首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 490 毫秒
1.
The effect of thyroid hormone on peroxisomal enzyme activity was studied in thyroidectomized- and T4-administered-thyroidectomized rats. In liver, the activities of isozyme A of L-alpha-hydroxyacid oxidase, D-amino acid oxidase, urate oxidase and catalase were decreased by thyroidectomy, and the diminished enzyme activities were restored by T4 administration to rats. These modifications induced by thyroidectomy or by T4 administration, however, were prominent only in immature animals (20-day-old rats). Although the changes in-alpha-hydroxyacid oxidase and D-amino acid oxidase activities, induced by thyroidectomy or by T4 administration, were also observed in 40-day-old rats, those in urate oxidase and catalase activities were not significant in 40-day-old rats. Acyl CoA oxidase activity was not affected by thyroidectomy or by T4 administration in either 20- or 40-day-old rats. In the kidney, isozyme B of L-alpha-hydroxyacid oxidase activity was reduced by thyroidectomy and the diminished enzyme activity was restored by T4 administration in both 20- and 40-day-old rats. D-Amino acid oxidase and catalase activities in kidney, however, were not significantly modified by thyroidectomy or by T4 administration in either 20- or 40-day-old rats. The results suggest that thyroid hormone can modify the peroxisomal enzyme activity, which is prominent in immature animals.  相似文献   

2.
The multihormonal regulation of the estrogen receptor in the liver of female rats was studied under in vivo conditions. The steroid receptor level was assayed by hormone binding and specific mRNA analyzed by solution hybridization using a 35S-labeled RNA probe complementary to the ligand-binding domain of the estrogen receptor gene. Serum growth hormone levels were measured and correlated to the effects of glucocorticoid and thyroid hormone administration on the estrogen receptor expression. In animals subjected to adrenalectomy plus thyroidectomy, the estrogen receptor concentration was reduced from 59 fmol/mg cytosol protein to 10 fmol/mg protein (i.e., with 87% relative to control animals). Adrenalectomy or thyroidectomy alone caused a decrease with 14% and 66%, respectively. Substitution with 10 micrograms betamethasone and 1 microgram triiodothyronine daily for 9 days completely restored the receptor content to control levels. Substitution with either hormone alone increased, but only partially restored receptor levels. The effect of betamethasone alone was dose dependent from 10 micrograms/d to 100 micrograms/d. This dose dependence was not seen when the animal simultaneously received 1 microgram of triiodothyronine. Superphysiologic doses of triiodothyronine did not raise estrogen receptor levels above those seen in animals treated with physiologic doses. High doses of triiodothyronine (greater than 20 micrograms/d) decreased serum growth hormone levels. The estrogen receptor mRNA levels in livers from hypophysectomized animals were increased after treatment with growth hormone (2.5-fold), thyroid hormone (two-fold), and glucocorticoids (1.5-fold). The results obtained indicate a very complex regulation of liver estrogen receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
The role of thyroid hormone and GH in the regulation of hypothalamic GH-releasing hormone (GRH) gene expression in the rat was examined after the induction of thyroid hormone deficiency by thyroidectomy. Thyroidectomy resulted in a time-dependent decrease in hypothalamic GRH content, which was significant by 2 weeks postoperatively, and a reduction in pituitary GH content to 1% of the control level by 4 weeks. In contrast, GRH secretion by incubated hypothalami under both basal and K(+)-stimulated conditions was increased after thyroidectomy. Hypothalamic GRH mRNA levels also exhibited a time-dependent increase, which was significant at 1 week and maximal by 2 weeks after thyroidectomy. Administration of antirat GH serum to thyroidectomized rats resulted in a further increase in GRH mRNA levels. T4 treatment of thyroidectomized rats for 5 days, which also partially restored pituitary GH content, lowered the elevated GRH mRNA levels. However, comparable effects on GRH mRNA levels were observed by rat GH treatment alone. These results suggest that the changes in hypothalamic GRH gene expression after thyroidectomy in the rat are due to the GH deficiency caused by thyroidectomy, rather than a direct effect of thyroid hormone on the hypothalamus, since the changes were reversible by GH alone despite persistent thyroid hormone deficiency. In addition, they further support the role of GH as a physiological negative feedback regulator of GRH gene expression.  相似文献   

5.
6.
The ADP/ATP transport across the mitochondrial membrane is achieved by the adenine nucleotide translocase (ANT), an integral inner mitochondrial membrane protein. As deduced from experiments in rat liver in vivo and in isolated rat liver mitochondria this ADP/ATP transport is accelerated by thyroid hormone application, thus explaining, at least to a considerable extent, the thyroid hormone mediated increase in mitochondrial metabolic activity. The present study investigates the effect of T3 on rat liver, heart, and kidney ANT gene expression. As shown by Northern blot analysis, a cDNA for beef heart ANT-mRNA showed cross-hybridization with the ANT-mRNA from rat heart, liver, and kidney. Hypo- and hyperthyroid rats showed no differences in size nor in amounts of heart, liver, and kidney ANT-mRNA. Measurement of heart ANT-protein level revealed no major differences among the various thyroid states. Thus, the long-term action of thyroid hormones on increasing the carrier-mediated ADP/ATP translocation cannot be ascribed to an effect of T3 on ANT gene expression. The mechanism by which T3 activates this transporter system remains to be identified but some possibilities are suggested.  相似文献   

7.
Amphibian metamorphosis affords a useful experimental system in which to study thyroid hormone regulation of gene expression during postembryonic vertebrate development. In order to isolate gene-specific cDNA probes which correspond to thyroid hormone-responsive mRNAs, we employed differential colony hybridization of a cDNA library constructed from poly(A)+ RNA of thyroxine-treated premetamorphic tadpole liver. From an initial screening of about 6000 transformants, 32 "potentially positive" colonies were obtained. The recombinant cDNA-plasmids from 13 of these colonies plus two "potentially negative" colonies were purified for further study. Southern blot analysis of the plasmid DNA was employed to determine whether different cDNAs encoded for the same mRNA. The effect of thyroid hormone on the relative levels of specific mRNA species was examined by Northern analysis of liver RNA from premetamorphic tadpoles, thyroxine-treated tadpoles, and adult bullfrogs. Three independent cDNA clones were obtained which encoded thyroid hormone-enhanced mRNAs. We also obtained two independent cDNA clones encoding thyroid hormone-inhibited mRNAs and three independent clones encoding thyroid hormone-unresponsive mRNAs. The levels of two thyroid hormone-enhanced mRNAs and one thyroid hormone-inhibited mRNA were essentially the same in the thyroid hormone-treated tadpole liver and adult liver, suggesting that thyroid hormone induces stable changes in liver gene expression during spontaneous metamorphosis. Using selected cDNAs, RNA dot blot analysis of liver mRNA from tadpoles at different stages of metamorphosis showed that the level of one thyroid hormone-enhanced mRNA increased during late prometamorphosis and metamorphic climax. Similarly, a mRNA which was strongly inhibited by thyroid hormone treatment was observed to decline during prometamorphosis and reach undetectable levels during metamorphic climax. One mRNA was detected which was reproducibly inhibited by thyroid hormone treatment but which remained essentially unchanged during spontaneous metamorphosis. These results provide the first direct evidence for the coordinate and selective pretranslational regulation by thyroid hormone of several liver genes during the developmental process of metamorphosis.  相似文献   

8.
9.
The insulin-like growth factors (IGFs) and insulin-like growth factor binding proteins (IGFBPs), which regulate IGF activity, play a fundamental role in renal cell proliferation and differentiation. The thyroid hormone is considered to be required for kidney development; excess induces local hypertrophy and hyperplasia. The aim of the present study was to investigate the possible involvement of the IGF/IGFBP system in thyroid hormone-induced renal growth during the development of the rat. Our results show that thyroid hormone withdrawal by 6-propyl-2-thiouracil (PTU)-treatment of rats at all ages had no effect on renal IGFBP-4 mRNA levels, whereas the abundance of the serum protein was decreased compared to controls. Intraperitoneal triiodothyronine (T3) administration to hypothyroid rats resulted in renal hypertrophy associated with a significant upregulation of IGFBP-4 expression with increased levels of renal IGFBP-4 mRNA and serum protein. T3-induced upregulation of IGFBP-4 expression suggests the involvement of the local IGF/IGFBP system in T3-induced renal hypertrophy.  相似文献   

10.
Sex-related differential gene expression of organic anion transporters (rOAT1, rOAT2, and rOAT3) in rat brain, liver, and kidney was investigated. There were no sex differences in the expression of rOAT1 mRNA. rOAT2 mRNA was abundant in the liver and weakly expressed in the kidney of male rats; however, the OAT2 gene was strongly expressed in both organs of females. The abundance of rOAT2 mRNA markedly increased in castrated male rat kidney; however, treatment of castrated male rats with testosterone led to a decrease of rOAT2 mRNA. Expression of rOAT3 mRNA in intact female rats was found in the kidney and brain, whereas in males rOAT3 mRNA was also found in the liver. rOAT3 mRNA markedly decreased in the liver of castrated male rats but increased in testosterone-treated castrated male rats. Moreover, rOAT3 mRNA increased in the hypophysectomized female rat liver, indicating that rOAT3 is an inducible isoform. The present findings suggest that sex steroids play an important role in the expression and maintenance of OAT2/3 isoforms in the rat liver and kidney. Our results provide information on the differential gene expression of OAT isoforms with sex hormone dependency.  相似文献   

11.
Effects of neonatal hypothyroidism on rat brain gene expression.   总被引:15,自引:0,他引:15  
To define at the molecular biological level the effects of thyroid hormone on brain development we have examined cDNA clones of brain mRNAs and identified several whose expression is altered in hypothyroid animals during the neonatal period. Clones were identified with probes prepared by subtractive or differential hybridization, and those corresponding to mRNAs altered in hypothyroidism were further studied by Northern blot analysis. Using RNA prepared from whole brains, no effect of hypothyroidism was found on the expression of the astroglial gene coding for glial fibrillary acidic protein. Among genes of neuronal expression, no significant alterations were found in the steady state levels of mRNAs coding for neuron-specific enolase, microtubule-associated protein-2, Tau, or nerve growth factor. N-CAM mRNA increased slightly in hypothyroid brains. In contrast a 2- to 3-fold decrease was found in the mRNA coding for a novel neuronal gene, RC3. This is the first neuronal gene known to be significantly altered at the mRNA level by thyroid hormone deprivation. The abundance of the mRNAs for the major myelin proteins proteolipid protein, myelin basic protein, and myelin-associated glycoprotein, expressed by oligodendrocytes, were also decreased in hypothyroid brains. Developmental studies on RC3 and myelin-associated glycoprotein expression indicated that the corresponding mRNAs accumulate in the brain of normal rats during the first 15-20 days of neonatal life. A similar accumulation occurred in hypothyroid brains, but at much reduced levels. The results demonstrate that thyroid hormone controls the steady state levels of particular mRNAs during brain development.  相似文献   

12.
The role of thyroid hormone in regulating the expression of the flavoprotein NADPH cytochrome P450 reductase was studied in adult rats. Depletion of circulating thyroid hormone by hypophysectomy, or more selectively, by treatment with the anti-thyroid drug methimazole led to a 75-85% depletion of hepatic microsomal P450 reductase activity and protein in both male and female rats. Thyroxine substantially restored P450 reductase activity at a dose that rendered the thyroid-depleted rats euthyroid. Microsomal P450 reductase activity in several extrahepatic tissues was also dependent on thyroid hormone, but to a lesser extent than in liver (30-50% decrease in kidney, adrenal, lung, and heart but not in testis from hypothyroid rats). Hepatic P450 reductase mRNA levels were also decreased in the hypothyroid state, indicating that the loss of P450 reductase activity is not a consequence of the associated decreased availability of the FMN and FAD cofactors of P450 reductase. Parallel analysis of S14 mRNA, which has been studied extensively as a model thyroid-regulated liver gene product, indicated that P450 reductase and S14 mRNA respond similarly to these changes in thyroid state. In contrast, while the expression of S14 and several other thyroid hormone-dependent hepatic mRNAs is stimulated by feeding a high carbohydrate, fat-free diet, hepatic P450 reductase expression was not increased by this lipogenic diet. Injection of hypothyroid rats with T3 at a supraphysiologic, receptor-saturating dose stimulated a major induction of hepatic P450 reductase mRNA that was detectable 4 h after the T3 injection, and peaked at approximately 650% of euthyroid levels by 12 h. However, this same treatment stimulated a biphasic increase in P450 reductase protein and activity that required 3 days to reach normal euthyroid levels. T3 treatment of euthyroid rats also stimulated a major induction of P450 reductase mRNA that was maximal (12-fold increase) by 12 h, but in this case no major increase in P450 reductase protein or activity was detectable over a 3-day period. Together, these studies establish that thyroid hormone regulates P450 reductase expression by pretranslational mechanisms. They also suggest that other regulatory mechanisms, which may involve changes in P450 reductase protein stability and/or changes in the translational efficiency of its mRNA, are likely to occur.  相似文献   

13.
14.
15.
16.
17.
The cellular isoform of prion protein (PrP(C)) is a cell-surface glycosyl-phosphatidylinositol-anchored protein which is ubiquitously expressed on the cell membrane. It may function as a cell receptor or as a cell adhesion molecule. Thyroid follicles, obtained from patients with Graves' disease at thyroidectomy, were cultured in F-12/RPMI-1640 medium supplemented with 0.5% fetal bovine serum and bovine thyroid stimulating hormone (bTSH). Northern blot analyses revealed that bTSH increased the steady-state expression levels of PrP mRNA in a time- and dose-dependent manner. This increase was reproduced by dibutyryl-cAMP and 12-decanoylphorbol-13-acetate. The mRNA expression was greater in thyroid follicles in suspension culture than in thyrocytes cultured in a monolayer. These findings suggest that TSH stimulates PrP mRNA expression in thyrocytes through the protein kinase A and C pathways. The greater mRNA expression in thyroid follicles than in monolayer cells suggests that PrP(C) may be involved in structure formation or maintenance of thyroid follicles.  相似文献   

18.
The kidney is a target organ for thyroid hormone action and a variety of renal transport processes are altered in response to impaired thyroid functions. To investigate the effect of thyroid hormone on the expression of the renal proximal tubular high-affinity-type H(+)-peptide cotransporter (PEPT2) in rats, hypothyroidism was induced in animals by administration of methimazole (0.05%) via drinking water. After 7 weeks of treatment, hypothyroidism was confirmed by determining serum free T(3) and free T(4) concentrations. Northern blotting was used to examine the expression of PEPT2 mRNA in kidney tissues from hypothyroid rats compared to control rats. Hypothyroidism resulted in an increased level of total renal PEPT2 mRNA (121.1+/-3.3% vs. control 100+/-2.8%; p=0.008). The mRNA results were confirmed by immuno-blotting, which demonstrated significantly increased protein levels (162% vs. control 100%; p<0.01). Immunohistochemistry also revealed increased PEPT2 protein levels in the proximal tubules of treated compared to non-treated rats. In summary, PEPT2 is the first proximal tubule transporter protein that shows increased expression in states of hypothyreosis. As PEPT2 reabsorbs filtered di- and tripeptides and peptide-like drugs, the present findings may have important implications in nutritional amino acid homeostasis and for drug dynamics in states of altered thyroid function.  相似文献   

19.
The effects of thyroid hormone on Na,K-ATPase alpha-subunit mRNA (mRNA alpha) content and Na,K-ATPase activity were measured in renal cortex, heart, and cerebrum of hypothyroid rats 24 and 72 h after injection of diluent or T3. Use of a cDNA probe complementary to rat brain mRNA alpha in Northern blot analysis revealed a single 26-27 S band in RNA isolated from these three tissues regardless of thyroid status. Tissue mRNA alpha content was estimated by dot blot analysis of whole cell extracts and isolated total RNA. Injection of T3 augmented mRNA alpha content by 2.1- to 2.5-fold in kidney cortex and myocardium at 24 h. After three daily injections of T3, the increases in mRNA alpha were evident despite a global increase in RNA content associated with hypertrophy of these target tissues. Furthermore, the increases in abundance of mRNA alpha after 72 h of T3 treatment correlated with enhancement of Na,K-ATPase activity. In contrast, both mRNA alpha and enzyme activity were invariant in the cerebrum. These data suggest that T3-induced augmentation of Na,K-ATPase activity is mediated, at least in part, by increased mRNA alpha content in target tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号