首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The purpose of this study was to explore the effect of tamoxifen on cytosolic free Ca(2+) concentrations ([Ca(2+)](i)) and cell viability in OC2 human oral cancer cells. [Ca(2+)](i) and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Tamoxifen at concentrations above 2 microM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was reduced partly by removing extracellular Ca(2+). The tamoxifen-induced Ca(2+) influx was sensitive to blockade of L-type Ca(2+) channel blockers but insensitive to the estrogen receptor antagonist ICI 182,780 and protein kinase C modulators. In Ca(2+)-free medium, after pretreatment with 1 muM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor), tamoxifen-induced [Ca(2+)](i) rises were substantially inhibited; and conversely, tamoxifen pretreatment inhibited a part of thapsigargin-induced [Ca(2+)](i) rises. Inhibition of phospholipase C with 2 microM U73122 did not change tamoxifen-induced [Ca(2+)](i) rises. At concentrations between 10 and 50 microM tamoxifen killed cells in a concentration-dependent manner. The cytotoxic effect of 23 microM tamoxifen was not reversed by prechelating cytosolic Ca(2+) with BAPTA. Collectively, in OC2 cells, tamoxifen induced [Ca(2+)](i) rises, in a nongenomic manner, by causing Ca(2+) release from the endoplasmic reticulum, and Ca(2+) influx from L-type Ca(2+) channels. Furthermore, tamoxifen-caused cytotoxicity was not via a preceding [Ca(2+)](i) rise.  相似文献   

2.
Ca(+) loading during reperfusion after myocardial ischemia is linked to reduced cardiac function. Like ischemic preconditioning (IPC), a volatile anesthetic given briefly before ischemia can reduce reperfusion injury. We determined whether IPC and sevoflurane preconditioning (SPC) before ischemia equivalently improve mechanical and metabolic function, reduce cytosolic Ca(2+) loading, and improve myocardial Ca(2+) responsiveness. Four groups of guinea pig isolated hearts were perfused: no ischemia, no treatment before 30-min global ischemia and 60-min reperfusion (control), IPC (two 2-min occlusions) before ischemia, and SPC (3.5 vol%, two 2-min exposures) before ischemia. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured at the left ventricular (LV) free wall with the fluorescent probe indo 1. Ca(2+) responsiveness was assessed by changing extracellular [Ca(2+)]. In control hearts, initial reperfusion increased diastolic [Ca(2+)] and diastolic LV pressure (LVP), and the maximal and minimal derivatives of LVP (dLVP/dt(max) and dLVP/dt(min), respectively), O(2) consumption, and cardiac efficiency (CE). Throughout reperfusion, IPC and SPC similarly reduced ischemic contracture, ventricular fibrillation, and enzyme release, attenuated rises in systolic and diastolic [Ca(2+)], improved contractile and relaxation indexes, O(2) consumption, and CE, and reduced infarct size. Diastolic [Ca(2+)] at 50% dLVP/dt(min) was right shifted by 32-53 +/- 8 nM after 30-min reperfusion for all groups. Phasic [Ca(2+)] at 50% dLVP/dt(max) was not altered in control but was left shifted by -235 +/- 40 nM [Ca(2+)] after IPC and by -135 +/- 20 nM [Ca(2+)] after SPC. Both SPC and IPC similarly reduce Ca(2+) loading, while augmenting contractile responsiveness to Ca(2+), improving postischemia cardiac function and attenuating permanent damage.  相似文献   

3.
Release of Ca(2+) from inositol (1,4,5)-trisphosphate-sensitive Ca(2+) stores causes "capacitative calcium entry," which is mediated by the so-called "Ca(2+) release-activated Ca(2+) current" (I(CRAC)) in RBL-1 cells. Refilling of the Ca(2+) stores or high cytoplasmic [Ca(2+)] ([Ca(2+)](cyt)) inactivate I(CRAC). Here we address the question if also [Ca(2+)](cyt) lower than the resting [Ca(2+)](cyt) influences store-operated channels. We therefore combined patch clamp and mag fura-2 fluorescence methods to determine simultaneously both I(CRAC) and [Ca(2+)] within Ca(2+) stores of RBL-1 cells ([Ca(2+)](store)). We found that low [Ca(2+)](cyt) in the range of 30-50 nM activates I(CRAC) and Ca(2+) influx spontaneously and independently of global Ca(2+) store depletion, while elevation of [Ca(2+)](cyt) to the resting [Ca(2+)](cyt) (100 nM) resulted in store dependence of I(CRAC) activation. We conclude that spontaneous activation of I(CRAC) by low [Ca(2+)](cyt) could serve as a feedback mechanism keeping the resting [Ca(2+)](cyt) constant.  相似文献   

4.
Stimulation of Dictyostelium discoideum with cAMP evokes a change of the cytosolic free Ca(2+) concentration ([Ca(2+)](i)). We analyzed the role of the filling state of Ca(2+) stores for the [Ca(2+)] transient. Parameters tested were the height of the [Ca(2+)](i) elevation and the percentage of responding amoebae. After loading stores with Ca(2+), cAMP induced a [Ca(2+)](i) transient in many cells. Without prior loading, cAMP evoked a [Ca(2+)](i) change in a few cells only. This indicates that the [Ca(2+)](i) elevation is not mediated exclusively by Ca(2+) influx but also by Ca(2+) release from stores. Reducing the Ca(2+) content of the stores by EGTA preincubation led to a cAMP-activated [Ca(2+)](i) increase even at low extracellular [Ca(2+)]. Moreover, the addition of Ca(2+) itself elicited a capacitative [Ca(2+)](i) elevation. This effect was not observed when stores were emptied by the standard technique of inhibiting internal Ca(2+) pumps with 2,5-di-(t-butyl)-1,4-hydroquinone. Therefore, in Dictyostelium, an active internal Ca(2+)-ATPase is absolutely required to allow for Ca(2+) entry. No influence of the filling state of stores on Ca(2+) influx characteristics was found by the Mn(2+)-quenching technique, which monitors the rate of Ca(2+) entry. Both basal and cAMP-activated Mn(2+) influx rates were similar in control cells and cells with empty stores. By contrast, determination of extracellular free Ca(2+) concentration ([Ca(2+)](e)) changes, which represent the sum of Ca(2+) influx and efflux, revealed a higher rate of [Ca(2+)](e) decrease in EGTA-treated than in control amoebae. We conclude that emptying of Ca(2+) stores does not change the rate of Ca(2+) entry but results in inhibition of the plasma membrane Ca(2+)-ATPase. Furthermore, the activities of the Ca(2+) transport ATPases of the stores are of crucial importance for the regulation of [Ca(2+)](i) changes.  相似文献   

5.
Although the extent of ischemic brain damage is directly proportional to the duration of anoxic depolarization (AD), the mechanism of cytosolic [Ca(2+)] ([Ca(2+)](c)) elevation during AD is poorly understood. To address the mechanism in this study, [Ca(2+)](c) was monitored in cultured rat hippocampal CA1 neurons loaded with a Ca-sensitive dye, fura-2FF, and exposed to an AD-simulating medium containing (in mmol/L): K(+) 65, Na(+) 50, Ca(2+) 0.13, glutamate 0.1, and pH reduced to 6.6. Application of this medium promptly elevated [Ca(2+)](c) to about 30 micromol/L, but only if oxygen was removed, the respiratory chain was inhibited, or if the mitochondria were uncoupled. These high [Ca(2+)](c) elevations depended on external Ca(2+) and could not be prevented by inhibiting NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors, or gadolinium-sensitive channels. However, they could be prevented by removing external Na(+) or simultaneously inhibiting NMDA and AMPA/kainate receptors; 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate (KB-R7943), an inhibitor of plasmalemmal Na(+)/Ca(2+) exchanger, partly suppressed them. The data indicate that the [Ca(2+)](c) elevations to 30 micromol/L during AD result from Na(+) influx. Activation of either NMDA or AMPA/kainate channels provides adequate Na(+) influx to induce these [Ca(2+)](c) elevations, which are mediated by KB-R7943-sensitive and KB-R7943-resistant mechanisms.  相似文献   

6.
Measuring [Ca2+] in the endoplasmic reticulum with aequorin   总被引:1,自引:0,他引:1  
Alvarez J  Montero M 《Cell calcium》2002,32(5-6):251-260
The photoprotein aequorin was the first probe used to measure specifically the [Ca(2+)] inside the lumen of the endoplasmic reticulum ([Ca(2+)](ER)) of intact cells and it provides values for the steady-state [Ca(2+)](ER), around 500 microM, that closely match those obtained now by other procedures. Aequorin-based methods to measure [Ca(2+)](ER) offer several advantages: (i) targeting of the probe is extremely precise; (ii) the use of low Ca(2+)-affinity aequorin allows covering a large dynamic range of [Ca(2+)], from 10(-5) to 10(-3)M; (iii) aequorin is nearly insensitive to changes in Mg(2+) or pH, has a high signal-to-noise ratio and calibration of the results in [Ca(2+)] is made straightforward using a simple algorithm; and (iv) the equipment required for luminescence measurements in cell populations is simple and low-cost. On the negative side, this technique has also some disadvantages: (i) the relatively low amount of emitted light makes difficult performing single-cell imaging studies; (ii) reconstitution of aequorin with coelenterazine requires previous complete depletion of Ca(2+) of the ER for 1-2h, a maneuver that may result in deleterious effects in some cells; (iii) because of the high rate of aequorin consumption at steady-state [Ca(2+)](ER), only relatively brief experiments can be performed; and (iv) expression of ER-targeted aequorin requires previous transfection or infection to introduce the appropriate DNA construct, or alternatively the use of stable cell clones. Choosing aequorin or other techniques to measure [Ca(2+)](ER) will depend of the correct balance between these properties in a particular problem.  相似文献   

7.
Phospholemman (PLM) regulates contractility and Ca(2+) homeostasis in cardiac myocytes. We characterized excitation-contraction coupling in myocytes isolated from PLM-deficient mice backbred to a pure congenic C57BL/6 background. Cell length, cell width, and whole cell capacitance were not different between wild-type and PLM-null myocytes. Compared with wild-type myocytes, Western blots indicated total absence of PLM but no changes in Na(+)/Ca(2+) exchanger, sarcoplasmic reticulum (SR) Ca(2+)-ATPase, alpha(1)-subunit of Na(+)-K(+)-ATPase, and calsequestrin levels in PLM-null myocytes. At 5 mM extracellular Ca(2+) concentration ([Ca(2+)](o)), contraction and cytosolic [Ca(2+)] ([Ca(2+)](i)) transient amplitudes and SR Ca(2+) contents in PLM-null myocytes were significantly (P < 0.0004) higher than wild-type myocytes, whereas the converse was true at 0.6 mM [Ca(2+)](o). This pattern of contractile and [Ca(2+)](i) transient abnormalities in PLM-null myocytes mimics that observed in adult rat myocytes overexpressing the cardiac Na(+)/Ca(2+) exchanger. Indeed, we have previously reported that Na(+)/Ca(2+) exchange currents were higher in PLM-null myocytes. Activation of protein kinase A resulted in increased inotropy such that there were no longer any contractility differences between the stimulated wild-type and PLM-null myocytes. Protein kinase C stimulation resulted in decreased contractility in both wild-type and PLM-null myocytes. Resting membrane potential and action potential amplitudes were similar, but action potential duration was much prolonged (P < 0.04) in PLM-null myocytes. Whole cell Ca(2+) current densities were similar between wild-type and PLM-null myocytes, as were the fast- and slow-inactivation time constants. We conclude that a major function of PLM is regulation of cardiac contractility and Ca(2+) fluxes, likely by modulating Na(+)/Ca(2+) exchange activity.  相似文献   

8.
A rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) due to Ca(2+) release from intracellular Ca(2+) stores and Ca(2+) influx through plasmalemmal Ca(2+) channels plays a critical role in mitogen-mediated cell growth. Depletion of intracellular Ca(2+) stores triggers capacitative Ca(2+) entry (CCE), a mechanism involved in maintaining Ca(2+) influx and refilling intracellular Ca(2+) stores. Transient receptor potential (TRP) genes have been demonstrated to encode the store-operated Ca(2+) channels that are activated by Ca(2+) store depletion. In this study, we examined whether CCE, activity of store-operated Ca(2+) channels, and human TRP1 (hTRP1) expression are essential in human pulmonary arterial smooth muscle cell (PASMC) proliferation. Chelation of extracellular Ca(2+) and depletion of intracellularly stored Ca(2+) inhibited PASMC growth in media containing serum and growth factors. Resting [Ca(2+)](cyt) as well as the increases in [Ca(2+)](cyt) due to Ca(2+) release and CCE were all significantly greater in proliferating PASMC than in growth-arrested cells. Consistently, whole cell inward currents activated by depletion of intracellular Ca(2+) stores and the mRNA level of hTRP1 were much greater in proliferating PASMC than in growth-arrested cells. These results suggest that elevated [Ca(2+)](cyt) and intracellularly stored [Ca(2+)] play an important role in pulmonary vascular smooth muscle cell growth. CCE, potentially via hTRP1-encoded Ca(2+)-permeable channels, may be an important mechanism required to maintain the elevated [Ca(2+)](cyt) and stored [Ca(2+)] in human PASMC during proliferation.  相似文献   

9.
Video-rate confocal microscopy of Indo-1-loaded human skeletal myotubes was used to assess the relationship between the changes in sarcoplasmic ([Ca(2+)](S)) and nuclear ([Ca(2+)](N)) Ca(2+) concentration during low- and high-frequency electrostimulation. A single stimulus of 10 ms duration transiently increased [Ca(2+)] in both compartments with the same time of onset. Rate and amplitude of the [Ca(2+)] rise were significantly lower in the nucleus (4.0- and 2.5-fold, respectively). Similarly, [Ca(2+)](N) decayed more slowly than [Ca(2+)](S) (mono-exponential time constants of 6.1 and 2.5 s, respectively). After return of [Ca(2+)] to the prestimulatory level, a train of 10 stimuli was applied at a frequency of 1 Hz. The amplitude of the first [Ca(2+)](S) transient was 25% lower than that of the preceding single transient. Thereafter, [Ca(2+)](S) increased stepwise to a maximum that equalled that of the single transient. Similarly, the amplitude of the first [Ca(2+)](N) transient was 20% lower than that of the preceding single transient. In contrast to [Ca(2+)](S), [Ca(2+)](N) then increased to a maximum that was 2.3-fold higher than that of the single transient and equalled that of [Ca(2+)](S). In the nucleus, and to a lesser extent in the sarcoplasm, [Ca(2+)] decreased faster at the end of the stimulus train than after the preceding single stimulus (time constants of 3.3 and 2.1 s, respectively). To gain insight into the molecular principles underlying the shaping of the nuclear Ca(2+) signal, a 3-D mathematical model was constructed. Intriguingly, quantitative modelling required the inclusion of a satiable nuclear Ca(2+) buffer. Alterations in the concentration of this putative buffer had dramatic effects on the kinetics of the nuclear Ca(2+) signal. This finding unveils a possible mechanism by which the skeletal muscle can adapt to changes in physiological demand.  相似文献   

10.
In this study, we have tested the hypothesis that augmented [Ca(2+)] in subcellular regions or organelles, which are known to play a key role in cell survival, is the missing link between Ca(2+) homeostasis alterations and muscular degeneration associated with muscular dystrophy. To this end, different targeted chimeras of the Ca(2+)-sensitive photoprotein aequorin have been transiently expressed in subcellular compartments of skeletal myotubes of mdx mice, the animal model of Duchenne muscular dystrophy. Direct measurements of the [Ca(2+)] in the sarcoplasmic reticulum, [Ca(2+)](sr), show a higher steady state level at rest and a larger drop after KCl-induced depolarization in mdx compared with control myotubes. The peaks in [Ca(2+)] occurring in the mitochondrial matrix of mdx myotubes are significantly larger than in controls upon KCl-induced depolarization or caffeine application. The augmented response of mitochondria precedes the alterations in the Ca(2+) responses of the cytosol and of the cytoplasmic region beneath the membrane, which become significant only at a later stage of myotube differentiation. Taking into account the key role played by mitochondria Ca(2+) handling in the control of cell death, our data suggest that mitochondria are potential targets of impaired Ca(2+) homeostasis in muscular dystrophy.  相似文献   

11.
Reduction of uterine perfusion pressure (RUPP) during late pregnancy has been suggested to trigger increases in renal vascular resistance and lead to hypertension of pregnancy. We investigated whether the increased renal vascular resistance associated with RUPP in late pregnancy reflects increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) and contraction of renal arterial smooth muscle. Single smooth muscle cells were isolated from renal interlobular arteries of normal pregnant Sprague-Dawley rats and a rat model of RUPP during late pregnancy. The cells were loaded with fura 2 and both cell length and [Ca(2+)](i) were measured. In cells of normal pregnant rats incubated in Hanks' solution (1 mM Ca(2+)), ANG II (10(-7) M) caused an initial increase in [Ca(2+)](i) to 414 +/- 13 nM, a maintained increase to 149 +/- 8 nM, and 21 +/- 1% cell contraction. In RUPP rats, the initial ANG II-induced [Ca(2+)](i) (431 +/- 18 nM) was not different from pregnant rats, but both the maintained [Ca(2+)](i) (225 +/- 9 nM) and cell contraction (48 +/- 2%) were increased. Membrane depolarization by 51 mM KCl and the Ca(2+) channel agonist BAY K 8644 (10(-6) M), which stimulate Ca(2+) entry from the extracellular space, caused maintained increases in [Ca(2+)](i) and cell contraction that were greater in RUPP rats than control pregnant rats. In Ca(2+)-free (2 mM EGTA) Hanks' solution, the ANG II- and caffeine (10 mM)-induced [Ca(2+)](i) transient and cell contraction were not different between normal pregnant and RUPP rats, suggesting no difference in Ca(2+) release from the intracellular stores. The enhanced maintained ANG II-, KCl- and BAY K 8644-induced [Ca(2+)](i) and cell contraction in RUPP rats compared with normal pregnant rats suggest enhanced Ca(2+) entry mechanisms of smooth muscle contraction in resistance renal arteries and may explain the increased renal vascular resistance associated with hypertension of pregnancy.  相似文献   

12.
Thrombin is a procoagulant inflammatory agonist that can disrupt the endothelium-lumen barrier in the lung by causing contraction of endothelial cells and promote pulmonary cell proliferation. Both contraction and proliferation require increases in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)). In this study, we compared the effect of thrombin on Ca(2+) signaling in human pulmonary artery smooth muscle (PASMC) and endothelial (PAEC) cells. Thrombin increased the [Ca(2+)](cyt) in both cell types; however, the transient response was significantly higher and recovered quicker in the PASMC, suggesting different mechanisms may contribute to thrombin-mediated increases in [Ca(2+)](cyt) in these cell types. Depletion of intracellular stores with cyclopiazonic acid (CPA) in the absence of extracellular Ca(2+) induced calcium transients representative of those observed in response to thrombin in both cell types. Interestingly, CPA pretreatment significantly attenuated thrombin-induced Ca(2+) release in PASMC; this attenuation was not apparent in PAEC, indicating that a PAEC-specific mechanism was targeted by thrombin. Treatment with a combination of CPA, caffeine, and ryanodine also failed to abolish the thrombin-induced Ca(2+) transient in PAEC. Notably, thrombin-induced receptor-mediated calcium influx was still observed in PASMC after CPA pretreatment in the presence of extracellular Ca(2+). Ca(2+) oscillations were triggered by thrombin in PASMC resulting from a balance of extracellular Ca(2+) influx and Ca(2+) reuptake by the sarcoplasmic reticulum. The data show that thrombin induces increases in intracellular calcium in PASMC and PAEC with a distinct CPA-, caffeine-, and ryanodine-insensitive release existing only in PAEC. Furthermore, a dynamic balance between Ca(2+) influx, intracellular Ca(2+) release, and reuptake underlie the Ca(2+) transients evoked by thrombin in some PASMC. Understanding of such mechanisms will provide an important insight into thrombin-mediated vascular injury during hypertension.  相似文献   

13.
Nam JH  Yoon SS  Kim TJ  Uhm DY  Kim SJ 《FEBS letters》2003,535(1-3):113-118
WEHI-231 and Bal 17 B cell lines are representative models for immature and mature B cells, respectively. Their regulation of cytosolic Ca(2+) concentration ([Ca(2+)](c)) was compared using fura-2 fluorescence ratiometry. The ligation of B cell antigen receptor (BCR) by anti-IgM antibody induced a slow but large increase of [Ca(2+)](c) in WEHI-231 cells while not in Bal 17 cells. The thapsigargin-induced store-operated Ca(2+) entry (SOCE) of Bal 17 cells reached a steady state which was blocked by 2-aminoethoxydiphenyl borate (2-APB). On the contrary, the thapsigargin-induced SOCE of WEHI-231 cells increased continuously, which was accelerated by 2-APB. The increase of [Ca(2+)](c) by BCR ligation was also enhanced by 2-APB in WEHI-231 cells while blocked in Bal 17 cells. The Mn(2+) quenching study showed that the thapsigargin-, or the BCR ligation-induced Ca(2+) influx pathway of WEHI-231 was hardly permeable to Mn(2+). The intractable increase of [Ca(2+)](c) may explain the mechanism of BCR-driven apoptosis of WEHI-231 cells, a well-known model of clonal deletion of autoreactive immature B cells.  相似文献   

14.
When energy metabolism is disrupted, endothelial cells lose Ca(2+) from endoplasmic reticulum (ER) and the cytosolic Ca(2+) concentration ([Ca(2+)](i)) increases. The importance of glycolytic energy production and the mechanism of Ca(2+) loss from the ER were analyzed. Endothelial cells from porcine aorta in culture and in situ were used as models. 2-Deoxy-D-glucose (2-DG, 10 mM), an inhibitor of glycolysis, caused an increase in [Ca(2+)](i) (measured with fura 2) within 1 min when total cellular ATP contents were not yet affected. Stimulation of oxidative energy production with pyruvate (5 mM) did not attenuate this 2-DG-induced rise of [Ca(2+)](i), while this maneuver preserved cellular ATP contents. The inhibitor of ER-Ca(2+)-ATPase, thapsigargin (10 nM), augmented the 2-DG-induced rise of [Ca(2+)](i). Xestospongin C (3 microM), an inhibitor of D-myo-inositol 3-phosphate [Ins(3)P]-sensitive ER-Ca(2+) release, abolished the rise. The results demonstrate that the ER of endothelial cells is very sensitive to glycolytic metabolic inhibition. When this occurs, the ER Ca(2+) store is discharged by opening of the Ins(3)P-sensitive release channel. Xestospongin C can effectively suppress the early [Ca(2+)](i) rise in metabolically inhibited endothelial cells.  相似文献   

15.
We analyzed the role of inositol 1,4,5-trisphosphate-induced Ca(2+) release from the endoplasmic reticulum (ER) (i) in powering mitochondrial Ca(2+) uptake and (ii) in maintaining a sustained elevation of cytosolic Ca(2+) concentration ([Ca(2+)](c)). For this purpose, we expressed in HeLa cells aequorin-based Ca(2+)-sensitive probes targeted to different intracellular compartments and studied the effect of two agonists: histamine, acting on endogenous H(1) receptors, and glutamate, acting on co-transfected metabotropic glutamate receptor (mGluR1a), which rapidly inactivates through protein kinase C-dependent phosphorylation and thus causes transient inositol 1,4,5-trisphosphate production. Glutamate induced a transient [Ca(2+)](c) rise and drop in ER luminal [Ca(2+)] ([Ca(2+)](er)), and then the ER refilled with [Ca(2+)](c) at resting values. With histamine, [Ca(2+)](c) after the initial peak stabilized at a sustained plateau, and [Ca(2+)](er) decreased to a low steady-state value. In mitochondria, histamine evoked a much larger mitochondrial Ca(2+) response than glutamate ( approximately 15 versus approximately 65 microm). Protein kinase C inhibition, partly relieving mGluR1a desensitization, reestablished both the [Ca(2+)](c) plateau and the sustained ER Ca(2+) release and markedly increased the mitochondrial Ca(2+) response. Conversely, mitochondrial Ca(2+) uptake evoked by histamine was drastically reduced by very transient ( approximately 2-s) agonist applications. These data indicate that efficient mitochondrial Ca(2+) uptake depends on the preservation of high Ca(2+) microdomains at the mouth of ER Ca(2+) release sites close to mitochondria. This in turn depends on continuous Ca(2+) release balanced by Ca(2+) reuptake into the ER and maintained by Ca(2+) influx from the extracellular space.  相似文献   

16.
In the absence of store depletion, plasmalemmal Ca(2+) permeability in resting muscle is very low, and its contribution in the maintenance of Ca(2+) homeostasis at rest has not been studied in detail. Junctophilin 1 knock-out myotubes (JP1 KO) have a severe reduction in store-operated Ca(2+) entry, presumably caused by physical alteration of the sarcoplasmic reticulum (SR) and T-tubule junction, leading to disruption of the SR signal sent by Stim1 to activate Orai1. Using JP1 KO myotubes as a model, we assessed the contribution of the Orai1-mediated Ca(2+) entry pathway on overall Ca(2+) homeostasis at rest with no store depletion. JP1 KO myotubes have decreased Ca(2+) entry, [Ca(2+)](rest), and intracellular Ca(2+) content compared with WT myotubes and unlike WT myotubes, are refractory to BTP2, a Ca(2+) entry blocker. JP1 KO myotubes show down-regulation of Orai1 and Stim1 proteins, suggesting that this pathway may be important in the control of resting Ca(2+) homeostasis. WT myotubes stably transduced with Orai1(E190Q) had similar alterations in their resting Ca(2+) homeostasis as JP1 KO myotubes and were also unresponsive to BTP2. JP1 KO cells show decreased expression of TRPC1 and -3 but overexpress TRPC4 and -6; on the other hand, the TRPC expression profile in Orai1(E190Q) myotubes was comparable with WT. These data suggest that an important fraction of resting plasmalemmal Ca(2+) permeability is mediated by the Orai1 pathway, which contributes to the control of [Ca(2+)](rest) and resting Ca(2+) stores and that this pathway is defective in JP1 KO myotubes.  相似文献   

17.
18.
Available methods to measure mitochondrial [Ca(2+)] ([Ca(2+)](M)) include both targeted proteins and fluorescent dyes. Targeted proteins usually report much higher [Ca(2+)](M) values than fluorescent dyes, up to two orders of magnitude. However, we show here that the low-Ca(2+)-affinity dye rhod-5N provides [Ca(2+)](M) values similar to those reported by targeted aequorin, suggesting that the discrepancies are mainly due to the higher Ca(2+)-affinity of the fluorescent dyes used. We find rhod-5N has an apparent in situ intramitochondrial Kd around 0.5mM. Addition of Ca(2+) buffers containing between 4.5 and 10μM [Ca(2+)] to permeabilized cells loaded with rhod-5N induced increases in calibrated [Ca(2+)](M) up to the 100μM-1mM range, which were dependent on mitochondrial membrane potential. Ca(2+) release from mitochondria was largely dependent on [Na(+)]. We have then used rhod-5N loaded cells to investigate the [Ca(2+)](M) response to agonist stimulation at the single-cell and subcellular level. The [Ca(2+)](M) peaks induced by histamine varied by nearly 10-fold among different cells, with a mean about 25μM. In the presence of the Ca(2+) uniporter stimulator kaempferol, the [Ca(2+)](M) peaks induced by histamine were also highly variable, and the mean [Ca(2+)](M) peak was 3-fold higher. Simultaneous measurement of cytosolic and mitochondrial [Ca(2+)] peaks showed little correlation among the heights of the peaks in both compartments. Studying the [Ca(2+)](M) peaks at the subcellular level, we found significant heterogeneities among regions in the same cell. In particular, the [Ca(2+)](M) increase in mitochondrial regions close to the nucleus was more than double that of mitochondrial regions far from the nucleus.  相似文献   

19.
Previous studies showed increased phospholemman (PLM) mRNA after myocardial infarction (MI) in rats (Sehl PD, Tai JTN, Hillan KJ, Brown LA, Goddard A, Yang R, Jin H, and Lowe DG. Circulation 101: 1990-1999, 2000). We tested the hypothesis that, in normal adult rat cardiac myocytes, PLM overexpression alters contractile function and cytosolic Ca(2+) concentration ([Ca(2+)](i)) homeostasis in a manner similar to that observed in post-MI myocytes. Compared with myocytes infected by control adenovirus expressing green fluorescent protein (GFP) alone, Western blots indicated a 41% increase in PLM expression after 72 h (P < 0.001) but no changes in Na(+)/Ca(2+) exchanger, SERCA2, and calsequestrin levels in myocytes infected by adenovirus expressing GFP and PLM. At 5 mM extracellular [Ca(2+)] ([Ca(2+)](o)), maximal contraction amplitudes in PLM-overexpressed myocytes were 24% (P < 0.005) and [Ca(2+)](i) transient amplitudes were 18% (P < 0.05) lower than control myocytes. At 0.6 mM [Ca(2+)](o), however, contraction and [Ca(2+)](i) transient amplitudes were significantly (P < 0.05) higher in PLM-overexpressed than control myocytes (18% and 42%, respectively); at 1.8 mM [Ca(2+)](o), the differences in contraction and [Ca(2+)](i) transient amplitudes were narrowed. This pattern of contractile and [Ca(2+)](i) transient abnormalities in PLM-overexpressed myocytes mimics that observed in post-MI rat myocytes. We suggest that PLM overexpression observed in post-MI myocytes may partly account for contractile abnormalities by perturbing Ca(2+) fluxes during excitation-contraction.  相似文献   

20.
We have investigated why fura-2 and Ca(2+)-sensitive microelectrodes report different values for the intracellular free calcium ion concentration ([Ca(2+)]i or its negative log, pCa(i)) of snail neurons voltage-clamped to -50 or -60 mV. Both techniques were initially calibrated in vitro, using calcium calibration solutions that had ionic concentrations similar to those of snail neuron cytoplasm. Pressure injections of the same solutions at resting and elevated [Ca(2+)]i were used to calibrate both methods in vivo. In fura-2-loaded cells these pressure injections generated changes in [Ca(2+)]i that agreed well with those expected from the in vitro calibration. Thus, using fura-2 calibrated in vitro, the average resting [Ca(2+)]i was found to be 38 nM (pCa(i) 7.42 +/- 0.05). With Ca(2+)-sensitive microelectrodes, the first injection of calibration solutions always caused a negative shift in the recorded microelectrode potential, as if the injection lowered [Ca2+]i. No such effects were seen on the fura-2 ratio. When calibrated in vivo the Ca(2+)-sensitive microelectrode gave an average resting [Ca2+]i of approximately 25 nM (pCa(i) 7.6 +/- 0.1), much lower than when calibrated in vitro. We conclude that [Ca(2+)]i in snail neurons is approximately 40 nM and that Ca(2+)-sensitive microelectrodes usually cause a leak at the point of insertion. The effects of the leak were minimized by injection of a mobile calcium buffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号