首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The PhoPR two-component system activates or represses Pho regulon genes to overcome a phosphate deficiency. The Pho signal transduction network is comprised of three two-component systems, PhoPR, ResDE, and Spo0A. Activated PhoP is required for expression of ResDE from the resA promoter, while ResD is essential for 80% of Pho induction, establishing a positive feedback loop between these two-component systems to amplify the signal received by the Pho system. The role of ResD in the Pho response is via production of terminal oxidases. Reduced quinones inhibit PhoR autophosphorylation in vitro, and it was proposed that the expression of terminal oxidases leads to oxidation of the quinone pool, thereby relieving the inhibition. We show here that the reducing environment generated by dithiothreitol (DTT) in vivo inhibited Pho induction in a PhoR-dependent manner, which is in agreement with our previous in vitro data. A strain containing a PhoR variant, PhoR(C303A), exhibited reduced Pho induction and remained sensitive to inhibition by DTT, suggesting that the mechanisms for Pho reduction via PhoR(C303A) and DTT are different. PhoR and PhoR(C303A) were similar with regard to cellular concentration, limited proteolysis patterns, rate of autophosphorylation, stability of PhoR approximately P, and inhibition of autophosphorylation by DTT. Phosphotransfer between PhoR approximately P or PhoR(C303A) approximately P and PhoP occurred rapidly; most label from PhoR approximately P was transferred to PhoP, but only 10% of the label from PhoR(C303A) approximately P was associated with PhoP, while 90% was released as inorganic phosphate. No difference in PhoP approximately P or PhoR autophosphatase activity was observed between PhoR and PhoR(C303A) that would explain the release of inorganic phosphate. Our data are consistent with a role for PhoR(C303) in PhoR activity via stabilization of the phosphoryl-protein intermediate(s) during phosphotransfer from PhoR approximately P to PhoP, which is stabilization that is required for efficient production of PhoP approximately P.  相似文献   

3.
The response regulator YycF is essential for cell growth in gram-positive bacteria including Bacillus subtilis, Staphylococcus aureus and Streptococcus pneumoniae. To study the function of YycF in the essential process, we characterized a YycF (H215P) mutation that caused temperature-sensitive growth in B. subtilis. The response regulators YycF and YycF (H215P) were analyzed using circular dichroism spectroscopy, whose T(m) values were 56.0 and 45.9 degrees C, respectively, suggesting that YycF (H215P) significantly affects the protein structure with an increase in temperature. Furthermore, using the gel mobility shift assay and DNase I footprinting, we investigated the effect of YycF (H215P) on binding to the YycF box of ftsAZ operon of B. subtilis. The replacement of the histidine 215 with proline resulted in a decrease of the DNA-binding ability of YycF in vitro. In vivo, using Escherichia coli two-hybrid and homodimerization assays, we clarified that His 215 of YycF plays a crucial role in the homodimerization of the protein. Thus the essential genes involved in growth of B. subtilis appear to be regulated by the homodimer of YycF. These results suggest that the YycF dimerization is an excellent target for the discovery of novel antibiotics.  相似文献   

4.
Of the numerous two-component signal transduction systems found in bacteria, only a very few have proven to be essential for cell viability. Among these is the YycF (response regulator)-YycG (histidine kinase) system, which is highly conserved in and specific to the low-G+C content gram-positive bacteria. Given the pathogenic nature of several members of this class of bacteria, the YycF-YycG system has been suggested as a prime antimicrobial target. In an attempt to identify genes involved in regulation of this two-component system, a transposon mutagenesis study was designed to identify suppressors of a temperature-sensitive YycF mutant in Bacillus subtilis. Suppressors could be identified, and the prime target was the yycH gene located adjacent to yycG and within the same operon. A lacZ reporter assay revealed that YycF-regulated gene expression was elevated in a yycH strain, whereas disruption of any of the three downstream genes within the operon, yycI, yycJ, and yycK, showed no such effect. The concentrations of both YycG and YycF, assayed immunologically, remained unchanged between the wild-type and the yycH strain as determined by immunoassay. Alkaline phosphatase fusion studies showed that YycH is located external to the cell membrane, suggesting that it acts in the regulation of the sensor domain of the YycG sensor histidine kinase. The yycH strain showed a characteristic cell wall defect consistent with the previously suggested notion that the YycF-YycG system is involved in regulating cell wall homeostasis and indicating that either up- or down-regulation of YycF activity affects this homeostatic mechanism.  相似文献   

5.
The YycFG two-component system is the only signal transduction system in Bacillus subtilis known to be essential for cell viability. This system is highly conserved in low-G+C gram-positive bacteria, regulating important processes such as cell wall homeostasis, cell membrane integrity, and cell division. Four other genes, yycHIJK, are organized within the same operon with yycF and yycG in B. subtilis. Recently, it was shown that the product of one of these genes, the YycH protein, regulated the activity of this signal transduction system, whereas no function could be assigned to the other genes. Results presented here show that YycI and YycH proteins interact to control the activity of the YycG kinase. Strains carrying individual in-frame deletion of the yycI and yycH coding sequences were constructed and showed identical phenotypes, namely a 10-fold-elevated expression of the YycF-dependent gene yocH, growth defects, as well as a cell wall defect. Cell wall and growth defects were a direct result of overregulation of the YycF regulon, since a strain overexpressing YycF showed phenotypes similar to those of yycH and yycI deletion strains. Both YycI and YycH proteins are localized outside the cytoplasm and attached to the membrane by an N-terminal transmembrane sequence. Bacterial two-hybrid data showed that the YycH, YycI, and the kinase YycG form a ternary complex. The data suggest that YycH and YycI control the activity of YycG in the periplasm and that this control is crucial in regulating important cellular processes.  相似文献   

6.
7.
In Bacillus subtilis, the WalRK (YycFG) two‐component system controls peptidoglycan metabolism in exponentially growing cells while PhoPR controls the response to phosphate limitation. Here we examine the roles of WalRK and PhoPR in peptidoglycan metabolism in phosphate‐limited cells. We show that B. subtilis cells remain viable in a phosphate‐limited state for an extended period and resume growth rapidly upon phosphate addition, even in the absence of a PhoPR‐mediated response. Peptidoglycan synthesis occurs in phosphate‐limited wild‐type cells at ~27% the rate of exponentially growing cells, and at ~18% the rate of exponentially growing cells in the absence of PhoPR. In phosphate‐limited cells, the WalRK regulon genes yocH, cwlO(yvcE), lytE and ydjM are expressed in a manner that is dependent on the WalR recognition sequence and deleting these genes individually reduces the rate of peptidoglycan synthesis. We show that ydjM expression can be activated by PhoP~P in vitro and that PhoP occupies its promoter in phosphate‐limited cells. However, iseA(yoeB) expression cannot be repressed by PhoP~P in vitro, but can be repressed by non‐phosphorylated WalR in vitro. Therefore, we conclude that peptidoglycan metabolism is controlled by both WalRK and PhoPR in phosphate‐limited B. subtilis cells.  相似文献   

8.
The PhoPR‐mediated response to phosphate limitation (PHO response) in Bacillus subtilis subsp subtilis is amplified and maintained by reducing the level of Lipid VG composed of poly(glycerol phosphate), a wall teichoic acid (WTA) biosynthetic intermediate that inhibits PhoR autokinase activity. However, the reduction in Lipid VG level is effected by activated PhoP~P, raising the question of how the PHO response is first initiated. Furthermore, that WTA is composed of poly(ribitol phosphate) in Bacillus subtilis subsp spizizenii prompted an investigation of how the PHO response is regulated in that bacterium. We report that the PHO responses of B. subtilis subsp subtilis and subsp spizizenii are distinct. The PhoR kinases of the two B. subtilis subspecies are functionally equivalent and are activated either by the TagA/TarA or TagB/TarB enzyme product. However, they are inhibited by Lipid VG composed of poly(glycerol phosphate) but not by Lipid VR composed of poly(ribitol phosphate). Therefore, the distinctive PHO responses of these B. subtilis subspecies stem from the differential sensitivity of PhoR kinases to the polyol composition of Lipid V and from the genomic organization of WTA biosynthetic genes and the regulation of their expression.  相似文献   

9.
10.
Phosphotransfer-mediated signaling pathways allow cells to sense and respond to environmental stimuli. Autophosphorylating histidine protein kinases provide phosphoryl groups for response regulator proteins which, in turn, function as molecular switches that control diverse effector activities. Structural studies of proteins involved in two-component signaling systems have revealed a modular architecture with versatile conserved domains that are readily adapted to the specific needs of individual systems.  相似文献   

11.
Choi K  Kim S 《Proteins》2011,79(4):1118-1131
The two‐component system (TCS) is a signal transduction system that involves a histidine kinase (HK) and a response regulator (RR). Although up to hundreds of TCSs may operate in parallel in a bacterial cell, the high‐fidelity of a TCS signaling is well maintained, minimizing irrelevant crosstalk between TCSs. When a HK gene and a RR gene in a given TCS system exist in neighboring positions, it is almost certain that their protein products (i.e., HK and RR) are interacting partners. However, large bacterial genomes often have multiple HK genes and/or cognate RR genes that are not neighboring positions. In many partially assembled genomes, some HK genes and RR genes belong to different contigs. In these cases, it is not clear which HK(s) and RR(s) interact. By combining information‐theoretic and graph‐theoretic approaches, we developed a computational method identifying co‐evolving residue pairs between HKs and cognate RRs and predicting the interacting HK:RR pairs for each TCS. In addition, we built a TCSppWWW webserver ( http://compath.org/platcom/tcs ) that takes query sequences of pairing candidates and predicts their HK:RR pairing using precomputed models. The current release of TCSppWWW provides predictors for 48 TCSs using over 20,000 protein sequences from about 900 bacterial genomes. Three different types of predictors using Random Forest, RBF Network, and Naïve Bayes are provided. Once a set of HK and RR candidate sequences are submitted, TCSppWWW aligns query sequences to the precomputed multiple sequence alignment of HK:RR pairs, extracts co‐evolving column positions, then returns prediction results with prediction margin and additional information. Proteins 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
The Bacillus subtilis YycFG two-component signal transduction system is essential for cell viability, and the YycH protein is part of the regulatory circuit that controls its activity. The crystal structure of YycH was solved by two-wavelength selenium anomalous dispersion data, and was refined using 2.3 A data to an R-factor of 25.2%. The molecule is made up of three domains, and has a novel three-dimensional structure. The N-terminal domain features a calcium binding site and the central domain contains two conserved loop regions.  相似文献   

13.
14.
A variety of bacterial cellular responses to environmental signals are mediated by two-component signal transduction systems comprising a membrane-associated histidine protein kinase and a cytoplasmic response regulator (RR), which interpret specific stimuli and produce a measured physiological response. In RR activation, transient phosphorylation of a highly conserved aspartic acid residue drives the conformation changes needed for full activation of the protein. Sequence homology reveals that RR02 from Streptococcus pneumoniae belongs to the OmpR subfamily of RRs. The structures of the receiver domains from four members of this family, DrrB and DrrD from Thermotoga maritima, PhoB from Escherichia coli, and PhoP from Bacillus subtilis, have been elucidated. These domains are globally very similar in that they are composed of a doubly wound alpha(5)beta(5); however, they differ remarkably in the fine detail of the beta4-alpha4 and alpha4 regions. The structures presented here reveal a further difference of the geometry in this region. RR02 is has been shown to be the essential RR in the gram-positive bacterium S. pneumoniae R. Lange, C. Wagner, A. de Saizieu, N. Flint, J. Molnos, M. Stieger, P. Caspers, M. Kamber, W. Keck, and K. E. Amrein, Gene 237:223-234, 1999; J. P. Throup, K. K. Koretke, A. P. Bryant, K. A. Ingraham, A. F. Chalker, Y. Ge, A. Marra, N. G. Wallis, J. R. Brown, D. J. Holmes, M. Rosenberg, and M. K. Burnham, Mol. Microbiol. 35:566-576, 2000). RR02 functions as part of a phosphotransfer system that ultimately controls the levels of competence within the bacteria. Here we report the native structure of the receiver domain of RR02 from serotype 4 S. pneumoniae (as well as acetate- and phosphate-bound forms) at different pH levels. Two native structures at 2.3 A, phased by single-wavelength anomalous diffraction (xenon SAD), and 1.85 A and a third structure at pH 5.9 revealed the presence of a phosphate ion outside the active site. The fourth structure revealed the presence of an acetate molecule in the active site.  相似文献   

15.
16.
PhoP–PhoR, one of three two-component systems known to be required to regulate the pho regulon in Bacillus subtilis , directly regulates the alkaline phosphatase genes that are used as pho reporters. Biochemical studies showed that B. subtilis PhoR, purified from Escherichia coli , was autophosphorylated in vitro in the presence of ATP. Phosphorylated PhoR showed stability under basic conditions but not acidic conditions, indicating that the phosphorylation probably occurs on a conserved histidine residue. Phospho–PhoR phosphorylated its cognate response regulator, PhoP in vitro . B. subtilis phoR was placed in the Bacillus chromosome under the control of the P spac promoter, which is IPTG inducible. The wild-type phoR , under either native promoter or P spac promoter with IPTG induction, resulted in a similar level of alkaline phosphatase production. Under high phosphate conditions, strains containing wild-type phoR , or phoR mutant gene products that lacked either the periplasmic domain, or both N-terminal transmembrane PhoR sequences or various extended N-terminal sequences, showed no significant APase production. Under phosphate starvation conditions, in the presence of IPTG, all strains containing mutated phoR genes showed alkaline phosphatase induction patterns similar to that of the wild-type strain, although the fully induced level was lower in the mutants. The decrease in total alkaline phosphatase production in these mutant strains can be compensated completely or partially by increasing the copy number of the mutant phoR gene. These in vivo results suggest that the C-terminal kinase domain of PhoR is sufficient for the induction of alkaline phosphatase expression under phosphate-limited conditions, and that the regulation for repression of APase under phosphate-replete conditions remains intact.  相似文献   

17.
18.
Using mixed-species cultures, we have undertaken a study of interactions between two common spore-forming soil bacteria, Bacillus subtilis and Streptomyces coelicolor. Our experiments demonstrate that the development of aerial hyphae and spores by S. coelicolor is inhibited by surfactin, a lipopeptide surfactant produced by B. subtilis. Current models of aerial development by sporulating bacteria and fungi postulate a role for surfactants in reducing surface tension at air-liquid interfaces, thereby removing the major barrier to aerial growth. S. coelicolor produces SapB, an amphipathic peptide that is surface active and required for aerial growth on certain media. Loss of aerial hyphae in developmental mutants can be rescued by addition of purified SapB. While a surfactant from a fungus can substitute for SapB in a mutant that lacks aerial hyphae, not all surfactants have this effect. We show that surfactin is required for formation of aerial structures on the surface of B. subtilis colonies. However, in contrast to this positive role, our experiments reveal that surfactin acts antagonistically by arresting S. coelicolor aerial development and causing altered expression of developmental genes. Our observations support the idea that surfactants function specifically for a given organism regardless of their shared ability to reduce surface tension. Production of surfactants with antagonistic activity could provide a powerful competitive advantage during surface colonization and in competition for resources.  相似文献   

19.
The Bacillus subtilis chemotaxis pathway employs three systems for sensory adaptation: the methylation system, the CheC/CheD/CheYp system, and the CheV system. Little is known in general about how these three adaptation systems contribute to chemotaxis in B. subtilis and whether they interact with one another. To further understand these three adaptation systems, we employed a quantitative in vitro receptor‐kinase assay. Using this assay, we were able to determine how CheD and CheV affect receptor‐kinase activity as a function of the receptor modification state. CheD was found to increase receptor‐kinase activity, where the magnitude of the increase depends on the modification state of the receptor. The principal new findings concern CheV. Little was known about this protein before now. Our data suggest that this protein has two roles depending on the modification state of the receptor, one for sensory adaptation when the receptors are modified (methylated) and the other for signal amplification when they are unmodified (unmethylated). In addition, our data suggest that methylation of site 630 tunes the strength of the CheV adaptation system. Collectively, our results provide new insight regarding the integrated function of the three adaptation systems in B. subtilis.  相似文献   

20.
The DegS-DegU protein kinase-response regulator pair controls the expression of genes encoding degradative enzymes as well as other cellular functions in Bacillus subtilis. Both proteins were purified. The DegS protein was autophosphorylated and shown to transfer its phosphate to the DegU protein. Phosphoryl transfer to the wild-type DegU protein present in crude extracts was shown by adding 32P-labeled DegS to the reaction mixture. Under similar conditions, the modified proteins encoded by the degU24 and degU31 alleles presented a stronger phosphorylation signal compared with that of the wild-type DegU protein. This may suggest an increased phosphorylation of these modified proteins, responsible for the hyperproduction of degradative enzymes observed in the degU24 and degU31 mutants. However, the degU32 allele, which also leads to hyperproduction of degradative enzymes, encodes a modified DegU response regulator which seems not to be phosphorylatable. The expression of the hyperproduction phenotype of the degU32 mutant is still dependent on the presence of a functional DegS protein. DegS may therefore induce a conformational change of the degU32-encoded response regulator enabling this protein to stimulate degradative enzyme synthesis. Two alleles, degU122 and degU146, both leading to deficiency of degradative enzyme synthesis, seem to encode phosphorylatable and nonphosphorylatable DegU proteins, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号