首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative studies were performed on the antioxidant enzyme activities and thiobarbituric acid reactive substance (TBARS) concentration in liver and red cells of two groups of rainbow trout (Oncorhynchus mykiss). The fish of the first group were cultured in freshwater and the others were adapted to sea-water by by being transferred from freshwater at 5-6 months of age. Catalase (CAT), glutathione peroxidase (GPX), and glutathione S-transferase (GST) activities were significantly higher in hepatic and extrahepatic tissues in both of the fish groups. Superoxide dismutase (SOD) activities were found lower in the seawater-adapted trout than in the freshwater-cultured trout. In both tissues, TBARS were found significantly higher in the seawater-adapted trout than in the freshwater trout. It was also observed that the red cells of the seawater-adapted trout were much more resistant to oxidative stress than the red cells of the freshwater-cultured trout. The results implicate that antioxidant capacities in the seawater-adapted trout and freshwater trout may be related to physical and chemical characteristics of the environment.  相似文献   

2.
Unidirectional fluxes of Na+ obtained in perfused preparation and mucosal enzyme equipment (alkaline phosphatase, ouabain-sensitive Na+, K+-ATPase) have been determined in the middle and posterior intestine of freshwater (FW) and sea-water (SW) adapted trout. In FW, influxes and outfluxes were higher in the middle than in the posterior intestine, although net fluxes were similar. SW adaptation induced an increase of influxes and net fluxes mainly in the posterior intestine. SW adaptation decreased the alkaline phosphatase activity only in the posterior intestine. Na+,K+-ATPase activity was always higher in the middle than in the posterior intestine in FW and SW and increased in both parts by SW adaptation. Thus, it seems that SW adaptation of rainbow trout modifies Na intestinal absorption principally in its posterior part and in relation with the Na+, K+-ATPase activity.  相似文献   

3.
Natriuretic peptide receptors mediate the physiological response of natriuretic peptide hormones. One of the natriuretic peptide receptor types is the particulate guanylyl cyclase receptors, of which there are two identified: NPR-A and NPR-B. In fishes, these have been sequenced and characterized in eels, medaka, and dogfish shark (NPR-B only). The euryhaline rainbow trout provides an opportunity to further pursue examination of the system in teleosts. In this study, partial rainbow trout NPR-A-like and NPR-B-like mRNA sequences were identified via PCR and cloning. The sequence information was used in real-time PCR to examine mRNA expression in a variety of tissues of freshwater rainbow trout and rainbow trout acclimated to 35 parts per thousand seawater for a period of 10 days. In the excretory kidney and posterior intestine, real-time PCR analysis showed greater expression of NPR-B in freshwater fish than in those adapted to seawater; otherwise, there was no difference in the expression of the individual receptors in fresh water or seawater. In general, the expression of the NPR-A and NPR-B type receptors was quite low. These findings indicate that NPR-A and NPR-B mRNA expression is minimally altered under the experimental regime used in this study.  相似文献   

4.
5.
  • 1.1. During the starvation of the eel (200 days), the rainbow trout (62 days) and the Japanese dace (75 days), white muscle free l-histidine decreased rapidly in every species, while carnosine and anserine levels in the eel and trout, respectively, exhibited relatively smaller percentage changes.
  • 2.2. Accompanying sea-water acclimation, l-histidine in skeletal muscle of the ell and trout increased 2- and 5-fold, respectively, but in dace muscle no significant chenge occured. The concentration of carnosine in the eel and anserine in the trout remained almost at constant levels even in sea-water.
  相似文献   

6.
Bovine growth hormone (GH) given daily to rainbow trout, Sulmo gairdneri for 4 or 7 days at either 10.00 or 14.00 hours, significantly increased plasma free fatty acid (FFA) levels but had not effect on plasma cholesterol levels. Liver lipid content of the GH-injected trout after seven injections was significantly lower than comparable controls in groups injected at both 10.00 and 14.00 hours. There were no apparent effects of GH on carcass or muscle lipid content although in fish injected and sampled at 14.00 hours there was a significant correlation between the number of injections and carcass lipid content.
Changes in hepatosomatic index (HSI), liver, muscle and carcass lipid content, plasma FFA and cholesterol concentrations and somatotrop activity during food-deprivation for up to 60 days are described. Despite significant decreases in liver and muscle lipid content and increases in plasma FFA levels in food-deprived fish, there was no concomitant change in apparent somatotrop activity.
The data are interpreted to indicate that although exogenous GH, in the doses used here, appears to stimulate mobilization of lipid reserves, particularly from the liver, there is no evidence that enforced changes in lipid reserves elicits a response of the endogenous somatotrop cells.  相似文献   

7.
M Zafarullah  P E Olsson  L Gedamu 《Gene》1989,83(1):85-93
Endogenous levels of metallothionein (MT) mRNA were detected by RNA probes in several somatic and germ-line tissues of rainbow trout, such as eggs, ovaries and immature testis. These levels may be related to metal-ion homeostasis in the observed tissues. The induction kinetics of trout MT isoform B (MT-B) mRNA were studied after single intraperitoneal injections of CdCl2, CuCl2 and ZnCl2. MT-B mRNA was induced within 12 h in liver, kidney, spleen and gills. However, over the 48-h experimental period, the kinetics of MT-B mRNA accumulation differed in response to the three metal salts, possibly due to differential handling of the salts by these tissues. Multiple metal-salt injections induced high levels of MT-B mRNA in the four tissues studied. In the rainbow trout hepatoma cell line, ZnCl2 was a better inducer of the MT-B gene, as compared to CdCl2 and CuCl2. The expression of the exogenous trout MT-B promoter in Chinook salmon embryonic cell line indicates the presence of MT regulatory factors. In contrast, the endogenous MT genes in these cells are quiescent, possibly due to the methylation of their promoter region.  相似文献   

8.
1. Rainbow trout, Salmo gairdneri, produce elevated amounts of a serum acute phase (C-reactive) protein (CRP) when administered a variety of chemicals of environmental importance. 2. Compounds administered in doses which induce the cytochrome(s) P450 catalytic enzymes in trout hepatic microsomes also induce serum CRP. 3. However, an interferon-inducing virus does not induce CRP. Interferon induction by the virus is not significantly inhibited by chemicals which induce trout cytochrome(s) P450. 4. Simultaneous administration of chemicals and virus or virus alone results in depression of P450 protein production and only minor induction of CRP. 5. Thus, as with mammals, a reciprocating relationship appears to exist between the hemeprotein monooxygenase and immune systems of this freshwater teleost, and C-reactive protein appears to fit the reciprocating scheme closer to the cytochromes P450 response.  相似文献   

9.
The osmotic fragilities of erythrocytes in blood sampled from rainbow trout adapted to sea water or fresh water did not differ significantly although blood chloride concentration and osmolarity were lower in the freshwater group.  相似文献   

10.
Two experiments were conducted to assess the physiological effects of freshwater exposure and amoebic gill disease (AGD) in marine Atlantic salmon (Salmo salar L.). The first experiment monitored marine salmon during a 3 h freshwater exposure, the standard treatment for AGD in Tasmania. The second experiment described the gill mucous cell histochemistry for freshwater adapted and seawater acclimated fish (AGD affected and unaffected) for possible correlations to ionoregulation. When exposed to freshwater, marine Atlantic salmon experienced a minor ionoregulatory dysfunction represented by a net efflux of Cl(-) ions at 3 h. AGD affected fish experienced the net efflux of Cl(-) ions 1 h sooner, and had a significantly greater net efflux of total ammonia. Changes to gill mucous cell populations corresponded to differing salinity and the presence of AGD. In AGD affected fish, these populations significantly differed between lesion and non-lesion associated areas of the gill filament. Our results have shown changes in the ionoregulatory capacity of Atlantic salmon due to freshwater exposure and AGD. Gill mucous cell histochemistry indicates the potential importance of the mucous layer in ionoregulation and disease. In comparison to previous studies on rainbow trout, these results suggest that Atlantic salmon have a greater short-term ionoregulatory capacity.  相似文献   

11.
Effect of sea-water with t degrees +4 degrees to +8 degrees C with time of exposure from 30 minutes to 24 hours on pelvic extremities was studied in 200 rabbits, optical and ultrastructural studies were carried out. It was revealed that effect of sea-water causes damage of striated tissues' structure and death of animals. Prophylactic injections of thymogen stabilized ultrastructure and raised survival, if time of exposure did not exceed 12 hours.  相似文献   

12.
Summary The coronet cells of saccus vasculosus of fresh-water living and sea-water adapted rainbow trout were studied with the electron microscope, with special regard to changes in the latter group. Only quantitative differences were observed, namely a raised number of mitochondria in the apical region and the head and also a concentration of the agranular endoplasmic reticulum with a higher amount of electron-dense material and vesicles around the Golgi saccules. Together, these findings suggest a secretory function for the coronet cell. A supposed transport of vesicles from the head region of the coronet cell out into the globules is suggested. Interrelation between primary and secondary vesicles is discussed.This work was supported by grants from the Royal Physiographical Society of Lund and the Faculty of Natural Sciences at the University of Lund.—I am greatly indebted to Mrs. Lena Svenre and Miss Inger Norling for excellent technical assistance.  相似文献   

13.
A cell was found in freshwater brook trout which was similar to a chloride cell as it was mitochondria-rich with an extensive tubular network, but differed in having a dark cytoplasm, large round vesicles in the apical cytoplasm, and large membrane-bound bodies near the nucleus. The base of the cell was separated from the basement membrane by cytoplasm from another epithelial cell. The cell was more rarely found in trout adapted to brackish water and salt water.  相似文献   

14.
Rainbow trout fry syndrome (RTFS) is a septicaemic infection of young rainbow trout Oncorhynchus mykiss occurring at low temperatures and responsible for severe economic losses in European fish farming. The causative agent, Flavobacterium psychrophilum, is a gliding bacterium, and difficulties in culturing it have long been an impediment to investigations on pathogenesis and immunity. Successful attempts at experimentally inducing the disease have been reported, but no experimental model resulting in well-controlled and quantitatively reproducible effects has been described. Recent improvements in F. psychrophilum cultivation made it possible to produce bacterial suspensions with nearly constant viability and to complete challenge injections in rainbow trout fingerlings, using accurately adjusted infective doses. Parenteral injection resulted in significant mortality, which was higher when administered intramuscularly (IM) than intraperitoneally (IP). Lethal doses 50 % lower than 10(3) colony forming units were consistently obtained in trout weighing 3 to 5 g, and the regular shape of the cumulative mortality curves appeared to lend itself to quantitative analyses. Bath experiments produced milder effects, although mortality ranging between 45 and 60 % was obtained in 6 g trout when skin lesions or stressors were induced along with bacterial exposure. Temperature, salinity and the process of preserving isolates (at least over short periods of time) did not seem to be associated with the severity of infection. Nevertheless, infection trials performed at 2 different locations differing both in water quality and in the system of fish maintenance resulted in different mortalities. These findings notwithstanding, the proposed IM model appears easy to apply under standardized experimental conditions and should contribute to effective advances in the study of the disease.  相似文献   

15.
Summary Tissue slices from seawater-adapted and freshwater-adapted rainbow trout, Oncorhynchus mykiss, were exposed to 125I-angiotensin II (1.01·10-9 M) and binding sites located by light-microscopic autoradiography. Binding/uptake was significantly inhibited by excess (10-5 M) unlabelled angiotensin II, suggesting specific binding/uptake of angiotensin II to the ventral and dorsal aorta (smooth muscle), urinary bladder (smooth muscle and epithelial lining), glomeruli and proximal tubules, the gill (lamellae and central filament), skin (epithelium), intestine and oesophagus (mucosal epithelium), liver, heart (ventricular myocytes), adrenocortical tissue and brain (cerebellum and medulla oblongata). The specific binding/uptake of angiotensin II to tissues of freshwater- and seawater-adapted animals were generally similar. However, binding/uptake by the proximal tubules was significantly higher in freshwater-adapted trout than seawater-adapted trout. Specific binding/uptake of angiotensin II by the smooth muscle of the bladder was significantly higher in trout adapted to seawater than trout adapted to freshwater.  相似文献   

16.
Many parasites have strong negative impacts on their hosts, but the effects of single-host, non-trophically transmitted parasites can be subtle and are not well understood. We examined the physiological response of juvenile brown trout (Salmo trutta) to encystment by the parasitic larvae (glochidia) of the freshwater pearl mussel, Margaritifera margaritifera. Glochidia abundance was positively correlated to host body size and was accompanied by significant spleen enlargement at 31 days postexposure, but not before (15 days) or after (160 days). Compared to controls, encysted gill lamellae were significantly thicker and longer, and tended to have fewer mucous cells which may have facilitated encystment. There were no significant difference in mean blood haematocrit between encysted and uninfected trout, but encysted trout took c. 6 h longer to reach basal ventilation rate than controls suggesting that glochidiosis may impose a respiratory burden to brown trout. These findings may have implications for the artificial propagation of the freshwater pearl mussel because the effects of glochidia on host respiratory performance appear to be additive. Therefore, aiming for high glochidia loads may not be the best option for mussel propagation programmes, if this compromises host fitness and hence the probability of successful glochidia excystment.  相似文献   

17.
Fish mucus has previously been reported to change in appearance and composition among species and in response to changes in salinity and disease status. This study reports on the mucus viscosity and glycoprotein biochemistry of Atlantic salmon (Salmo salar L.), brown trout (Salmo trutta L.) and rainbow trout (Oncorhynchus mykiss Walbaum) in freshwater and seawater, both naïve to and affected by amoebic gill disease (AGD). Cutaneous mucus viscosity was measured over a range of shear rates (11.5, 23, 46 and 115 s–1), and non-Newtonian behaviour was demonstrated for all three species. Mucus viscosity was significantly greater in seawater than in freshwater for all species, and significantly lower in AGD-affected Atlantic salmon and brown trout. Mucus glucose, total protein and osmolality data indicated that differences in viscosity due to salinity were mostly attributed to changes in mucus hydration, while differences due to disease were mostly attributed to changes in mucus composition. Trends in gill mucus cell histochemistry included shifts in glycoproteins from neutral mucins in freshwater to acidic mucins in seawater, and shifts towards neutral mucins, with an increase in mucus cell numbers, in response to AGD. Results suggested that Atlantic salmon and brown trout are more similar to one another in their mucus profile than to rainbow trout. Atlantic salmon and brown trout both exhibited a whole-body mucus response to AGD, whereas rainbow trout exhibited only a local gill response. Findings hold implications for fish physiology and pathology, and indicate that future fish-disease management strategies should be species and condition specific.Communicated by I.D. HumeThe word mucus has been used in its noun form throughout the paper for clarity
An erratum to this article can be found at .  相似文献   

18.
In the small intestines of flounders adapted to sea-water or to fresh water, intracellular chloride activity is maintained above equilibrium activity. In sea-water adapted animals this accumulation is inhibited by piretanide whereas fresh-water adapted animals are insensitive to the drug. This indicates different chloride accumulation mechanisms.  相似文献   

19.
The distribution of water-soluble phosphodiesters (WSPDEs) visible by nuclear magnetic resonance (NMR) in some intact tissues of rainbow trout (Oncorhynchus mykiss walbaum) and in perchloric extracts after partial purification was examined by (31)P NMR spectroscopy. The compounds of interest were serine ethanolamine phosphate (SEP), threonine ethanolamine phosphate (TEP), glycerophosphorylcholine (GPC), and glycerophosphorylethanolamine (GPE). TEP and SEP were mostly accumulated in the heart and less accumulated in the kidney of intact trout. After the extraction procedure, two additional minor resonances were visible and identified as GPC and GPE. The liver of trout contained large amounts of GPE. Similar investigations were conducted by (31)P NMR on hearts and kidneys of two elasmobranchs (Scyliorhinus canicula, Raja clavata) and four teleosts (Anguilla anguilla, Sparus auratus, Dicentrarchus labrax, Scophtlhalmus maximus); comparison with the trout data showed striking interspecies differences in the identity of WSPDEs. All teleosts, except eel and turbot, accumulated predominantly TEP. However, in elasmobranchs, first GPC and then GPE were the major compounds. Whatever the studied species, the relative abundances in the heart and kidney were similar. In the last two decades, two hypotheses were proposed to explain the occurrence of high levels of cytosoluble phosphodiesters: these compounds may constitute an index of phospholipid catabolism or a protective mechanism through which phospholipid levels are kept high. To test them and elucidate the role of these compounds in membrane phospholipid regulation in fish, we investigated the effects of two physiological stresses, that is, seawater adaptation and induced myocardial ischemia, on trout cytosolic phosphodiester levels. A 32.5-min ischemic stress caused no effect on SEP and TEP levels. On the contrary, significant osmotic stress induced changes in the PDEs levels: 2 d after transfer from freshwater to seawater or from seawater to freshwater, both tissues displayed a transient decrease of TEP; however, a 2-d stay in seawater after transfer from freshwater caused a rise in SEP concentration, whereas a 2-d stay in freshwater after transfer decreased SEP level. In conclusion, our experiments suggest a relationship between the high levels of cytosoluble phosphodiesters observed in some fish tissues and resistance to stress.  相似文献   

20.
Summary A comparative study of the mechanisms of Na+ absorption through brush border membranes of enterocytes from freshwater (FW) and seawater (SW) adapted trout were carried out using purified vesicle preparations. In contrast to FW trout, SW trout were found to possess a Na+–K+–Cl cotransport process. This finding is regarded as a major adaptation to SW since this cotransport allows an increase of ions and water absorption. Both FW and SW trout were equipped with a Na+–H+ exchange. In FW, the intestine of the trout had both a Na+–Na+ exchange and a Na+ conductance which may be responsible for enterocyte Na+ uptake along the potential gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号