首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have been studying the molecular mechanism of neuronal differentiation through which the multipotent precursor becomes limited to the final transmitter phenotype. Here we focused on the role of the 5′ proximal regulatory cassette (?190; +53 bp) of the rat enkephalin (rENK) gene in the developmental regulation of the enkephalin phenotype. Several well characterizedcis-elements, including AP2, CREB, NF1, and NFkB, reside on this region of the rENK gene. These motifs were sufficient to confer activity-dependent expression of the gene during neurodifferentiation when it was tested using transient transfection assays of primary developing spinal cord neurons treated with tetrodotoxin (TTX). This region was then used as a DNA probe in mobility shift assays, with nuclear proteins derived from phenotypically and ontogenetically distinct brain regions. Only a few low abundance protein-DNA complexes were detected and only with nuclear proteins derived from developing but not from adult brain. The spatiotemporal pattern of these complexes did not show correlation with enkephalin expression which was assessed by RT-PCR. We employed synthetic probes corresponding to consensus as well as ENK-specific sequences of the individual motifs to identify the nature of the observed bands. Although both consensus NF1 and enk CRE1(NF1) formed complexes with nuclear proteins derived from the striatum and cortex at various ages, the appearance of the bands was not correlated with ENK expression. Surprisingly, no complexes were detected if other ENK-specific motifs were used as probes. We also tested nuclear extracts derived from forskolin-induced and control C6 glioma cells, again using the whole proximal regulatory cassette as well as individual motifs. These experiments showed the formation of elaborate protein-DNA bands. There was no direct correlation between the appearance of bands and forskolin-induced ENK expression. Unexpectedly, all ENK-specific motifs formed specific and highly abundant protein-DNA complexes when nuclear extracts from the human tumor cell line (HeLa), which does not express ENK, were used. Based on these observations, we concluded that:
  1. Interactions between the proximal regulatory cassette and additional probably far distant regions of the rENK gene and their binding proteins may be necessary to confer developmentally regulated, cell-specific expression of the ENK gene; and
  2. Inducibility of the gene by commoncis-elements can be governed by this region; however, the cell-specificity of the induction remains elusive.
  相似文献   

2.
3.
4.
Several cis-regulatory DNA elements are present in the 5' upstream regulatory region of the enkephalin gene (ENK) promoter. To determine their role in conferring organ-specificity of ENK expression in mice and to circumvent the position effects from random gene insertion that are known to often frustrate such analysis in transgenic mice, we used a Cre-mediated gene knock-in strategy to target reporter constructs to a "safe haven" loxP-tagged locus in the hypoxanthine phosphoribosyltransferase (HPRT) gene. Here we report reliable and reproducible reporter gene expression under the control of the 5' upstream regulatory region of the mouse ENK gene in gene-modified mice using this Cre-mediated knock-in strategy. Comparison of two 5'ENK regulatory regions (one with and the other without known cis-regulatory DNA elements) in the resulting adult mice showed that conserved far-upstream cis-regulatory DNA elements are dispensable for correct organ-specific gene expression. Thus the proximal 1.4 kb of the murine ENK promoter region is sufficient for organ-specificity of ENK gene expression when targeted to a safe-haven genomic locus. These results suggest that conservation of the far-upstream DNA elements serves more subtle roles, such as the developmental or cell-specific expression of the ENK gene.  相似文献   

5.
Du X  Pène JJ 《Nucleic acids research》1999,27(7):1690-1697
Although the G+C content of Thermus aquaticus YT-1 chromosomal DNA is 67.4%, regions with lower G+C content have also been observed. AT-rich DNA-binding proteins may contribute to the thermostability and biological functions of these DNA regions at Thermus growth temperatures. Using double-stranded DNA (dsDNA)-cellulose chromatography, a T.aquaticus YT-1 protein, designated as p25, was identified to bind preferentially to AT-rich DNA. The gene encoding p25 was cloned and sequenced after immunoscreening T.aquaticus YT-1 expression libraries. The deduced primary structure of p25 is 211 amino acids in length with a molecular weight of 23 225 Da. Native p25 was purified and characterized as a homodimer with modification possibly at lysine and arginine residues. Its preferential and temperature-dependent binding to AT-rich DNA was confirmed with mobility-shift DNA-binding assays. The protein was demonstrated to bind preferentially to dsDNA instead of single-stranded DNA. The binding of p25 to dsDNA also improved the thermotolerence of this protein. Overexpression study of fusion p25 suggested that the N-terminus of the protein might form the DNA-binding domain or be closely involved in DNA-binding activity.  相似文献   

6.
The rat mast cell protease gene, RMCP II, is specifically expressed in the mucosal subclass of rat mast cells. We show here that the 5'-flanking region of this gene contains a mast cell-specific enhancer that directs preferential expression of a linked reporter gene (human growth hormone) transfected into rat basophilic leukemia cells. A DNA fragment containing the enhancer sequence is capable of binding specifically to mast cell nuclear trans-acting factors. The sequence of this enhancer element contains a region of homology to a consensus core sequence present in the enhancer region of the pancreatic protease genes.  相似文献   

7.
8.
In search for nuclear proteins that interact with the human thymidine kinase (htk) promoter, we discovered that p37AUF, a hnRNP C-like protein, and hnRNP A1, both members of the heterogeneous ribonucleoprotein family, can bind with high affinity to an ATTT sequence motif contained within the cell cycle regulatory unit (CCRU). We report here that over-expression of p37AUF stimulates gene expression mediated by the htk promoter in a promoter-sequence specific manner, whereas hnRNP A1 suppresses it. Both recombinant p37AUF and hnRNP A1 can bind the htk CCRU, suggesting that their binding to the DNA target does not require additional cellular components. We further discovered that hnRNP K is a potent suppressor of htk mediated gene activity. However, its mechanism of action is mediated through protein-protein interaction, since hnRNP K itself cannot bind the htk CCRU but can competitively inhibit the binding of other hnRNPs. The binding site for the hnRNPs on the htk CCRU is not required for S-phase induction of the htk promoter. However, in stable but not transient transfectants, the mutation of the hnRNP binding site results in 5- to 10-fold reduction of htk mediated gene activity in synchronized and exponentially growing cells. Collectively, these findings support emerging evidence that hnRNPs, in addition to their traditional role in RNA biogenesis, could be regulators of gene expression through direct DNA binding or interaction with other proteins.  相似文献   

9.
10.
11.
12.
DNA methylation is a major determinant of epigenetic inheritance. DNA methyltransferase 1 (DNMT1) is the enzyme responsible for the maintenance of DNA methylation patterns during cell division, and deregulated expression of DNMT1 leads to cellular transformation. We show herein that AU-rich element/poly(U)-binding/degradation factor 1 (AUF1)/heterogeneous nuclear ribonucleoprotein D interacts with an AU-rich conserved element in the 3' untranslated region of the DNMT1 mRNA and targets it for destabilization by the exosome. AUF1 protein levels are regulated by the cell cycle by the proteasome, resulting in cell cycle-specific destabilization of DNMT1 mRNA. AUF1 knock down leads to increased DNMT1 expression and modifications of cell cycle kinetics, increased DNA methyltransferase activity, and genome hypermethylation. Concurrent AUF1 and DNMT1 knock down abolishes this effect, suggesting that the effects of AUF1 knock down on the cell cycle are mediated at least in part by DNMT1. In this study, we demonstrate a link between AUF1, the RNA degradation machinery, and maintenance of the epigenetic integrity of the cell.  相似文献   

13.
14.
Southern blotting分析没有发现成年大鼠肝、胚肝及肝癌细胞AFP基因5′端及上游有任何不同。以AFP基因转录起始点到5′端上游255 bp DNA片段为探针进行Southwestern blotting分析,发现表达AFP基因的细胞核蛋白中存在与其结合的核蛋白,这些在成年大鼠肝、肺、脾、心和肾细胞核蛋白中不存在。含有结合蛋白的肝癌核蛋白部分能使作为RNA聚合酶Ⅱ来源的成年大鼠肝细胞核蛋白部分具备较高的体外转录活性,表明基因细胞专一的表达确与某些结合蛋白有关。  相似文献   

15.
The proopiomelanocortin (POMC) gene is highly expressed in adult mouse pituitary anterior lobe corticotrophs and intermediate lobe melanotrophs. To identify the DNA elements important for this tissue-specific expression, we analyzed a series of POMC reporter genes in transgenic mice. A DNA fragment containing rat POMC 5'-flanking sequences from -323 to -34 recapitulated both basal pituitary cell-specific and hormonally stimulated expression in adult mice when fused to a heterologous thymidine kinase promoter. Developmental onset of the reporter gene expression lagged by 1 day but otherwise closely paralleled the normal ontogeny of murine POMC gene expression, including corticotroph activation at embryonic day 14.5 (E14.5) followed by melanotroph activation at E15.5 to E16.5. AtT20 corticotroph nuclear protein extracts interacted with three specific regions of the functional POMC promoter in DNase I protection assays. The positions of these protected sites were -107 to -160 (site 1), -182 to -218 (site 2), and -249 to -281 (site 3). Individual deletions of these footprinted sites did not alter transgene expression; however, the simultaneous deletion of sites 2 and 3 prevented transgene expression in both corticotrophs and melanotrophs. Electrophoretic mobility shift and Southwestern (DNA-protein) assays demonstrated that multiple AtT20 nuclear proteins bound to these footprinted sites. We conclude that the sequences between -323 and -34 of the rat POMC gene promoter are both necessary and sufficient for correct spatial, temporal, and hormonally regulated expression in the pituitary gland. Our data suggest that the three footprinted sites within the promoter are functionally interchangeable and act in combination with promoter elements between -114 and -34. The inability of any reporter gene construction to dissociate basal and hormonally stimulated expression suggests that these DNA elements are involved in both of these two characteristics of POMC gene expression in vivo.  相似文献   

16.
Munc18-1, also referred to as p67, co-purifies with Cdk5 and has an important role in neurotransmitter release. The role of Munc18-1 for functional connectivity of the nervous system was demonstrated by gene knockout experiments in mice, wherein accumulation of neurotransmitter and silencing of synaptic activity was observed. Our earlier studies have shown that both Munc18-1 and Cdk5 co-purify and co-localize with cytoskeletal components, implying that apart from having a regulatory role in vesicle docking and fusion, Munc18-1 could also affect the dynamics of neuronal cytoskeleton. In the present study we have shown the presence of Munc18-1 in nuclear rich fraction from rat brain and confirmed the nuclear localization of this protein in PC12 cells and adult rat brain neurons by immunofluorescence and immunoelectron microscopy. We also demonstrate the binding of Munc18-1 to double stranded (ds) DNA. The ability of Munc18-1 to bind dsDNA, albeit the lack of DNA binding domains, suggests that the binding may be mediated through protein-protein interaction through some other DNA-binding proteins. The presence of both nuclear import and export signals in Munc18-1 primary structure corroborates its nuclear localization and makes it a putative shuttle protein between nuclear and cytoplasmic compartments, the precise physiological relevance of which needs to be elucidated.  相似文献   

17.
Cis-acting elements involved in the control of rat alpha-fetoprotein gene expression in the liver and its modulation by glucocorticoid hormones were detected after transfection of chloramphenicol acetyltransferase constructs and their transient expression into two hepatoma cell lines. The proximal promoter region (-324 to -15) was found to contain all the information necessary for tissue-specific expression. It is also involved in the negative gene modulation by glucocorticoids and includes an activating regulatory domain allowing efficient expression in the HepG2 cells. Three regions within 7 kilobase pairs of the 5' extragenic sequences are capable of stimulating the chloramphenicol acetyltransferase activity driven by the alpha-fetoprotein promoter sequence. One of these regions, at about -2.5 kilobase pairs, contains a short indivisible 170-base pair DNA element that fulfills all the criteria of a tissue-specific enhancer, i.e. orientation and position independence, as well as cell-specific stimulation of gene expression driven by a homologous or heterologous promoter. The enhancing properties of this element are totally abolished by glucocorticoids. DNase I footprinting experiments indicate that several rat liver nuclear proteins interact with this enhancer element.  相似文献   

18.
19.
20.
Alpha-fetoprotein (AFP) is one of the major serum proteins in the early life of mammals. We have previously identified a novel cis-acting element designated as DAS at the 5'-flanking region of the AFP gene and demonstrated that the DAS sequence can be specifically recognized by nuclear protein DAP-II in AFP-producing hepatoma cells and retinoic acid (RA)-induced AFP-producing F9 cells. In this study, we used DNA affinity chromatography to purify the DAP-II proteins from the nuclear extracts (NE) of RA-treated F9 cells. The purified DAP-II complex mainly contained five proteins, with molecular weights of 45, 42, 32, 30, and 20 kDa, respectively. The identification of these proteins was determined by MALDI-TOF mass spectrometric analysis and a database search. These proteins were found to belong to the AUF1 RNA-binding protein family. Protein (30 kDa), one of five proteins in an isolated DAP-II complex, was matched with amino acid sequence highly similar to muAUF1-3. The expression of this protein is inducible by RA, and the pattern of the protein expression is the same as DAP-II proteins in F9 cells after treatment with RA during differentiation. Our results suggest that the 30-kDa protein is a novel isoform of AUF1 family and is the main component of the DAP-II complex that binds to the DAS sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号