首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disalicylic acid derivatives with stilbene and bis-styrylbenzene skeleton were synthesized as PTP1B inhibitors. The most potent in this series exhibited a submicromolar IC(50) value. One of the compounds 7b was tested in an animal model for its efficacy as an anti-diabetic or an anti-obesity agent. In feeding compound 7b to diet-induced obese mice, no significant differences in weight gain and food consumption were observed between the drug-treated and the obese control mice. However, 7b significantly lowered the fasting glucose level and improved the glucose tolerance in the obesity-induced diabetic mice.  相似文献   

2.
Protein Tyrosine Phosphatases (PTPs) that function as negative regulators of the insulin signaling cascade have been identified as novel targets for the therapeutic enhancement of insulin action in insulin resistant disease states. Reducing Protein Tyrosine Phosphatase1B (PTP1B) abundance not only enhances insulin sensitivity and improves glucose metabolism but also protects against obesity induced by high fat feeding. PTP1B inhibitors such as Formylchromone derivatives, 1, 2-Naphthoquinone derivatives and Oxalyl aryl amino benzoic derivatives may eventually find an important clinical role as insulin sensitizers in the management of Type-II Diabetes and metabolic syndrome. We have carried out docking of modified oxalyl aryl amino benzoic acid derivatives into three dimensional structure of PTP1B using BioMed CAChe 6.1. These compounds exhibit good selectivity for PTP1B over most of phosphatases in selectivity panel such as SHP-2, LAR, CD45 and TCPTP found in literature. This series of compounds identified the amino acid residues such as Gly220 and Arg221 are important for achieving specificity via H-bonding interactions. Lipophilic side chain of methionine in modified oxalyl aryl amino benzoic acid derivative [1b (a2, b2, c1, d)] lies in closer vicinity of hydrophobic region of protein consisted of Meth258 and Phe52 in comparison to active ligand. Docking Score in [1b (a2, b2, c1, d)] is -131.740Kcal/mol much better than active ligand score -98.584Kcal/mol. This information can be exploited to design PTP1B specific inhibitors.  相似文献   

3.
Protein tyrosine phosphatase 1B (PTP1B) has been implicated in the regulation of the insulin signaling pathway and represents an attractive target for the design of inhibitors in the treatment of type 2 diabetes and obesity. Inspection of the structure of PTP1B indicates that potent PTP1B inhibitors may be obtained by targeting a secondary aryl phosphate-binding site as well as the catalytic site. We report here the crystal structures of PTP1B in complex with first and second generation aryldifluoromethyl-phosphonic acid inhibitors. While all compounds bind in a previously unexploited binding pocket near the primary binding site, the second generation compounds also reach into the secondary binding site, and exhibit moderate selectivity for PTP1B over the closely related T-cell phosphatase. The molecular basis for the selectivity has been confirmed by single point mutation at position 52, where the two phosphatases differ by a phenylalanine-to-tyrosine switch. These compounds present a novel platform for the development of potent and selective PTP1B inhibitors.  相似文献   

4.
During the re-isolation of the lead compound nodulisporic acid A (1a) and targeted chemical screening for related compounds, we discovered a series of 1'-deoxy congeners named herein nodulisporic acids B (1b), B1 (2b), and B2 (3b). In comparison with nodulisporic acid A, these compounds were less active and were chemically unstable resulting into formation of delta23 dehydro derivatives. Therefore, these compounds were stabilized and isolated as sodium salts and methyl ester. Nodulisporic acid B is 100-fold less active than nodulisporic acid A against fleas. The isolation, structure elucidation, and biological activities of these compounds are described.  相似文献   

5.
Protein tyrosine phosphatase 1B (PTP1B) has been regarded as a target for the research and development of new drugs to treat type II diabetes and PTP1B inhibitors are potential lead compounds for this type of new drugs. A phytochemical investigation to obtain new PTP1B inhibitors resulted in the isolation of four new phloroglucinols, longistyliones A–D (14) from the aerial parts of Hypericum longistylum. The structures of 14 were elucidated on the basis of extensive 1D and 2D NMR spectroscopic data analysis, and the absolute configurations of these compounds were established by comparing their experimental electronic circular dichroism (ECD) spectra with those calculated by the time-dependent density functional theory method. Compounds 14 possess a rare polycyclic phloroglucinol skeleton. The following biological evaluation revealed that all of the compounds showed PTP1B inhibitory effects. The further molecular docking studies indicated the strong interactions between these bioactive compounds with the PTP1B protein, which revealed the possible mechanism of PTP1B inhibition of bioactive compounds. All of the results implied that these compounds are potentially useful for the treatment of type II diabetes.  相似文献   

6.
Artemisia roxburghiana is used in traditional medicine for treating various diseases including diabetes. The present study was designed to evaluate the antidiabetic potential of active constituents by using protein tyrosine phosphatase 1B (PTP1B) as a validated target for management of diabetes. Various compounds were isolated as active principles from the crude methanolic extract of aerial parts of A. roxburghiana. All compounds were screened for PTP1B inhibitory activity. Molecular docking simulations were performed to investigate the mechanism behind PTP1B inhibition of the isolated compound and positive control, ursolic acid. Betulinic acid, betulin and taraxeryl acetate were the active PTP1B principles with IC50 values 3.49?±?0.02, 4.17?±?0.03 and 87.52?±?0.03?µM, respectively. Molecular docking studies showed significant molecular interactions of the triterpene inhibitors with Gly220, Cys215, Gly218 and Asp48 inside the active site of PTP1B. The antidiabetic activity of A. roxburghiana could be attributed due to PTP1B inhibition by its triterpene constituents, betulin, betulinic acid and taraxeryl acetate. Computational insights of this study revealed that the C-3 and C-17 positions of the compounds needs extensive optimization for the development of new lead compounds.  相似文献   

7.
Protein tyrosine phosphatase 1B (PTP1B) attenuates insulin signaling by catalyzing dephosphorylation of insulin receptors (IR) and is an attractive target of potential new drugs for treating the insulin resistance that is central to type II diabetes. Several analogues of cholecystokinin(26)(-)(33) (CCK-8) were found to be surprisingly potent inhibitors of PTP1B, and a common N-terminal tripeptide, N-acetyl-Asp-Tyr(SO(3)H)-Nle-, was shown to be necessary and sufficient for inhibition. This tripeptide was modified to reduce size and peptide character, and to replace the metabolically unstable sulfotyrosyl group. This led to the discovery of a novel phosphotyrosine bioisostere, 2-carboxymethoxybenzoic acid, and to analogues that were >100-fold more potent than the CCK-8 analogues and >10-fold selective for PTP1B over two other PTP enzymes (LAR and SHP-2), a dual specificity phosphatase (cdc25b), and a serine/threonine phosphatase (calcineurin). These inhibitors disrupted the binding of PTP1B to activated IR in vitro and prevented the loss of tyrosine kinase (IRTK) activity that accompanied PTP1B-catalyzed dephosphorylation of IR. Introduction of these poorly cell permeant inhibitors into insulin-treated cells by microinjection (oocytes) or by esterification to more lipophilic proinhibitors (3T3-L1 adipocytes and L6 myocytes) resulted in increased potency, but not efficacy, of insulin. In some instances, PTP1B inhibitors were insulin-mimetic, suggesting that in unstimulated cells PTP1B may suppress basal IRTK activity. X-ray crystallography of PTP1B-inhibitor complexes revealed that binding of an inhibitor incorporating phenyl-O-malonic acid as a phosphotyrosine bioisostere occurred with the mobile WPD loop in the open conformation, while a closely related inhibitor with a 2-carboxymethoxybenzoic acid bioisostere bound with the WPD loop closed, perhaps accounting for its superior potency. These CCK-derived peptidomimetic inhibitors of PTP1B represent a novel template for further development of potent, selective inhibitors, and their cell activity further justifies the selection of PTP1B as a therapeutic target.  相似文献   

8.
Beta-C-glycosiduronic acid quinones and beta-C-glycosyl compounds have been synthesized as sugar-based PTP1B inhibitors. Benzoyl protected quinone derivatives (14 and 35) as well as aryl beta-C-glycosyl compounds (18, 22, 23 and 34) showed IC(50) values of 0.77-5.27 microM against PTP1B, with compounds 18 and 23 bearing an acidic function being the most potent.  相似文献   

9.
Fifteen novel sulfathiazole-related compounds were designed as PTP1B inhibitors based on a previously reported allosteric inhibitor (1) of PTP1B. These compounds were synthesized and evaluated against human recombinant PTP1B. Six compounds (3, 4, 8 and 1416) exhibited significant inhibitory activity against PTP1B. The most active compound (16) showed IC50 value of 3.2 μM and kinetic analysis indicated that it is a non-competitive inhibitor of PTP1B. Furthermore, compound 16 demonstrated excellent selectivity to PTP1B over other PTPs. It also displayed in vivo insulin sensitizing effect in the insulin resistant mice.  相似文献   

10.
从GenBank获得人PTP1B催化活性区(PTP1Bc)氨基酸序列(1~301aa), 通过重叠PCR获得PTP1Bc基因。构建 pET-22b(+)/PTP1Bc原核表达载体, 转化大肠杆菌BL21(DE3), 阳性重组子IPTG诱导表达, Ni柱纯化蛋白。目的蛋白以包涵体的形式表达, 表达量占菌体总蛋白30%以上。纯化后, 蛋白纯度达95%以上。Western blotting结果表明所得的蛋白可与抗 PTP1B抗体发生特异性结合; 酶活实验证实复性的蛋白具有一定的磷酸酶活性。PTP1Bc基因的构建、表达纯化及活性分析, 为进一步的功能研究奠定了基础。  相似文献   

11.
从GenBank获得人PTP1B催化活性区(PTP1Bc)氨基酸序列(1~301aa), 通过重叠PCR获得PTP1Bc基因。构建 pET-22b(+)/PTP1Bc原核表达载体, 转化大肠杆菌BL21(DE3), 阳性重组子IPTG诱导表达, Ni柱纯化蛋白。目的蛋白以包涵体的形式表达, 表达量占菌体总蛋白30%以上。纯化后, 蛋白纯度达95%以上。Western blotting结果表明所得的蛋白可与抗 PTP1B抗体发生特异性结合; 酶活实验证实复性的蛋白具有一定的磷酸酶活性。PTP1Bc基因的构建、表达纯化及活性分析, 为进一步的功能研究奠定了基础。  相似文献   

12.
Protein tyrosine phosphatase 1B (PTP1B) has emerged as a promising target for type 2 diabetes. We have successfully synthesized dimeric acetylated and benzoylated beta-C-d-glucosyl and beta-C-D-galactosyl 1,4-dimethoxy benzenes or naphthalenes by click chemistry. These compounds were further transformed into the corresponding beta-C-D-glycosyl-1,4-quinone derivatives by CAN oxidation. The in vitro inhibition test showed that dimeric benzoylated beta-C-D-glycosyl 1,4-dimethoxybenzenes or 1,4-benzoquinones were good inhibitors of PTP1B (IC(50): 0.62-0.88 miroM), with no significant difference between gluco and galacto derivatives.  相似文献   

13.
Two series of 1,3-diphenyl-1H-pyrazole derivatives containing rhodanine-3-alkanoic acid groups were identified as competitive protein tyrosine phosphatase 1B (PTP1B) inhibitors. Among the compounds studied, IIIv was found to have the best in vitro inhibition activity against PTP1B (IC50?=?0.67?±?0.09?µM) and the best selectivity (9-fold) between PTP1B and T-cell protein tyrosine phosphatase (TCPTP). Molecular docking studies demonstrated that compounds IIIm, IIIv and IVg could occupy simultaneously at both the catalytic site and the adjacent pTyr binding site. These results provide novel lead compounds for the design of inhibitors of PTP1B as well as other PTPs.  相似文献   

14.
Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been proposed as a therapy to treat type 2 diabetes and obesity. In our preliminary screening study on the PTP1B inhibitory activity, a CH2Cl2-soluble extract of the roots of Acanthopanax koreanum (Araliaceae) was found to inhibit PTP1B activity at 30 microg/ml. Eight diterpenoids were isolated from the active fraction and were evaluated for their inhibitory effect on PTP1B. A kaurane-type diterpene, 16alphaH,17-isovaleryloxy-ent-kauran-19-oic acid (7), inhibited PTP1B with an IC50 value of 7.1+/-0.9 microM in a non-competitive manner. Acanthoic acid (2) and ent-kaur-16-en-19-oic acid (5) also inhibited PTP1B in dose-dependent manners. Either introduction of a hydroxyl group or reduction of a carboxyl group at C-19 in pimarane-type to alcohol abolished the inhibitory effects toward PTP1B.  相似文献   

15.
To investigate the role of nonreceptor protein tyrosine phosphatase 1B (PTP1B) in β1-integrin– mediated adhesion and signaling, we transfected mouse L cells with normal and catalytically inactive forms of the phosphatase. Parental cells and cells expressing the wild-type or mutant PTP1B were assayed for (a) adhesion, (b) spreading, (c) presence of focal adhesions and stress fibers, and (d) tyrosine phosphorylation. Parental cells and cells expressing wild-type PTP1B show similar morphology, are able to attach and spread on fibronectin, and form focal adhesions and stress fibers. In contrast, cells expressing the inactive PTP1B have a spindle-shaped morphology, reduced adhesion and spreading on fibronectin, and almost a complete absence of focal adhesions and stress fibers. Attachment to fibronectin induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in parental cells and cells transfected with the wild-type PTP1B, while in cells transfected with the mutant PTP1B, such induction is not observed. Additionally, in cells expressing the mutant PTP1B, tyrosine phosphorylation of Src is enhanced and activity is reduced. Lysophosphatidic acid temporarily reverses the effects of the mutant PTP1B, suggesting the existence of a signaling pathway triggering focal adhesion assembly that bypasses the need for active PTP1B. PTP1B coimmunoprecipitates with β1-integrin from nonionic detergent extracts and colocalizes with vinculin and the ends of actin stress fibers in focal adhesions. Our data suggest that PTP1B is a critical regulatory component of integrin signaling pathways, which is essential for adhesion, spreading, and formation of focal adhesions.  相似文献   

16.
As the prototypical member of the PTP family, protein tyrosine phosphatase 1B (PTP1B) is an attractive target for therapeutic interventions in type 2 diabetes. The extremely conserved catalytic site of PTP1B renders the design of selective PTP1B inhibitors intractable. Although discovered allosteric inhibitors containing a benzofuran sulfonamide scaffold offer fascinating opportunities to overcome selectivity issues, the allosteric inhibitory mechanism of PTP1B has remained elusive. Here, molecular dynamics (MD) simulations, coupled with a dynamic weighted community analysis, were performed to unveil the potential allosteric signal propagation pathway from the allosteric site to the catalytic site in PTP1B. This result revealed that the allosteric inhibitor compound-3 induces a conformational rearrangement in helix α7, disrupting the triangular interaction among helix α7, helix α3, and loop11. Helix α7 then produces a force, pulling helix α3 outward, and promotes Ser190 to interact with Tyr176. As a result, the deviation of Tyr176 abrogates the hydrophobic interactions with Trp179 and leads to the downward movement of the WPD loop, which forms an H-bond between Asp181 and Glu115. The formation of this H-bond constrains the WPD loop to its open conformation and thus inactivates PTP1B. The discovery of this allosteric mechanism provides an overall view of the regulation of PTP1B, which is an important insight for the design of potent allosteric PTP1B inhibitors.  相似文献   

17.
Molecular modeling of protein tyrosine phosphatase 1B (PTP 1B) inhibitors   总被引:3,自引:0,他引:3  
Binding modes of a series of aryloxymethylphosphonates and monoanionic biosteres of phosphate group from a series of benzylic alpha,alpha-diflluoro phosphate and its biosteres as protein tyrosine phosphatase 1B (PTP 1B) inhibitors have been identified by molecular modeling techniques. We have performed docking and molecular dynamics simulations of these inhibitors with PTP 1B enzyme. The initial conformation of the inhibitors for docking was obtained from simulated annealing technique. Solvent accessible surface area calculations suggested that active site of PTP 1B is highly hydrophobic. The results indicate that for aryloxymethylphosphonates, in addition to hydrogen bonding interactions, Tyr46, Arg47, Asp48, Val49, Glu115, Lys116, Lys120 amino acid residues of PTP 1B are responsible for governing inhibitor potency of the compounds. The sulfonate and tetrazole functional groups have been identified as effective monoanionic biosteres of phosphate group and biphenyl ring system due to its favorable interactions with Glu115, Lys116, Lys120 residues of PTP 1B found to be more suitable aromatic functionality than naphthalene ring system for benzylic alpha,alpha-diflluoro phosphate and its biosteres. The information generated from the present study should be useful in the design of more potent PTP 1B inhibitors as anti diabetic agents.  相似文献   

18.
Several protein-tyrosine phosphatases (PTPs) have been proposed to act as negative regulators of insulin signaling. Recent studies have shown increased insulin sensitivity and resistance to obesity in PTP1B knockout mice, thus pointing to this enzyme as a potential drug target in diabetes. Structure-based design, guided by PTP mutants and x-ray protein crystallography, was used to optimize a relatively weak, nonphosphorus, nonpeptide general PTP inhibitor (2-(oxalyl-amino)-benzoic acid) into a highly selective PTP1B inhibitor. This was achieved by addressing residue 48 as a selectivity determining residue. By introducing a basic nitrogen in the core structure of the inhibitor, a salt bridge was formed to Asp-48 in PTP1B. In contrast, the basic nitrogen causes repulsion in other PTPs containing an asparagine in the equivalent position resulting in a remarkable selectivity for PTP1B. Importantly, this was accomplished while retaining the molecular weight of the inhibitor below 300 g/mol.  相似文献   

19.
Targeting of protein tyrosine phosphatase-1B (PTP1B) has emerged as a promising strategy for therapeutic intervention of diabetes and obesity. Investigation of new inhibitors with good bioavailability and high selectivity is the major challenge of drug discovery program targeting PTP1B. Therefore, herein, new neutral benzene-sulfonamide containing compounds were designed, synthesized and biologically evaluated as potent PTP1B inhibitors. New series of thiazolidine, oxazolidine, thiazinan, oxazinan, oxazole, thiazole, tetrazole, cyanopyridine, chromenone, and iminochromene of benzene-sulfonamide derivatives (MSE-1 to MSE-15) were synthesized in a good yield under mild condition using sulfadiazine as a starting material. Among the synthesized compounds, MSE-13 and MSE-14 showed the most in vitro potent PTP-1B inhibitory activity (IC50 of 0.88 µM and 3.33 µM, respectively). Animal treatment by the target compounds significantly improved the insulin resistance, diminished plasma glucose level, decreased initial body weight, and normalized the serum lipid profile compared to pioglitazone, a standard PTP1B inhibitor. The molecular modeling study showed a high affinity and selectivity of our synthesized compounds to the active site and B-site of PTP1B holding hydrogen bonding, hydrophobic, and electrostatic interactions. Furthermore, Electrostatic Surface Potential (ESP) and HOMO/LUMO analysis indicated the importance of sulfamoyl moiety for PTP1B binding. In silico ADME predictions of such compounds also showed the promising pharmacokinetic and physicochemical properties. The proposed compounds could be considered a lead inhibitory scaffold to PTP1B.  相似文献   

20.
A novel series of pTyr mimetics containing triaryl-sulfonamide derivatives (5a-r) are reported as potent and selective PTP1B inhibitors. Some of the test compounds (5o and 5p) showed excellent selectivity towards PTP1B over various PTPs, including TCPTP (in vitro). The lead compound 5o showed potent antidiabetic activity (in vivo), along with improved pharmacokinetic profile. These preliminary results confirm discovery of highly potent and selective PTP1B inhibitors for the treatment of T2DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号