首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The membrane-binding characteristics of a number of modified vitamin K-dependent proteins and peptides showed a general pattern of structural requirements. The amino-terminal peptides from human prothrombin (residues 1-41 and 1-44, 60:40) bovine factor X (residues 1-44), and bovine factor IX (residues 1-42), showed a general requirement for a free amino-terminal group, an intact disulfide, and the tyrosine homologous to Tyr44 of factor X for membrane binding. Consequently, the peptide from factor IX did not bind to membranes. Any of several modifications of the amino terminus, except reaction with trinitrobenzenesulfonic acid, abolished membrane binding by the factor X and prothrombin peptides. Calcium, but not magnesium, protected the amino terminus from chemical modification. The requirement for a free amino terminus was also shown to be true for intact prothrombin fragment 1, factor X, and factor IX. Although aggregation of the peptide-vesicle complexes greatly complicated accurate estimation of equilibrium binding constants, results with the factor X peptide indicated an affinity that was not greatly different from that of the parent protein. The most striking difference shown by the peptides was a requirement for about 10 times as much calcium as the parent proteins. In a manner similar to the parent proteins, the prothrombin and factor X peptides showed a large calcium-dependent quenching of tryptophan fluorescence. This fluorescence quenching in the peptides also required about 10 times the calcium needed by the parent proteins. Thus, the 1-45 region of the vitamin K-dependent proteins contained most of the membrane-binding structure but lacked component(s) needed for high affinity calcium binding. Protein S that was modified by thrombin cleavage at Arg52 and Arg70 showed approximately the same behavior as the amino-terminal 45-residue peptides. That is, it bound to membranes with overall affinity that was similar to native protein S but required high calcium concentrations. These results suggested that the second disulfide loop of protein S (Cys47-Cys72) and prothrombin (Cys48-Cys61) were involved in high affinity calcium binding. Since factor X lacks a homologous disulfide loop, an alternative structure must serve a similar function. A striking property of protein S was dissociation from membranes by high calcium. While this property was shared by all the vitamin K-dependent proteins, protein S showed this most dramatically and supported protein-membrane binding by calcium bridging.  相似文献   

2.
We have isolated a fragment (approximately equal to 10 kDa) of thrombomodulin containing the fifth and sixth epidermal growth factor (EGF)-like regions which retains thrombin binding capacity. The amino-terminal sequence of a 50-kDa active fragment of thrombomodulin derived from elastase proteolysis begins 11 residues before the first EGF-like structure of native thrombomodulin. Subsequent digestion with cyanogen bromide yields a 10-kDa thrombin binding fragment. The amino-terminal sequence of this fragment starts at the fifth EGF-like structure (Phe407). The amino acid composition suggests that this fragment contains the fifth and sixth EGF-like structures with a total of approximately 77 residues. This fragment lacks cofactor activity, but acts as a competitive inhibitor for protein C activation (Ki = 8.6 +/- 1.4 nM). We propose that the fifth and sixth EGF-like structures contain the thrombin binding site of thrombomodulin.  相似文献   

3.
Thrombin cleaves protein S at arginine residues 52 and 70 resulting in loss of cofactor activity and reduced Ca2+ ion binding. After thrombin cleavage the NH2-terminal region containing gamma-carboxyglutamic acid (Gla) is linked to the large COOH-terminal fragment by a disulfide bond. Measurements of the rate of disulfide bond reduction by thioredoxin in intact protein S showed that the disulfide bonds are largely inaccessible to thioredoxin in the presence of Ca2+ ions, whereas in the presence of EDTA apparently all of the disulfide bonds are rapidly reduced. Probing the reactivity of the disulfide bonds in thrombin-modified proteins indicated that the thrombin cleavage induces a conformational change in the protein. After thrombin cleavage of protein S, the domain containing gamma-carboxyglutamic acid could be removed by selective reduction with thioredoxin followed by alkylation of the sulfhydryl groups. Ca2+ ion binding was compared in intact protein S, thrombin-modified protein S, and Gla domainless protein S. The intact protein S bound several Ca2+ ions, and the binding was not saturable. Thrombin-modified protein S, whether intact or with the Gla domain removed by selective reduction, bound two to three Ca2+ ions with a KD of 15-20 microM. The Gla domain in thrombin-modified protein S thus does not contribute significantly to the high affinity Ca2+ ion binding. Thrombin cleavage of protein S may be of physiological importance in the regulation of blood coagulation.  相似文献   

4.
Human protein C is the precursor of a serine proteinase in plasma which contains nine 4-carboxyglutamic acid residues and functions as a potent anticoagulant. It is activated by thrombin in the presence of an essential endothelial-cell-membrane glycoprotein cofactor, thrombomodulin. In a purified human system, vitamin K-dependent proteins such as factor X, prothrombin and prothrombin fragment 1 were able to inhibit protein C activation by the thrombin-thrombomodulin complex, using either detergent-solubilized thrombomodulin or thrombomodulin reconstituted into vesicles consisting of phosphatidylcholine and phosphatidylserine (1:1, w/w). Factors VII and IX and protein S were much less efficient. Prothrombin fragment 1 behaved as a non-competitive inhibitor with apparent Ki values of 4 microM in the absence, and of 2-2.5 microM in the presence, of phospholipids. Heat decarboxylation of fragment 1 abolished its ability to interfere in protein C activation, and high phospholipid concentrations could attenuate its inhibitory effect and were responsible for a gradual loss of the non-competitive character. Fragment 1 also inhibited the activation of 4-carboxyglutamic acid-domainless protein C, a proteolytic derivative of protein C lacking the 4-carboxyglutamic acid residues, without any influence from phospholipids. At high thrombin concentrations, with respect to thrombomodulin, the inhibitory effect of fragment 1 was diminished. Fragment 1, at 3.8 microM, inhibited by 50% the activation of protein C (0.1 or 0.3 microM) by thrombin. These results suggest that the 4-carboxyglutamic acid domain of vitamin K-dependent proteins can act as a modulator of the protein C anticoagulant pathway through two distinct types of interaction. The functional 4-carboxyglutamic acid domain would be necessary to allow the enhancement of protein C activation in the presence of anionic phospholipids and it could recognize a phospholipid-independent binding site on the thrombin-thrombomodulin complex.  相似文献   

5.
Among the vitamin K-dependent plasma proteins, only protein S contains the post-translationally modified amino acid erythro-beta-hydroxyasparagine (Hyn). Protein S also contains erythro-beta-hydroxyaspartic acid (Hya). The function of these unusual amino acids, located in the epidermal growth factor-like domains, is unknown. To determine if these post-translational modifications contribute to the functional integrity of human protein S (HPS), recombinant human protein S lacking Hya and Hyn (rHPSdesHya/Hyn) was purified from the medium of human kidney 293 cells that were transfected with HPS cDNA and grown in the presence of the hydroxylase inhibitor 2,2'-dipyridyl. Solution-phase equilibrium binding studies revealed that rHPSdesHya/Hyn binds C4b-binding protein (C4BP) in a manner indistinguishable from recombinant HPS and plasma-derived HPS, exhibiting a Kd in the presence of 2 mM CaCl2 of approximately 0.7 nM and a Kd in the presence of 4 mM EDTA approximately 10-fold higher. In a purified component system, rHPSdesHya/Hyn displayed normal anticoagulant cofactor activity in the activated protein C-catalyzed inactivation of coagulation factor Va bound in the prothrombinase complex. In addition, digestion of rHPSdesHya/Hyn with thrombin in the presence of EDTA appeared normal, and 2 mM CaCl2 prevented the cleavage. Together these results suggest that the post-translational modifications of Asn and Asp residues are not necessary for the macromolecular or Ca2+ interactions associated with the anticoagulant and C4BP binding characteristics of HPS.  相似文献   

6.
Homologous "propeptide" regions are present in a family of vitamin K-dependent mammalian proteins, including clotting factors II, VII, IX, X, protein C, protein S and bone "gla" proteins. To test the hypothesis that the propeptide is a signal for the correct gamma-carboxylation of the adjacent gamma-carboxy region, we have mutated amino acid -4 of human factor IX from an arginine to a glutamine residue, by M13-directed site-specific mutagenesis of a cDNA clone. After expression of mutant factor IX in dog kidney cells, we find that it is secreted into the medium in a precursor form containing the propeptide, and is inefficiently gamma-carboxylated compared to the control, wild-type, recombinant factor IX. This result supports the hypothesis that the propeptide region is required for efficient gamma-carboxylation of factor IX in dog kidney cells. Furthermore, it confirms previous results that arginine at amino acid -4 is required for correct propeptide processing.  相似文献   

7.
Protein S is unique among the vitamin K-dependent proteins found in blood plasma because it is a cofactor rather than a zymogen of a serine protease. Instead of a trypsin-like domain, protein S contains a domain that has sequence homology with steroid binding proteins. In order to understand the function of this structural domain, peptides have been synthesized with amino acid sequences that are homologous between human protein S and rat androgen binding protein. Two peptides, corresponding to amino acids 400-407 (PINPRLDG) and 605-614 (GVQLDLDEAI) of the protein S sequence have been tested for their effects on protein S function. Neither peptide altered the clotting of bovine or human plasma. The peptide GVQLDLDEAI enhanced the anticoagulant activity of human-activated protein C in human plasma while the peptide PINPRLDG had no effect. The peptide GVQLDLDEAI was observed to inhibit the binding of protein S to C4b-binding protein in plasma, resulting in increased concentrations of free protein S. GVQLDLDEAI was also observed to enhance the disassociation of the protein S.C4b-binding protein complex when purified complex was used. Finally, C4b-binding protein was observed to bind to GVQLDLDEAI. These results suggest that the carboxyl-terminal region of protein S, which contains the sequence GVQLDLDEAI, is involved in the interaction between protein S and C4b-binding protein.  相似文献   

8.
Protein S is a vitamin K dependent protein of unknown function, which is present in mammalian plasma. It was isolated from bovine plasma by barium citrate adsorption and elution, ammonium sulfate fractionation, and column chromatography on DEAE-Sephadex, heparin-agarose, and polyhomoarginine-Sepharose. Bovine Protein S (Mr 64,200) is a single-chain glycoprotein with an amino-terminal sequence of Ala-Asn-Thr-Leu-Leu-. It contains 7.0% carbohydrate and 10 residues of gamma-carboxyglutamic acid per mol of protein. Human Protein S (Mr 69,000) is also a single-chain glycoprotein with an amino-terminal sequence of Ala-Asn-Ser-Leu-Leu-. It contains 7.8% carbohydrate and 10 residues of gamma-carboxyglutamic acid per mol of protein. These results indicate that Protein S from bovine or human plasma shows many similarities to the other vitamin K dependent proteins present in plasma.  相似文献   

9.
Alginate is believed to be a major virulence factor in the pathogenicity of Pseudomonas aeruginosa in the lungs of patients suffering from cystic fibrosis. Guanosine diphospho-D-mannose dehydrogenase (GDPmannose dehydrogenase, EC 1.1.1.132) is a key enzyme in the alginate biosynthetic pathway which catalyzes the oxidation of guanosine diphospho-D-mannose (GDP-D-mannose) to GDP-D-mannuronic acid. In this paper, we report the structural analysis of GMD by limited proteolysis using three different proteases, trypsin, submaxillary Arg-C protease, and chymotrypsin. Treatment of GMD with these proteases indicated that the amino-terminal part of this enzyme may fold into a structural domain with an apparent molecular mass of 25-26 kDa. Multiple proteolytic cleavage sites existed at the carboxyl-terminal end of this domain, indicating that this segment may represent an exposed region of the protein. Initial proteolysis also generated a carboxyl-terminal fragment with an apparent molecular mass of 16-17 kDa which was further digested into smaller fragments by trypsin and chymotrypsin. The proteolytic cleavage sites were localized by partial amino-terminal sequencing of the peptide fragments. Arg-295 was identified as the initial cleavage site for trypsin and Tyr-278 for chymotrypsin. Catalytic activity of GMD was totally abolished by the initial cleavage. However, binding of the substrate, GDP-D-mannose, increased stability toward proteolysis and inhibited the loss of enzyme activity. GMP and GDP (guanosine 5'-mono- and diphosphates) also blocked the initial cleavage, but NAD and mannose showed no effect. These results suggest that binding of the guanosine moiety at the catalytic site of GMD may induce a conformational change that reduces the accessibility of the cleavage sites to proteases. Binding of [14C]GDP-D-mannose to the amino-terminal domain was not affected by the removal of the carboxyl-terminal 16-kDa fragment. Furthermore, photoaffinity labeling of GMD with [32P]arylazido-beta-alanine-NAD followed by proteolysis demonstrated that the radioactive NAD was covalently linked to the amino-terminal domain. These observations imply that the amino-terminal domain (25-26 kDa) contains both the substrate and cofactor binding sites. However, the carboxyl-terminal fragment (16-17 kDa) may possess amino acid residues essential for catalysis. Thus, proteolysis had little effect on substrate binding, but totally eliminated catalysis. These biochemical data are in complete agreement with amino acid sequence analysis for the existence of substrate and cofactor sites of GMD. A linear peptide map of GMD was constructed for future structure/functional studies.  相似文献   

10.
Protein Z is a vitamin K-dependent protein of unknown function present in normal bovine plasma at a concentration of approximately 0.1 microM. Quantitative affinity chromatographic studies using diisopropylphosphoryl (DIP)-thrombin-Affi-Gel 10 as the affinity matrix and free DIP-thrombin as the competitor demonstrated that protein Z interacts with DIP-thrombin with a dissociation constant of 0.15 +/- 0.05 microM. Binding was independent of Ca2+. Protein C and factor IX, other vitamin K-dependent clotting proteins with the same domain structure as that of protein Z, did not interact with immobilized DIP-thrombin under these conditions; and factor X interacted with an affinity 20-fold lower than that for protein Z. The Michaelis constant, Km, for hydrolysis of pyro-Glu-Pro-Arg-p-nitroanilide by thrombin was increased 1.8-fold, from 130 to 230 microM, as a result of the binding of protein Z and the Km for H-Val-Leu-Arg-p-nitroanilide 1.4-fold, from 390 to 560 microM. From these kinetic studies, a dissociation constant of 0.11 +/- 0.04 microM was calculated for the binding of protein Z to alpha-thrombin. Protein Z bound to large phospholipid vesicles (25% phosphatidylserine, 75% phosphatidylcholine) with a dissociation constant of 0.39 +/- 0.16 microM at a phospholipid to protein ratio of 82 mol of phospholipid/mol of protein Z at saturation. In the presence of protein Z thrombin associated with phospholipid vesicles, whereas thrombin did not interact with phospholipid vesicles in the absence of protein Z. These studies, therefore, demonstrate a physiologically relevant interaction between protein Z and thrombin. They also suggest a mechanism whereby thrombin is localized to an injury site by virtue of its interaction with protein Z bound to phospholipid surfaces.  相似文献   

11.
Four proteins active in blood coagulation have long been known to require vitamin K for their proper biosynthesis: factors II, VII, IX, and X. This paper describes the purification of a hitherto unrecognized vitamin K-dependent glycoprotein from bovine plasma. The biosynthesis of this protein is interfered with by the vitamin K antagonist Dicoumarol. The molecular weight of the protein is approximately 56,000 and, like factor X, it has two polypeptide chains. The light chain binds Ca2+. Its NH2-terminal amino acid sequence is homologous to the NH2-terminal sequences of the other vitamin K-dependent proteins and it contains vitamin K-dependent gamma-carboxyglutamic acid residues. The biological function of this protein is unknown.  相似文献   

12.
K Takio  S B Smith  E G Krebs  K A Walsh  K Titani 《Biochemistry》1984,23(18):4200-4206
Evidence is presented that establishes the amino acid sequence of the regulatory subunit of type II cAMP-dependent protein kinase from bovine cardiac muscle. Complementary sets of overlapping peptides were generated primarily by tryptic digestion and by chemical cleavage at methionyl residues. The analysis was augmented by chemical cleavage at a single tryptophanyl residue and at three of the four aspartyl-proline bonds. Several large fragments generated by limited proteolysis contributed to the proof of structure. The subunit is a single chain of 400 residues corresponding to a molecular weight of 45 004. An amino-terminal segment of about 100 residues is believed to include the region responsible for oligomeric association. The remainder of the molecule consists of two tandem homologous domains, each of which is thought to bind a single molecule of cAMP. Comparison of the three domains with corresponding regions of the type I isozyme, of the Escherichia coli catabolite gene activator protein, and of cGMP-dependent protein kinase indicates extensive regions of homology and as much as 50% identity with the sequence of an internal segment of the type I isozyme.  相似文献   

13.
Beta-hydroxyaspartic acid in vitamin K-dependent proteins   总被引:19,自引:0,他引:19  
A method for the quantitation of beta-hydroxyaspartic acid in proteins is described. After hydrolysis in 6 M HCl, the beta-hydroxyaspartic acid released is quantitated on an automatic amino acid analyzer employing a pH 2.0 eluting buffer and postcolumn reaction with o-phthalaldehyde for detection. The sensitivity is about 0.01 nmol. Among vitamin K-dependent proteins, factor IX, factor X, protein C, and protein Z each contain about one residue of beta-hydroxyaspartic acid whereas protein S contains two or three residues. Prothrombin lacks beta-hydroxyaspartic acid as do a number of non-vitamin K-dependent proteins also analyzed.  相似文献   

14.
Protein Z is a vitamin K-dependent glycoprotein isolated and characterized from human and bovine plasma. A cDNA coding for human protein Z has been obtained by the isolation of phage clones from a liver cDNA library and in vitro amplification of two other liver libraries. Protein Z is synthesized with a prepro-leader sequence of 40 amino acids. The mature protein is composed of 360 residues including a Gla domain of 13 carboxyglutamic acid residues, two epidermal growth factor domains, and a carboxyl terminal region which is highly homologous to the catalytic domain of serine proteases. Human protein Z, however, contains an Asp instead of Ser and a Lys instead of His in the catalytic triad of the active site.  相似文献   

15.
A murine monoclonal antibody (designated H-11) produced by injecting mice with purified human protein C was found to bind several human vitamin K-dependent proteins. Using a solid-phase competitive radioimmunoassay with antibody immobilized onto microtiter plates, binding of 125I-labeled protein C to the antibody was inhibited by increasing amounts of protein C, prothrombin, and Factors X and VII over a concentration range of 1 X 10(-8) to 1 X 10(-6) M. Other vitamin K-dependent proteins including Factor IX and protein S did not inhibit or inhibited only at the highest concentration binding of radiolabeled protein C to the immobilized antibody. Chemical treatment of prothrombin with a variety of agents including denaturation by sodium dodecyl sulfate, reduction with mercaptoethanol followed by carboxymethylation with iodoacetic acid, citraconylation of lysine residues, removal of metal ion with EDTA, or heat decarboxylation did not destroy the antigenic site recognized by the antibody as measured by immunoblotting of prothrombin or prothrombin derivative immobilized onto nitrocellulose. Immunoblotting of purified vitamin K-dependent polypeptides with the monoclonal antibody following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose indicated that the antigenic site was found on the light chains of protein C and Factor X. Chymotrypsin digestion of prothrombin and isolation on QAE-Sephadex of the peptide representing amino-terminal residues 1-44 of prothrombin further localized the antigenic site recognized by the monoclonal antibody to the highly conserved gamma-carboxyglutamic acid-containing domain. The exact location of the antigenic determinant for antibody H-11 was established using synthetic peptides. Antibody H-11 bound specifically to synthetic peptides corresponding to residues 1-12 of Factor VII and 1-22 of protein C. Comparison of protein sequences of bovine and human vitamin K-dependent proteins suggests that the sequence Phe-Leu-Glu-Glu-Xaa-Arg/Lys is required for antibody binding. The glutamic acid residues in this peptide segment are the first 2 gamma-carboxyglutamic acid residues near the amino-terminal end in the native proteins. Increasing concentrations of Ca2+, Mg2+, or Mn2+ partially inhibited binding of 125I-protein C to the antibody in a solid-phase assay system with half-maximal binding observed at divalent metal ion concentrations of 2, 4, and 0.6 mM, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The amino acid sequence of protein Z has been determined from sequence analysis performed on fragments obtained by chemical and enzymatic degradations. The polypeptide consists of a single chain containing 396 amino acid residues (Mr 43 677). Comparison with the vitamin K-dependent plasma proteins reveals an extensive homology. The N-terminal part, containing 13 gamma-carboxyglutamic acid and one beta-hydroxyaspartic acid residue, is extensively homologous to and of similar length to the light chain of factor X. The remainder of protein Z is homologous to the serine proteases and of similar size to the heavy chain of factor Xa, but of the active site residues only aspartic acid-102 is present. Histidine-57 and serine-195 are replaced in protein Z by threonine and alanine, respectively. The physiological function of protein Z is still uncertain.  相似文献   

17.
All of the vitamin K-dependent plasma proteins with domains that are homologous to the epidermal growth factor (EGF) precursor have 1 hydroxylated aspartic acid residue in the NH2-terminal EGF-homology region. In addition, protein S has 1 hydroxylated asparagine residue in each of the three COOH-terminal EGF-homology regions. All of these proteins have been found to have the amino acid sequence, CX(D or N)XXXX(F or Y)XCXC (corresponding to residues 20 to 33 in EGF), where the Asp or Asn residue is hydroxylated. This sequence also appears in two of the three EGF-homology regions of the human low density lipoprotein receptor and in two of the six EGF-homology regions of bovine thrombomodulin so far identified, suggesting that they may have the modified amino acid. We have now identified beta-hydroxyaspartic acid in acid hydrolysates of both these proteins.  相似文献   

18.
The conversion of the blood coagulation zymogen prothrombin to thrombin is associated with the production of several cleavage intermediates and products. In contrast to earlier studies of prothrombin cleavage in chemically defined systems, the current investigation examines the fragmentation of human prothrombin in normal plasma. Radiolabeled prothrombin was added to platelet-poor relipidated normal human plasma, and clotting was initiated with the addition of Ca(II) and kaolin. Analysis of the radiolabeled prothrombin cleavage products by polyacrylamide gel electrophoresis in the presence of dodecyl sulfate and beta-mercaptoethanol identified a heretofore unobserved product of prothrombin activation with an apparent molecular weight of 45,000. This product was identified as fragment 1 X 2 X 3, the NH2-terminal 286 amino acids of prothrombin. The product was isolated from a prothrombin digest by immunoaffinity chromatography using anti-prothrombin:Ca(II) antibodies and by preparative gel electrophoresis. Its amino-terminal sequence is identical to that of prothrombin. Digestion of this product with either Factor Xa or thrombin yields, at a minimum, fragment 1 X 2 and fragment 1. Amino-terminal sequence analysis of the products obtained by digestion with Factor Xa of the unknown activation product indicated 3 amino acid residues at each cycle consistent with the presence of fragment 1, fragment 2, and fragment 3. To unambiguously identify the COOH-terminal amino acid sequence of the product, its factor Xa digestion products were separated by reverse-phase high performance liquid chromatography. Edman degradation of one peptide revealed the complete sequence of fragment 3. On this basis, we identify the Mr 45,000 polypeptide as fragment 1 X 2 X 3 and indicate that it is a prominent product of prothrombin conversion to thrombin when activation occurs in plasma.  相似文献   

19.
Activation of factor VIII by thrombin occurs via limited proteolysis at R372, R740, and R1689. The resultant active factor VIIIa molecule consists of three noncovalently associated subunits: A1-a1, A2-a2, and A3-C1-C2 (50, 45, and 73 kDa respectively). Further proteolysis of factor VIIIa at R336 and R562 by activated protein C subsequently inactivates this cofactor. We now find that the factor VIIa-tissue factor complex (VIIa-TF/PL), the trigger of blood coagulation with restricted substrate specificity, can also catalyze limited proteolysis of factor VIII. Proteolysis of factor VIII was observed at 10 sites, producing 2 major fragments (47 and 45 kDa) recognized by an anti-factor VIII A2 domain antibody. Time courses indicated the slow conversion of the large fragment to 45 kDa, followed by further degradation into at least two smaller fragments. N-Terminal sequencing along with time courses of proteolysis indicated that VIIa-TF/PL cleaved factor VIII first at R740, followed by concomitant cleavage at R336 and R372. Although cleavage of the light chain at R1689 was observed, the majority remained uncleaved after 17 h. Consistent with this, only a transient 2-fold increase in factor VIII clotting activity was observed. Thus, heavy chain cleavage of factor VIII by VIIa-TF/PL produces an inactive factor VIII cofactor no longer capable of activation by thrombin. In addition, VIIa-TF/PL was found to inactivate thrombin-activated factor VIII. We hypothesize that these proteolyses may constitute an alternative pathway to regulate coagulation under certain conditions. In addition, the ability of VIIa-TF/PL to cleave factor VIII at 10 sites greatly expands the known protein substrate sequences recognized by this enzyme-cofactor complex.  相似文献   

20.
Protein C is a vitamin K-dependent regulator of blood coagulation. It has beta-hydroxyaspartic acid in position 71 which is in the first of its two domains that are homologous to epidermal growth factor (EGF). This region has recently been demonstrated to have a Ca2+ binding site with a Kd of approximately 100 microM. Recombinant human protein C, expressed in mammalian tissue culture, had full biological activity and contained beta-hydroxyaspartic acid. Furthermore, it had a Ca2+-dependent epitope in the EGF-like domain, recognized by a monoclonal antibody. In contrast, a mutant recombinant human protein C in which beta-hydroxyaspartic acid had been replaced with glutamic acid in position 71 did not have the Ca2+-dependent epitope, and its biological activity was reduced to about 10% of normal. Fab' fragments of this antibody inhibited the anticoagulant activity of plasma-derived activated protein C, apparently by interfering with the interaction between activated protein C and its cofactor, protein S. The latter contains four tandemly arranged EGF homology domains. We propose that beta-hydroxyaspartic acid is directly involved in Ca2+ binding in protein C and in related proteins and that protein C interacts with protein S by means of its EGF homology regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号