membrane lipids and through protein-protein interactions. Spectrin loss reduces the membrane stability and results in various types of hereditary spherocytosis. However, less is known about acquired spectrin damage. Here, we showed that α- and β-spectrin in human red cells are the primary targets of the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) by immunoblotting and mass spectrometry analyses. The level of HNE adducts in spectrin (particularly α-spectrin) and several other membrane proteins was increased following the HNE treatment of red cell membrane ghosts prepared in the absence of MgATP. In contrast, ghost preparation in the presence of MgATP reduced HNE adduct formation, with preferential β-spectrin modification and increased cross-linking of the HNE-modified spectrins. Exposure of intact red cells to HNE resulted in selective HNE-spectrin adduct formation with a similar preponderance of HNE-β-spectrin modifications. These findings indicate that HNE adduction occurs preferentially in spectrin at the interface between the skeletal proteins and lipid bilayer in red cells and suggest that HNE-spectrin adduct aggregation results in the extrusion of damaged spectrin and membrane lipids under physiological and disease conditions.  相似文献   

11.
The protective effect of the synthetic aminothiol, N-(2-mercaptopropionyl) glycine (MPG) on adriamycin (ADR) induced acute cardiac and hepatic oxidative toxicity was evaluated in rats. ADR toxicity, induced by a single intraperitoneal injection (15 mg/kg), was indicated by an elevation in the level of serum glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), creatine kinase isoenzyme (CK-MB), and lactic dehydrogenase (LDH). ADR produced significant elevation in thiobarbituric acid reactive substances (TBARS), indicating lipid peroxidation, and significantly inhibited the activity of superoxide dismutase (SOD) in heart and liver tissues. In contrast, a single injection of ADR did not affect the cardiac or hepatic glutathione (GSH) content and cardiac catalase (CAT) activity but elevated hepatic CAT. Pretreatment with MPG, (2.5 mg/kg) intragastrically, significantly reduced TBARS concentration in both heart and liver and ameliorated the inhibition of cardiac and hepatic SOD activity. In addition, MPG significantly decreased the serum level of GOT, GPT, CK-MB, and LDH of ADR treated rats. These results suggest that MPG exhibited antioxidative potentials that may protect heart and liver against ADR-induced acute oxidative toxicity. This protective effect might be mediated, at least in part, by the high redox potential of sulfhydryl groups that limit the activity of free radicals generated by ADR.  相似文献   

12.
Nitric oxide (NO) is a highly reactive, membrane-permeable free radical, which has recently emerged as an important signalling molecule and antioxidant. Here we investigated the protective effect of NO against the toxicity caused by excess CuSO4 (50 μM) in the adventitious roots of mountain ginseng. It was found that NO donor, sodium nitroprusside (SNP), was effective in reducing Cu-induced toxicity in the mountain ginseng adventitious roots. Protective effect of SNP, as indicated by extent of lipid peroxidation, was reversed by incorporation of 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (CPTIO), a NO scavenger, in the medium suggesting that the protective effect of SNP is attributable to NO released, which was revealed from in situ confocal laser scanning microscopic localization of NO in the adventitious roots of mountain ginseng. Results obtained in the present study suggest that reduction of excess Cu-induced toxicity by SNP is most likely mediated through the modulation in the activities of antioxidant enzymes involved in H2O2 detoxification (catalase, peroxidase, ascorbate peroxidase) and in the maintenance of cellular redox couples (glutathione reductase), and contents of molecular antioxidants (particularly non-protein thiol, ascorbate and its redox status). Exogenous NO supply also improved the activity of superoxide dismutase, an enzyme responsible for O2 ·− dismutation, and NADPH oxidase, an enzyme responsible for O2 ·− generation, in excess Cu supplied adventitious roots of mountain ginseng.  相似文献   

13.
The three coupling segments of the respiratory chain of bovine heart mito-chondria were examined individually by steady-state kinetic methods to determine whether or not freely diffusible intermediates occur between the energy-yielding and energy-consuming steps involved in the oxidative phosphorylation of extramitochondrial ADP. The principal method employed was the dual inhibitor technique, for which an appropriate model is provided. The results indicate that in accordance with the chemiosmotic theory the intermediate reactants that link the energy-yielding rotenone-sensitive (Site 1), cytochromebc 1 (Site 2), and cytochromeaa 3 (Site 3) reactions of the respiratory chain to the energy-consuming ATP synthetase, AdN transport, and Pi transport reactions are freely diffusible (delocalized). Site 2 was found to differ from the others in regard to the mechanism by which the energy-linked respiratory chain reaction is controlled by the energy-consuming steps. Whereas the Site 1 and Site 3 respiratory chain reactions are controlled primarily by the thermodynamic mechanism of reaction reversal, the Site 2 respiratory reaction is controlled primarily by a kinetic mechanism in which an intermediate that links it to the energy-consuming steps inhibits it allosterically. From the effects of nigericin and valinomycin the allosteric intermediate appears to be the electrical component of the protonmotive force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号