首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ras regulates a variety of different signal transduction pathways acting as molecular switch. It was shown by liquid and solid-state (31)P NMR spectroscopy that Ras exists in the guanosine-5'-(beta,gamma-imido)triphosphate bound form in at least two conformational states interconverting in millisecond time scale. The relative population between the two conformational states affects drastically the affinity of Ras to its effectors. (31)P NMR spectroscopy shows that the conformational equilibrium can be shifted specifically by point mutations, including mutations with oncogenic potential, thus modifying the effector interactions and their coupling to dynamic properties of the protein.  相似文献   

2.
Complex formation between ferricytochrome c peroxidase (CCP) and ferricytochrome c from yeast [cyt(Y)] and horse heart [cyt(H)] was studied by resonance Raman spectroscopy. On the basis of a detailed spectral analysis of the free proteins, it was possible to attribute changes in the spectra of the complexes to the individual proteins. At pH 7.0 both cyt(Y) and cyt(H) binding induces an increase in the six-coordinate low-spin configuration of CCP from 9% to 19% at the expense of the five-coordinate high-spin state, which drops from 84% to 74%. In the free and complexed state, CCP exhibits a constant fraction of the six-coordinate high-spin form (approximately 7%). In addition to affecting the coordination state, there is also a cyt-specific structural response of CCP to complexation. In the cyt(Y)-CCP complex, the peripheral vinyl and propionate substituents of CCP are more rigidly fixed in the protein matrix, whereas binding of cyt(H) only slightly perturbs the conformations of these side chains. The biological significance of the conformational changes in CCP are discussed. In contrast to CCP, there are no detectable structural changes in either cyt(Y) or cyt(H) upon complex formation.  相似文献   

3.
Flight metabolism of locusts has been extensively studied, but biochemical and physiological methods have led to conflicting results. For this reason the non-invasive and non-destructive method of 31P NMR spectroscopy was used to study migratory locusts, Locusta migratoria, at rest and during flight.
1.  In the flight muscle of resting locusts the ratio of phosphoarginine to ATP was the same whether determined by NMR (1.76) or biochemically, but the NMR-visible content of inorganic phosphate (Pi) was only 40% of ATP, i.e., much lower than total Pi as determined biochemically. This suggests that most of the Pi in flight muscle is not free, and hence not available as substrate or effector for cytosolic enzymes. Similarly, the free content of ADP and AMP in resting muscle was calculated to be much lower than the total content.
2.  Flight brought about a marked increase in Pi and a decrease in phosphoarginine in flight muscle although there was no change in intracellular pH.
3.  At the initiation of flight a new steady state of ATP, Pi, and phosphoarginine was rapidly established and minimal changes occurred after the first 2 s of flight.
4.  From the free contents of ATP and phosphoarginine in working flight muscle the flight-induced fractional increases in free ADP and free AMP were calculated to be 5.0-fold and 27.4-fold, respectively. As Pi, ADP, and AMP are substrates and potent effectors of enzymes, the flight-induced increase in their contents is likely to have marked effects on metabolic flux in working muscle.
5.  After short-term flight as well as prolonged flight, phosphoarginine, ATP, and Pi returned rapidly to their preflight levels, indicating that metabolic recovery from flight is rapid.
6.  The locust appears to be an appropriate model for the study of metabolic regulation in aerobic muscle during exercise.
Dedicated to Professor Dr. Ernst Zebe (University of Münster) on occasion of his 65th birthday.  相似文献   

4.
Using a 31P-NMR lanthanide shift technique, abscisic acid is shown to enhance the permeability to praeseodymium of lipid bilayers composed of 80 mol% phosphatidylcholine and 20 mol% phosphatidylethanolamine. Praeseodymium permeability is immeasurably slow in the absence of the hormone whether or not phosphatidylethanolamine is present in the bilayers. Only in the presence of abscisic acid is praeseodymium permeability observed, the effect being significantly greater when phosphatidylethanolamine is present. These results substantiate prior reports from nonelectrolyte permeability studies that abscisic acid interacts with phosphatidylethanolamine in lipid bilayers.  相似文献   

5.
Phospholamban (PLB) is a 52-amino acid integral membrane protein that regulates the flow of Ca(2+) ions in cardiac muscle cells. In the present study, the transmembrane domain of PLB (24-52) was incorporated into phospholipid bilayers prepared from 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC). Solid-state (31)P and (2)H NMR experiments were carried out to study the behavior of POPC bilayers in the presence of the hydrophobic peptide PLB at temperatures ranging from 30 degrees C to 60 degrees C. The PLB peptide concentration varied from 0 mol % to 6 mol % with respect to POPC. Solid-state (31)P NMR spectroscopy is a valuable technique to study the different phases formed by phospholipid membranes. (31)P NMR results suggest that the transmembrane protein phospholamban is incorporated successfully into the bilayer and the effects are observed in the lipid lamellar phase. Simulations of the (31)P NMR spectra were carried out to reveal the formation of different vesicle sizes upon PLB insertion. The bilayer vesicles fragmented into smaller sizes by increasing the concentration of PLB with respect to POPC. Finally, molecular order parameters (S(CD)) were calculated by performing (2)H solid-state NMR studies on deuterated POPC (sn-1 chain) phospholipid bilayers when the PLB peptide was inserted into the membrane.  相似文献   

6.
Two-dimensional (2D) (31)P magic angle spinning (MAS) nuclear magnetic resonance (NMR) exchange spectroscopy (EXSY) demonstrated that aluminum binds to the phosphate group of phosphatidylcholine (PC) in multilamellar vesicles at pH 3.2, forming preferentially 2/1, in addition to 1/1 (PC/Al) complexes in slow exchange with one another, and with free PC, on the NMR timescale. Exchange rate constants between these three co-existing species were measured as a function of temperature using one-dimensional (1D) selective inversion recovery (SIR) (31)P MAS NMR. Over the temperature range from 5 to 35 degrees C all three exchange rate constants increased by roughly an order of magnitude from k approximately 1-2 to 10-14s(-1), exhibiting Arrhenius behavior with activation energies on the order of 30-45 kJ mol(-1) and correspondingly positive enthalpies of activation. Entropies of activation were uniformly negative, consistent with an ordered transition state. From a biological perspective, the results demonstrate that aluminum binding to PC in biomembranes is transient on a biologically relevant time scale, so that the lipid bilayer portion of biomembranes is unlikely to act as a long term repository for aluminum, but rather should be viewed as a temporary reservoir of biologically available aluminum.  相似文献   

7.
Resonance Raman spectra have been recorded from ferri-cytochromec bound to phospholipid vesicles composed of dimyristoyl phosphatidylglycerol (DMPG), dioleoyl phosphatidylglycerol (DOPG) or dioleoyl phosphatidylglycerol-dioleoyl phasphatidylcholine (DOPG-OPC) (70 : 30 mole/mole). Lipid binding induces very significant conformational changes in the protein molecule. The resonance Raman spectra differ in their content of bands originating from two different conformational species, I and II, of the protein, and from two different spin and coordination states of the heme in conformation II. Data of sufficiently high precision were obtained that the spectra of the individual species could be quantitated by a constraint interative fitting routine using single Lorentzian profiles. In the high frequency, or marker band region (1200 to 1700 cm−1), the frequencies, half widths and relative intensities of the individual bands could be estimated from previous surface enhanced resonance Raman measurements on cytochromec adsorbed on a silver electrode. These were then further optimized to yield both the spectral parameters and relative contents of the different species. In the low frequency, or finger-print, region (200 to 800 cm−1), the spectral parameters of the individual species were obtained from difference spectra derived by sequential subtraction between the spectra of ferri-cytochromec in the three different lipid systems, using the relative proportions of the species derived from the marker band region. These parameters were then subsequently refined by iterative optimization. The optimized spectral parameters in both frequency regions for the six-coordinated low spin states I and II, and for the five-coordinated high spin state II are presented. The proportion of state II, in which hence the heme crevice assumes an open structure, and of the five-coordinated high spin configuration, is found to increase on binding ferri cytochromec to negatively charged lipid vesicles. The extent of this conformational change increases in the order: DOPG-DOPC<DOPG<DMPG, with a parallel decrease of the proportion of the conformational state I, whose structure is similar to that of the uncomplexed ferri-cytochrome c in solution. Similar conformational changes are found for ferro-cytochromec compared to those obtained with the oxidized species on binding to lipids. The present work is essential for studies which seek to analyze, in any detailed fashion, the conformational transitions in the heme protein which take place in response to changes in the lipid environment.  相似文献   

8.
Small fast-tumbling bicelles are ideal for studies of membrane interactions at molecular level; they allow analysis of lipid properties using solution-state NMR. In the present study we used 31P NMR relaxation to obtain detailed information on lipid head-group dynamics. We explored the effect of two topologically different membrane-interacting peptides on bicelles containing either dimyristoylphosphocholine (DMPC), or a mixture of DMPC and dimyristoylphosphoglycerol (DMPG), and dihexanoylphosphocholine (DHPC). KALP21 is a model transmembrane peptide, designed to span a DMPC bilayer and dynorphin B is a membrane surface active neuropeptide. KALP21 causes significant increase in bicelle size, as evidenced by both dynamic light scattering and 31P T2 relaxation measurements. The effect of dynorphin B on bicelle size is more modest, although significant effects on T2 relaxation are observed at higher temperatures. A comparison of 31P T1 values for the lipids with and without the peptides showed that dynorphin B has a greater effect on lipid head-group dynamics than KALP21, especially at elevated temperatures. From the field-dependence of T1 relaxation data, a correlation time describing the overall lipid motion was derived. Results indicate that the positively charged dynorphin B decreases the mobility of the lipid molecules  – in particular for the negatively charged DMPG – while KALP21 has a more modest influence. Our results demonstrate that while a transmembrane peptide has severe effects on overall bilayer properties, the surface bound peptide has a more dramatic effect in reducing lipid head-group mobility. These observations may be of general importance for understanding peptide–membrane interactions.  相似文献   

9.
We have analyzed the structure of cytochrome c (cyt c) bound in a variety of complexes in which negatively charged molecular groups interact with the positively charged binding domain around the heme crevice of cyt c. Using resonance Raman spectroscopy, we could demonstrate that these interactions induce the same conformational changes as they were observed in the surface-enhanced resonance Raman experiments of cyt c adsorbed on the Ag electrode [Hildebrandt & Stockburger (1989) Biochemistry (preceding paper in this issue)]. When cyt c is bound to (As4W40O140)27-, state II is stabilized, whereas in complexes with phosvitin and cytochrome b5 state I is formed. The complexes with phospholipid vesicles and inverted micelles reveal a mixture of both states. It is suggested that these systems as well as cyt c adsorbed on the Ag electrode may be regarded as model systems for the physiological complexes of cyt c with cytochrome oxidase and cytochrome reductase. On the basis of our findings it is proposed that the biological electron-transfer reactions are controlled by electric field induced conformational transitions of cyt c upon complex formation with its physiological redox partners.  相似文献   

10.
Soret-excited resonance Raman spectra of two types of pheophytin-exchanged photosystem II RCs are reported. The cofactor composition of the reaction centers was modified by exchanging pheophytin a for 13(1)-deoxo-13(1)-hydroxypheophytin a, yielding one preparation with selective replacement of the photochemically inactive pheophytin (H(B)) and a second one exhibiting total replacement of H(B) and 40% replacement of H(A), the primary electron acceptor. Resonance Raman spectra indicate that the other bound cofactors present are not significantly perturbed by Pheo substitution. The resonance Raman contributions from H(A) and H(B) in the carbonyl stretching region are identified at 1679 and 1675 cm(-)(1), respectively, indicating that both pheophytin molecules in the photosystem II reaction center have hydrogen-bonded keto-carbonyl groups. This conclusion differs from what is observed in the functionally related RCs of purple non-sulfur bacteria, where the keto-carbonyl group of H(B) is not hydrogen bonded, but confirms predictions from models based on protein sequence alignments.  相似文献   

11.
K Rajamoorthi  M F Brown 《Biochemistry》1991,30(17):4204-4212
The configurational properties and dynamics of the arachidonic acyl chains of phospholipid bilayers have been investigated for the first time by solid-state 2H NMR techniques, with the goal of achieving a better understanding of the biological roles of polyunsaturated phospholipids. Vinyl perdeuterated arachidonic acid (20:4 delta 5,8,11,14-d8) was prepared from eicosatetraynoic acid (ETYA) and was esterified with 1-palmitoyl-sn-glycero-3-phosphocholine to yield 1-palmitoyl-2-vinylperdeuterioarachidonoyl-sn-glycero-3-phosphocho line [(16:0)(20:4-d8)PC]. 31P NMR spectra of aqueous dispersions of (16:0)(20:4-d8)PC as well as 1-perdeuteriopalmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine [(per-2H-16:0)(20:4)PC] were characteristic of the lamellar liquid-crystalline state. The dispersions had similar 31P chemical shift anisotropies, with little apparent motional averaging of the lineshapes due to macroscopic reorientation of liposomes or lateral diffusion of phospholipids about their curved surfaces. Comparison to other phosphatidylcholines indicated that both samples comprised the fully hydrated L alpha phase plus excess water. However, the dispersion of (16:0)(20:4-d8)PC yielded relatively narrow powder-type 2H NMR spectra, compared to (per-2H-16:0)(20:4)PC in the liquid-crystalline state. The differences in the 2H NMR powder patterns thus reflect differences in the configurational properties of the polyunsaturated sn-2 arachidonic acyl chain compared to the saturated sn-1 palmitic chain. When the powder-type 2H NMR spectra of the (16:0)(20:4-d8)PC bilayer were dePaked (theta = 0 degrees), they showed three kinds of deuterons upon integration: one with a large splitting (approximately 25-35 kHz), two with intermediate splittings (approximately 10-15 kHz), and the remainder with smaller splittings (approximately 0.3-5 kHz).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Lipid bilayers of dimyristoyl phosphatidylcholine (DMPC) containing opioid peptide dynorphin A(1-17) are found to be spontaneously aligned to the applied magnetic field near at the phase transition temperature between the gel and liquid crystalline states (Tm=24°C), as examined by 31P NMR spectroscopy. The specific interaction between the peptide and lipid bilayer leading to this property was also examined by optical microscopy, light scattering, and potassium ion-selective electrode, together with a comparative study on dynorphin A(1-13). A substantial change in the light scattering intensity was noted for DMPC containing dynorphin A(1-17) near at Tm but not for the system containing A(1-13). Besides, reversible change in morphology of bilayer, from small lipid particles to large vesicles, was observed by optical microscope at Tm. These results indicate that lysis and fusion of the lipid bilayers are induced by the presence of dynorphin A(1-17). It turned out that the bilayers are spontaneously aligned to the magnetic field above Tm in parallel with the bilayer surface, because a single 31P NMR signal appeared at the perpendicular position of the 31P chemical shift tensor. In contrast, no such magnetic ordering was noted for DMPC bilayers containing dynorphin A(1-13). It was proved that DMPC bilayer in the presence of dynorphin A(1-17) forms vesicles above Tm, because leakage of potassium ion from the lipid bilayers was observed by potassium ion-selective electrode after adding Triton X-100. It is concluded that DMPC bilayer consists of elongated vesicles with the long axis parallel to the magnetic field, together with the data of microscopic observation of cylindrical shape of the vesicles. Further, the long axis is found to be at least five times longer than the short axis of the elongated vesicles in view of simulated 31P NMR lineshape.  相似文献   

13.
The small GTPase Ras plays a key role as a molecular switch in the intercellular signal transduction. On Mg(2+) --> Mn(2+) substituted samples, the first ligand sphere of the metal ion in the inactive, GDP-bound Ras has been studied by continuous wave EPR at 94 GHz (W-band). Via replacement of normal water with (17)O-enriched water, the (17)O--(55)Mn superhyperfine coupling was used to determine the number of water ligands bound to the metal ion. In contrast to EPR data on frozen solutions and X-ray data from single crystals where four direct ligands to the metal ion are found, the wild-type protein has only three water ligands bound in solution at room temperature. The same number of water ligands is found for the mutant Ras(T35S). However, for the alanine mutant in position 35 Ras(T35A) as well as for the oncogenic mutant Ras(G12V), four water ligands can be observed in liquid solution. The EPR studies were supplemented by (31)P NMR studies on the Mg(2+) x GDP complexes of the wild-type protein and the three mutants. Ras(T35A) exists in two conformational states (1 and 2) with an equilibrium constant K(1)(1,2) of approximately 0.49 and rate constants k(1--1) which are much smaller than 40 s(-1) at 298 K. For wild-type Ras and Ras(T35S), the two states can also be observed with equilibrium constants K(1)(1,2) of approximately 0.31 and 0.21, respectively. In Ras(G12V), only one conformational state could be detected.  相似文献   

14.
Individual species of the photochemical cycle of bacteriorhodopsin, a retinal-protein complex of Halobacteria, were studied in aqueous suspensions of the "purple membrane" at room temperature by resonance Raman (RR) spectroscopy with flow systems. Two pronounced deuterium shifts were found in the RR spectra of the all-trans complex BR-570 in H2O-D2O suspensions. The first is ascribed to C=NH+ (C=ND+) stretching vibrations of the protonated Schiff base which links retinal to opsin. The second is assigned tentatively to an "X-H" ("X-D") bending mode, where "X" is an atom which carries an exchangeable proton. A RR spectrum of the 13-cis-retinal complex "BR-548" could be deduced from spectra of the dark-adapted purple membrane. The RR spectrum of the M-412 intermediate was monitored in a double-beam pump-probe experiment. The main vibrational features of the intermediate M' in the reaction M-412 in equilibrium hv M' leads to delta BR-570 could be deduced from a photostationary mixture of M-412 and M'. Difference procedures were applied to obtain RR spectra of the L-550 intermediate and of two new long-lived species, R1'-590 and R2-550. From kinetic data it is suggested that T1'-590 links the proton-translocating cycle to the "13-cis" cycle of BR-548. The protonation and isomeric states of the different species are discussed in light of the new spectroscopic and kinetic data. It is found that conformational changes during the photochemical cycle play an important role.  相似文献   

15.
Resonance Raman spectra are reported for FeII and FeIII forms of cytochrome c peroxidase (CCP) mutants prepared by site-directed mutagenesis and cloning in Escherichia coli. These include the bacterial "wild type", CCP(MI), and mutations involving groups on the proximal (Asp-235----Asn, Trp-191----Phe) and distal (Trp-51----Phe, Arg-48----Leu and Lys) side of the heme. These spectra are used to assess the spin and ligation states of the heme, via the porphyrin marker band frequencies, especially v3, near 1500 cm-1, and, for the FeII forms, the status of the Fe-proximal histidine bond via its stretching frequency. The FeII-His frequency is elevated to approximately 240 cm-1 in CCP(MI) and in all of the distal mutants, due to hydrogen-bonding interactions between the proximal His-175 N delta and the carboxylate acceptor group on Asp-235. The FeII-His RR band has two components, at 233 and 246 cm-1, which are suggested to arise from populations having H-bonded and deprotonated imidazole; these can be viewed in terms of a double-well potential involving proton transfer coupled to protein conformation. The populations shift with changing pH, possibly reflecting structure changes associated with protonation of key histidine residues, and are influenced by the Leu-48 and Phe-191 mutations. A low-spin FeII form is seen at high pH for the Lys-48, Leu-48, Phe-191, and Phe-51 mutants; for the last three species, coordination of the distal His-52 is suggested by a approximately 200-cm-1 RR band assignable to Fe(imidazole)2 stretching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The interaction between yeast iso-1-cytochrome c (C102T) and two forms of bovine adrenodoxin, the wild type and a truncated form comprising residues 4-108, has been investigated using a combination of one- and two-dimensional heteronuclear NMR spectroscopy. Chemical shift perturbations and line broadening of amide resonances in the [(15)N,(1)H]HSQC spectrum for both (15)N-labeled cytochrome c and adrenodoxin in the presence of the unlabeled partner protein indicate the formation of a transient complex, with a K(a) of (4 +/- 1) x 10(4) M(-)(1) and a lifetime of <3 ms. The perturbed residues map over a large surface area for both proteins. For cytochrome c, the dominating effects are located around the exposed heme edge but with other areas also affected upon formation of the complex. In the case of adrenodoxin, effects are seen in both the recognition and core domains, with the largest perturbations in the recognition domain. These results indicate that the complex has a dynamic nature, with delocalized binding of cytochrome c on adrenodoxin. A comparison with other transient complexes of redox proteins places this complex between well-defined complexes such as the cytochrome c-cytochrome c peroxidase complex and entirely dynamic complexes such as the cytochrome b(5)-myoglobin complex.  相似文献   

17.
Summary The effect of biliary salts and fatty acids on the bilayer structure of rabbit intestinal brush-border membranes was studied using the nonperturbing probe31P NMR. The broad. asymmetric lineshape of the31P NMR spectrum of isolated brush-border vesicles demostrates that their component phospholipids are organized in extended bilayers. These membranes are not significantly perturbed by incubation with physiological concentrations of biliary salts (3, 9, 18mm), demonstrating that the vesicles are highly stable, corresponding to their biological function. However, the emergence of a narrow peak superimposed on the broad lineshape indicates that a small proportion of the membrane phospholipids has reached isotropic motion, which may correspond to external or internal micellar structures. Incubation with mixed micelles of fatty acids and taurochlorate show that long-chain fatty acids enhance the membrane-perturbing effect of taurocholate while short-chain, watersoluble fatty acids do not, suggesting a difference in the absorption mechanisms.  相似文献   

18.
19.
Pulsed-field gradient (PFG) diffusion NMR spectroscopy studies were conducted with several helix-loop-helix regulatory Ca(2+)-binding proteins to characterize the conformational changes associated with Ca(2+)-saturation and/or binding targets. The calmodulin (CaM) system was used as a basis for evaluation, with similar hydrodynamic radii (R(h)) obtained for apo- and Ca(2+)-CaM, consistent with previously reported R(h) data. In addition, conformational changes associated with CaM binding to target peptides from myosin light chain kinase (MLCK), phosphodiesterase (PDE), and simian immunodeficiency virus (SIV) were accurately determined compared with small-angle X-ray scattering results. Both sets of data demonstrate the well-established collapse of the extended Ca(2+)-CaM molecule into a globular complex upon peptide binding. The R(h) of CaM complexes with target peptides from CaM-dependent protein kinase I (CaMKI) and an N-terminal portion of the SIV peptide (SIV-N), as well as the anticancer drug cisplatin were also determined. The CaMKI complex demonstrates a collapse analogous to that observed for MLCK, PDE, and SIV, while the SIV-N shows only a partial collapse. Interestingly, the covalent CaM-cisplatin complex shows a near complete collapse, not expected from previous studies. The method was extended to related calcium binding proteins to show that the R(h) of calcium and integrin binding protein (CIB), calbrain, and the calcium-binding region from soybean calcium-dependent protein kinase (CDPK) decrease on Ca(2+)-binding to various extents. Heteronuclear NMR spectroscopy suggests that for CIB and calbrain this is likely because of shifting the equilibrium from unfolded to folded conformations, with calbrain forming a dimer structure. These results demonstrate the utility of PFG-diffusion NMR to rapidly and accurately screen for molecular size changes on protein-ligand and protein-protein interactions for this class of proteins.  相似文献   

20.
Solution NMR studies on the physiologically relevant ligand-free and maltotriose-bound states of maltodextrin-binding protein (MBP) are presented. Together with existing data on MBP in complex with beta-cyclodextrin (non-physiological, inactive ligand), these new results provide valuable information on changes in local structure, dynamics and global fold that occur upon ligand binding to this two-domain protein. By measuring a large number of different one-bond residual dipolar couplings, the domain conformations, critical for biological function, were investigated for all three states of MBP. Structural models of the solution conformation of MBP in a number of different forms were generated from the experimental dipolar coupling data and X-ray crystal structures using a quasi-rigid-body domain orientation algorithm implemented in the structure calculation program CNS. Excellent agreement between relative domain orientations in ligand-free and maltotriose-bound solution conformations and the corresponding crystal structures is observed. These results are in contrast to those obtained for the MBP/beta-cyclodextrin complex where the solution state is found to be approximately 10 degrees more closed than the crystalline state. The present study highlights the utility of residual dipolar couplings for orienting protein domains or macromolecules with respect to each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号