首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p-Benzoquinone (pBQ) was studied as an inhibitor of jack bean urease in 20 mM phosphate buffer, pH 7.0, 1 mM EDTA, 25 °C. The inhibition was carried out by the use of a preincubation procedure in the absence of substrate. The influence of the inhibitor concentration and the preincubation time on the enzyme activity was elucidated. It was found that increase in pBQ concentration resulted in a linear decrease of urease activity. The dependence of the enzyme activity on the preincubation time showed that the rate of inhibition rapidly decreased at the beginning of the process in order to achieve the constant value. The inhibition became time independent in the studied time range. This observation is characteristic of a slow binding mechanism of inhibition. The protective experiment proved that the urease active site is involved in the binding of pBQ. High effectiveness of thiol protectors against pBQ inhibition indicates the strategic role of the active site sulfhydryl group in the blocking process. There were two methods used for reactivation of pBQ-inhibited urease. The dilution of the urease-pBQ complex in urea solution did not result in a regain of enzyme activity. Alternatively, the addition of dithiothreitol into the urease-pBQ mixture caused the instant and efficient reactivation of the enzyme. The experiments showed that the nature of the urease-pBQ complex is irreversible but the application of a specific thiol reagent can release the active enzyme from the complex.  相似文献   

2.
Tetrachloro-o-benzoquinone (TCoBQ) and tetrachloro-p-benzoquinone (TCpBQ) were studied as inhibitors of jack bean urease in 20 mM phosphate buffer, pH 7.0, 1 mM EDTA, 25 degrees C. The mechanisms of inhibition were evaluated by analysis of the progress curves obtained with two procedures: the reaction initiated by addition of the enzyme and the reaction initiated by addition of the substrate after preincubation of the enzyme with the inhibitor. The obtained results were characteristic of slow-binding inhibition. The effects of different inhibitor concentrations on the initial and steady-state velocities obeyed the relationships of two-step enzyme-inhibitor interaction, qualified as mechanism B. It was found that TCoBQ and TCpBQ are strong urease inhibitors. TCpBQ is more effective than TCoBQ with the overall inhibition constant of K(i)* = 4.5 x 10(-7) mM. The respective inhibition constant of TCoBQ was equal to: K(i)* = 2.4 x 10(-6) mM. The protective experiment proved that the urease active site is involved in the tetrachlorobenzoquinone inhibition process. High effectiveness of thiol protectors against inhibition by TCoBQ and TCpBQ indicates the strategic role of the active site sulfhydryl group in the blocking process. The stability of the complexes: urease-TCoBQ and urease-TCpBQ was tested in two ways: by dilution or addition of dithiothreitol. No recovery of urease activity bound in the urease-inhibitor complexes proves that the complexes are stable and strong.  相似文献   

3.
Tetrachloro-o-benzoquinone (TCoBQ) and tetrachloro-p-benzoquinone (TCpBQ) were studied as inhibitors of jack bean urease in 20 mM phosphate buffer, pH 7.0, 1 mM EDTA, 25°C. The mechanisms of inhibition were evaluated by analysis of the progress curves obtained with two procedures: the reaction initiated by addition of the enzyme and the reaction initiated by addition of the substrate after preincubation of the enzyme with the inhibitor. The obtained results were characteristic of slow-binding inhibition. The effects of different inhibitor concentrations on the initial and steady-state velocities obeyed the relationships of two-step enzyme-inhibitor interaction, qualified as mechanism B. It was found that TCoBQ and TCpBQ are strong urease inhibitors. TCpBQ is more effective than TCoBQ with the overall inhibition constant of Ki* = 4.5 × 10? 7 mM. The respective inhibition constant of TCoBQ was equal to: Ki* = 2.4 × 10? 6 mM. The protective experiment proved that the urease active site is involved in the tetrachlorobenzoquinone inhibition process. High effectiveness of thiol protectors against inhibition by TCoBQ and TCpBQ indicates the strategic role of the active site sulfhydryl group in the blocking process. The stability of the complexes: urease-TCoBQ and urease-TCpBQ was tested in two ways: by dilution or addition of dithiothreitol. No recovery of urease activity bound in the urease-inhibitor complexes proves that the complexes are stable and strong.  相似文献   

4.
The inhibition of urease by heavy metal ions has been habitually ascribed to the reaction of the ions with enzyme thiol groups, resulting in the formation of mercaptides. To probe the modes of metal binding to the enzyme, in this work the reaction of mono- (Ag, Hg) and di- (Cu, Hg) valent metal ions with jack bean urease was studied. The enzyme was reacted with different concentrations of the metal ions for different periods of times, when its residual activity was assayed and thiol content titrated. The titration carried out with DTNB was done to examine the involvement of urease thiol groups in metal ion binding. The binding was further probed by reactivation of the metal ion-enzyme complexes with DTT, EDTA and dilution. The results are discussed in terms of the HSAB concept. In inhibiting urease the metal ions showed a common feature in that they inhibited the enzyme within a comparable micromolar range, and also in that their inhibition was multisite. By contrast, the main distinguishing feature in their action consisted of the involvement of enzyme thiol groups in the reaction. Hg (2+) and Hg2(2+) inhibition was found thoroughly governed by the reaction with the enzyme thiols, and the complete loss of enzyme activity involved all thiols available in the enzyme under non-denaturating conditions. In contrast, Ag+ and Cu2+ ions for the complete inactivation of the enzyme required 53 and 60% of thiols, respectively. Accordingly, Ag+ and Cu2+ binding to functional groups in urease other than thiols, i.e. N- and O-containing groups, cannot be excluded. Based on the reactivation experiments this seems particularly likely for Cu2+, whose concurrent binding to thiols and other groups might distort the architecture of the active site (the mechanism of which remains to be elucidated) resulting in the observed inhibitory effects.  相似文献   

5.
Pyrocatechol was studied as an inhibitor of jack bean urease in 20 mM phosphate buffer, pH 7.0, 25 degrees C. The inhibition was monitored by an incubation procedure in the absence of substrate and reaction progress studies in the presence of substrate. It was found that pyrocatechol acted as a time- and concentration dependent irreversible inactivator of urease. The dependence of the residual activity of urease on the incubation time showed that the rate of inhibition increased with time until there was total loss of enzyme activity. The inactivation process followed a non-pseudo-first order reaction. The obtained reaction progress curves were found to be time-dependent. The plots showed that the rate of the enzyme reaction in the final stages reached zero. From protection experiments it appeared that thiol-compounds such as L-cysteine, 2-mercaptoethanol and dithiothreitol prevented urease from pyrocatechol inactivation as well as the substrate, urea, and the competitive inhibitor boric acid. These results proved that the urease active site was involved in the pyrocatechol inactivation.  相似文献   

6.
We performed a multi-step analysis of the inhibition of jack bean urease by Hg(2+) ions that included residual activity measurements after incubation of the enzyme with the metal ion, reactivation of Hg(2+)-inhibited urease, protection of urease with thiol reagents prior to incubation with Hg(2+), progress curve analysis, and spectroscopic assay of thiol groups in urease-Hg(2+) complexes with a cysteine selective agent 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). Hg(2+) ions were found to form stable complexes with urease that could rapidly be reversed only by the treatment with dithiotreitol, and not by dilution or dialysis. The residual activity data interpreted in terms of the Hill equation revealed the multisite Hg(2+) inhibition of urease, and along with the DTNB thiol-assay they demonstrated the involvement in the reaction with Hg(2+) of six cysteine residues per enzyme subunit, including the active-site flap cysteine. The molar ratios of the inhibitor and enzyme imply that the inhibition consists of the formation of RSHgX complexes, X being a water molecule or an anion. The time-dependent Hg(2+) inhibitory action on urease determined in the system without enzyme preincubation was best described by slow-binding mechanism with the steady-state inhibition constant K(i) = 1.9 nM (+/-10%).  相似文献   

7.
Pyrocatechol was studied as an inhibitor of jack bean urease in 20?mM phosphate buffer, pH 7.0, 25°C. The inhibition was monitored by an incubation procedure in the absence of substrate and reaction progress studies in the presence of substrate. It was found that pyrocatechol acted as a time- and concentration dependent irreversible inactivator of urease. The dependence of the residual activity of urease on the incubation time showed that the rate of inhibition increased with time until there was total loss of enzyme activity. The inactivation process followed a non-pseudo-first order reaction. The obtained reaction progress curves were found to be time-dependent. The plots showed that the rate of the enzyme reaction in the final stages reached zero. From protection experiments it appeared that thiol-compounds such as l-cysteine, 2-mercaptoethanol and dithiothreitol prevented urease from pyrocatechol inactivation as well as the substrate, urea, and the competitive inhibitor boric acid. These results proved that the urease active site was involved in the pyrocatechol inactivation.  相似文献   

8.
In view of the complexity of the role of the active site flap cysteine in the urease catalysis, in this work we studied how the presence of typical active-site binding inhibitors of urease, phenylphosphorodiamidate (PPD), acetohydroxamic acid (AHA), boric acid and fluoride, affects the reactivity of enzyme thiol groups, the active site flap thiol in particular. For that the inhibitor-urease complexes were prepared with excess inhibitors and had their thiol groups titrated with DTNB. The effects observed were analyzed in terms of the structures of the inhibitor-urease complexes reported in the literature. We found that the effectiveness in preventing the active site cysteine from the modification by disulfides, varied among the inhibitors studied, even though they all bind to the active site. The variations were accounted for by different extents of geometrical distortion in the active site that the inhibitors introduced upon binding, leaving the flap either open in AHA-, boric acid- and fluoride-inhibited urease, like in the native enzyme or closed in PPD-inhibited urease. Among the inhibitors, only PPD was found to be able to thoroughly protect the flap cysteines from the further reaction with disulfides, this apparently resulting from the closed conformation of the flap. Accordingly, in practical terms PPD may be regarded as the most suitable inhibitor for active-site protection experiments in inhibition studies of urease.  相似文献   

9.
D C Crans  C M Simone 《Biochemistry》1991,30(27):6734-6741
The inhibitory effects of vanadium(V) were determined on the oxidation of glycerol 3-phosphate (G3P) catalyzed by glycerol-3-phosphate dehydrogenase (G3PDH), an enzyme with a thiol group in the active site. G3PDH from rabbit muscle was inhibited by vanadate, and the active inhibiting species were found to be the vanadate dimer and/or tetramer. The dimer was a sufficiently weak inhibitor at pH 7.4 with respect to G3P; the tetramer could account for all the observed inhibition. The tetramer was a competitive inhibitor with respect to G3P with a Ki of 0.12 mM. Both the dimer and tetramer were noncompetitive inhibitors at pH 7.4 with respect to NAD with Ki's of 0.36 mM and 0.67 mM. G3PDH inhibited by vanadate was reactivated when EDTA complexed the vanadate. The reactivation occurred even after extended periods of incubation of G3PDH and vanadate, suggesting that the inhibition is reversible despite the thiol group in the active site. Analogous reactivation is also observed with glyceraldehyde-3-phosphate dehydrogenase (Gly3PDH). Gly3PDH is an enzyme that previously had been reported to undergo redox chemistry with vanadate. The work described in this paper suggests vanadate will not necessarily undergo redox chemistry with enzymes containing thiol groups exposed on the surface of the protein.  相似文献   

10.
The presence of two cysteine residues per each six monomers comprising the oligomer of Chlorella glutamine synthetase (E.C.6.3.1.2) is demonstrated using homogenous enzyme preparation. p-Chloromercuribenzoate (p-CMB) is found to inhibit glutamine synthetase activity, the degree of inhibition depending on the inhibitor concentration. The following enzyme reactivation by dithiotreitol (10(-2) M) was observed only when the enzyme was inactivated with 10(-5) M p-CMB under 15 min. preincubation. Preincubation of the enzyme with 10(-4) M p-CMB for 45 min. did not result in its reactivation. Gel filtration of glutamine synthetase treated with 10(-4) M p-CMB has revealed the dissociation of the enzyme into inactive monomers. Incubation of glutamine synthetase with p-CMB at various pH values, incubation after pre-treatment with urea and experiments with HgCl2 indicate the presence of free and masked inside the globula SH-groups in the enzyme molecule. Competitive character of the enzyme inhibition with p-CMB with respect to ATP indicates that SH-groups of the active site participate in the ATP binding, probably, as Mg-ATP or Mn-ATP complexes. Data on the estimation of ionization constant of glutamate-binding group and experiments on the effect of histidine photooxidation on the enzyme activity indicate the presence of histidine residue in the enzyme active site, which participates in glutamate binding.  相似文献   

11.
In their inhibition-inducing interactions with enzymes, quinones primarily utilize two mechanisms, arylation and oxidation of enzyme thiol groups. In this work, we investigated the interactions of 1,4-naphthoquinone with urease in an effort to estimate the contribution of the two mechanisms in the enzyme inhibition. Jack bean urease, a homohexamer, contains 15 thiols per enzyme subunit, six accessible under non-denaturing conditions, of which Cys592 proximal to the active site indirectly participates in the enzyme catalysis. Unlike by 1,4-benzoquinone, a thiol arylator, the inactivation of urease by 1,4-naphthoquinone under aerobic conditions was found to be biphasic, time- and concentration-dependent with a non-linear residual activity-modified thiols dependence. DTT protection studies and thiol titration with DTNB suggest that thiols are the sites of enzyme interactions with the quinone. The inactivated enzyme had approximately 40% of its activity restored by excess DTT supporting the presence of sulfenic acid resulting from the oxidation of enzyme thiols by ROS. Furthermore, the aerobic inactivation was prevented in approximately 30% by catalase, proving the involvement of hydrogen peroxide in the process. When H2O2 was directly applied to urease, the enzyme showed susceptibility to this inactivation in a time- and concentration-dependent manner with the inhibition constant of H2O2 Ki = 3.24 mM. Additionally, anaerobic inactivation of urease was performed and was found to be weaker than aerobic. The results obtained are consistent with a double mode of 1,4-naphthoquinone inhibitory action on urease, namely through the arylation of the enzyme thiol groups and ROS generation, notably H2O2, resulting in the oxidation of the groups.  相似文献   

12.
13.
The kinetics of Klebsiella aerogenes urease inactivation by disulfide and alkylating agents was examined and found to follow pseudo-first-order kinetics. Reactivity of the essential thiol is affected by the presence of substrate and competitive inhibitors, consistent with a cysteine located proximal to the active site. In contrast to the results observed with other reagents, the rate of activity loss in the presence of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) saturated at high reagent concentrations, indicating that DTNB must first bind to urease before inactivation can occur. The pH dependence for the rate of urease inactivation by both disulfide and alkylating agents was consistent with an interaction between the thiol and a second ionizing group. The resulting macroscopic pKa values for the 2 residues are less than 5 and 12. Spectrophotometric studies at pH 7.75 demonstrated that 2,2'-dithiodipyridine (DTDP) modified 8.5 +/- 0.2 mol of thiol/mol of enzyme or 4.2 mol of thiol/mol of catalytic unit. With the slow tight binding competitive inhibitor phenyl-phosphorodiamidate (PPD) bound to urease, 1.1 +/- 0.1 mol of thiol/mol of catalytic unit were protected from modification. PPD-bound DTDP-modified urease could be reactivated by dialysis, consistent with the presence of one thiol per active site. Analogous studies at pH 6.1, using the competitive inhibitor phosphate, confirmed the presence of one protected thiol per catalytic unit. Under denaturing conditions, 25.5 +/- 0.3 mol of thiol/mol of enzyme (Mr = 211, 800) were modified by DTDP.  相似文献   

14.
1. The kinetics of the interaction of erythrocyte cholinesterase with 1-naphthyl N-methylcarbamate, 2-isopropoxyphenyl N-methylcarbamate and phenyl N-methylcarbamate were studied. Rate constants for inhibition and rate constants for spontaneous reactivation were determined. The calculated rate constants for spontaneous reactivation agreed well with those obtained experimentally. 2. The degree of inhibition obtained after preincubation of enzyme and inhibitor was found to be independent of both the substrate concentration and the dilution of the inhibited enzyme. 3. The reaction between the enzyme and the inhibitor was consistent with carbamates being regarded as poor substrates of cholinesterases. There was no evidence for the formation of a reversible complex between the enzyme and the carbamate.  相似文献   

15.
1,4-benzoquinone (BQ) and 2,5-dimethyl-1,4-benzoquinone (DMBQ) were studied as inhibitors of jack bean urease in 50 mM phosphate buffer, pH 7.0. The mechanisms of inhibition were evaluated by progress curves studies and steady-state approach to data achieved by preincubation of the enzyme with the inhibitor. The obtained reaction progress curves were time-dependent and characteristic of slow-binding inhibition. The effects of different concentrations of BQ and DMBQ on the initial and steady-state velocities as well as the apparent first-order velocity constants obeyed the relationships of two-step enzyme-inhibitor interaction, qualified as mechanism B. The rapid formation of an initial BQ-urease complex with an inhibition constant of Ki = 0.031 mM was followed by a slow isomerization into the final BQ-urease complex with the overall inhibition constant of Ki* = 4.5 x 10(-5) mM. The respective inhibition constants for DMBQ were Ki = 0.42 mM, Ki* = 1.2 x 10(-3) mM. The rate constants of the inhibitor-urease isomerization indicated that forward processes were rapid in contrast to slow reverse reactions. The overall inhibition constants obtained by the steady-state analysis were found to be 5.1 x 10(-5) mM for BQ and 0.98 x 10(-3) mM for DMBQ. BQ was found to be a much stronger inhibitor of urease than DMBQ. A test, based on reaction with L-cysteine, confirmed the essential role of the sulfhydryl group in the inhibition of urease by BQ and DMBQ.  相似文献   

16.
We examined several compounds for their mechanisms of inhibition with the nickel-containing active site of homogeneous Klebsiella aerogenes urease. Thiolate anions competitively inhibit urease and directly interact with the metallocenter, as shown by the pH dependence of inhibition and by UV-visible absorbance spectroscopic studies. Cysteamine, which possesses a cationic beta-amino group, exhibited a high affinity for urease (Ki = 5 microM), whereas thiolates containing anionic carboxyl groups were uniformly poor inhibitors. Phosphate monoanion competitively inhibits a protonated form of urease with a pKa of less than 5. Both the thiolate and phosphate inhibition results are consistent with charge repulsion by an anionic group in the urease active site. Acetohydroxamic acid (AHA) was shown to be a slow-binding competitive inhibitor of urease. This compound forms an initial E.AHA complex which then undergoes a slow transformation to yield an E.AHA* complex; the overall dissociation constant of AHA is 2.6 microM. Phenylphosphorodiamidate, also shown to be a slow-binding competitive inhibitor, possesses an overall dissociation constant of 94 pM. The tight binding of phenylphosphorodiamidate was exploited to demonstrate the presence of two active sites per enzyme molecule. Urease contains 4 mol of nickel/mol enzyme, hence there are two nickel ions/catalytic unit. Each of the two slow-binding inhibitors are proposed to form complexes in which the inhibitor bridges the two active site nickel ions. The inhibition results obtained for K. aerogenes urease are compared with inhibition studies of other ureases and are interpreted in terms of a model for catalysis proposed for the jack bean enzyme (Dixon, N.E., Riddles, P.W., Gazzola, C., Blakely, R.L., and Zerner, B. (1980) Can. J. Biochem. 58, 1335-1344).  相似文献   

17.
N-Ethylmaleimide (NEM) was studied as an inactivator of jack bean urease at 25 °C in 20 mM phosphate buffer, pHs 6.4, 7.4, and 8.3. The inactivation was investigated by incubation procedure in the absence of a substrate. It was found that NEM acted as a time and concentration dependent inactivator of urease. The dependence of urease residual activity on the incubation time showed that the activity decreased with time until the total loss of enzyme activity. The process followed a pseudo-first-order reaction. A monophasic loss of enzyme activity was observed at pH 7.4 and 8.4, while a biphasic reaction occurred at pH 6.4. Moreover, the alkaline pH promoted the inactivation. The presence of thiol-compounds, such as L-cysteine, glutathione or dithiothreitol (DTT), in the incubation mixture significantly slowed down the rate of inactivation. The interaction test showed that the decrease of inactivation was an effect of NEM-thiol interaction that lowered NEM concentration in the incubation mixture. The reactivation of NEM-blocked urease by DTT application and multidilution did not result in an effective activity regain. The applied DTT reacted with the remaining inactivator and could stop the progress of enzyme activity loss but did not cause the reactivation. This confirmed the irreversibility of inactivation. Similar results obtained at pH 6.4, 7.4 and 8.4 indicated that the mechanism of urease inactivation by NEM was pH-independent. However, the pH value significantly influenced the process rate.  相似文献   

18.
The incubation of horseradish peroxidase C (HRPC) with millimolar concentrations of nickel, at room temperature and at pH 4.0, induced the progressive formation of a metal-enzyme complex characterized by alterations of the enzyme Soret absorption band that were time- as well as nickel concentration- dependent. For any given incubation period between 1 and 60 min, 2 values for the apparent dissociation constant (K(d)) were found, suggesting the presence of binding sites with different affinities for nickel. The value of each K(d) dropped as the incubation time increased, indicating a progressive stabilization of the metal-enzyme complex. Hill plots suggested a cooperative binding of up to four Ni2+ ions per molecule of HRPC. The inhibition of the enzymatic activity by nickel was studied by following the H2O2-mediated oxidation of o-dianisidine by HRPC under steady-state kinetic conditions. Ni2+ was found to be either a noncompetitive or a mixed inhibitor of HRPC depending both on the duration of preincubation with the enzyme and on Ni2+ concentration. The enzyme remained active only over a limited metal concentration range and data indicated that binding of one Ni2+ affected the substrate binding site, binding of a second Ni2+ affected both substrate and peroxide binding sites, and binding of more than 2 Ni2+ per HRPC molecule led to complete loss of enzymatic activity. Results pointed to the damaging effects of prolonged exposure to heavy metals and also to the existence of a critical metal concentration beyond which immediate abolishing of enzymatic activity was observed.  相似文献   

19.
The regulation of glutamine synthetase activity by positive and negative effectors of enzyme activity singularly and in combinations was studied by using a homogeneous enzyme preparation from Bacillus licheniformis A5. Phosphorylribosyl pyrophosphate at concentrations greater than 2mM stimulated glutamine synthetase activity by approximately 70%. The concentration of phosphorylribosyl pyrophosphate required for half-maximal stimulation of enzyme activity was 0.4 mM. Results obtained from studies of fractional inhibition of glutamine synthetase activity were consistent with the presence of one allosteric site for glutamine binding (apparent I0.5, 2.2mM) per active enzyme unit at a glutamate concentration of 50 mM. At a glutamate concentration of 30 mM or less, the data were consistent with the enzyme containing two binding sites for glutamine (one of which was an allosteric site with an apparent I0.5 of 0.4 mM). Bases on an analysis of the response of glutamine synthetase activity to positive and negative effectors in vitro and to the intracellular concentration of these effectors in vivo, the primary modulators of glutamine synthetase activity in B. licheniformis A5 appear to be glutamine and alanine (apparent I0.5, 5.2mM).  相似文献   

20.
1,4-benzoquinone (BQ) and 2,5-dimethyl-1,4-benzoquinone (DMBQ) were studied as inhibitors of jack bean urease in 50 mM phosphate buffer, pH 7.0. The mechanisms of inhibition were evaluated by progress curves studies and steady-state approach to data achieved by preincubation of the enzyme with the inhibitor. The obtained reaction progress curves were time-dependent and characteristic of slow-binding inhibition. The effects of different concentrations of BQ and DMBQ on the initial and steady-state velocities as well as the apparent first-order velocity constants obeyed the relationships of two-step enzyme-inhibitor interaction, qualified as mechanism B. The rapid formation of an initial BQ-urease complex with an inhibition constant of K i =0.031 mM was followed by a slow isomerization into the final BQ-urease complex with the overall inhibition constant of K*i=4.5 × 10 ?5 mM. The respective inhibition constants for DMBQ were K i =0.42 mM, K*i =1.2 × 10 ?3 mM. The rate constants of the inhibitor-urease isomerization indicated that forward processes were rapid in contrast to slow reverse reactions. The overall inhibition constants obtained by the steady-state analysis were found to be 5.1 × 10 ?5 mM for BQ and 0.98 × 10 ?3 mM for DMBQ. BQ was found to be a much stronger inhibitor of urease than DMBQ. A test, based on reaction with L-cysteine, confirmed the essential role of the sulfhydryl group in the inhibition of urease by BQ and DMBQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号